Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33275901

RESUMO

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Assuntos
Proteínas Quinases/metabolismo , Proteólise , Proteoma/metabolismo , Adulto , Linhagem Celular , Bases de Dados de Proteínas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
2.
Nature ; 616(7958): 790-797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921622

RESUMO

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anáfase , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Mitose
3.
Nat Chem Biol ; 19(7): 815-824, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36823351

RESUMO

Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.


Assuntos
Creatina Quinase , Creatina , Creatina Quinase/química , Creatina Quinase/metabolismo , Creatina/farmacologia , Cisteína , Fosfotransferases , Isoformas de Proteínas
4.
Chembiochem ; 24(19): e202300141, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37088717

RESUMO

Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.


Assuntos
Neoplasias , Quimera de Direcionamento de Proteólise , Camundongos , Animais , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
5.
Nat Chem Biol ; 17(6): 675-683, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753926

RESUMO

Cyclin-dependent kinase 12 (CDK12) is an emerging therapeutic target due to its role in regulating transcription of DNA-damage response (DDR) genes. However, development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. In the present study, we report the rational design and characterization of a CDK12-specific degrader, BSJ-4-116. BSJ-4-116 selectively degraded CDK12 as assessed through quantitative proteomics. Selective degradation of CDK12 resulted in premature cleavage and poly(adenylation) of DDR genes. Moreover, BSJ-4-116 exhibited potent antiproliferative effects, alone and in combination with the poly(ADP-ribose) polymerase inhibitor olaparib, as well as when used as a single agent against cell lines resistant to covalent CDK12 inhibitors. Two point mutations in CDK12 were identified that confer resistance to BSJ-4-116, demonstrating a potential mechanism that tumor cells can use to evade bivalent degrader molecules.


Assuntos
Quinases Ciclina-Dependentes/efeitos dos fármacos , Animais , Dano ao DNA/genética , Desenho de Fármacos , Descoberta de Drogas , Resistência a Medicamentos , Humanos , Poli A/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica
6.
Acta Radiol ; 64(1): 250-256, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35108123

RESUMO

BACKGROUND: Ulnar-sided wrist pain is associated with the development of multiple wrist pathologies. But the anatomical etiologies have not been fully understood. PURPOSE: To determine the association of three anatomical factors with ulnar-sided wrist pain, including ulnar variance (UV), distal ulnar volar angle (DUVA), and pisiform-ulnar distance (PUD). MATERIAL AND METHODS: A total of 64 patients who had ulnar-sided wrist pain associated with training injuries were retrospectively studied. A control group included 64 healthy athletes from the same unit. The UV, DUVA, and PUD of each individual was measured on radiographs. RESULTS: The average UV and DUVA of those in the ulnar-sided pain group were 0.84 mm and 174.65°, respectively; the control group values were 0.39 mm and 175.11°. The differences between the two groups had no statistical significance (P > 0.05). The average PUD of the ulnar-sided wrist pain group was shorter than that of the control group (2.37 cm vs. 2.65 cm); the difference had statistical significance (P < 0.05). PUD had a negative correlation with ulnar-sided pain; it was an anatomical protective factor (odds ratio = 0.01; P < 0.00; 95% confidence interval=0.00-0.05). Both UV and DUVA had no significant correlations with ulnar-sided wrist pain (P > 0.05). CONCLUSION: PUD has a significant correlation with ulnar-sided wrist pain. It is the anatomical protective factor. Both the UV and DUVA have no statistical association with ulnar-sided wrist pain, but we cannot ignore their potential pathogenic effects on wrists, and further studies are needed to confirm the results.


Assuntos
Traumatismos do Punho , Punho , Humanos , Punho/diagnóstico por imagem , Estudos Retrospectivos , Traumatismos do Punho/complicações , Traumatismos do Punho/diagnóstico por imagem , Artralgia/etiologia , Artralgia/complicações , Ulna/diagnóstico por imagem , Ulna/lesões , Dor , Articulação do Punho/diagnóstico por imagem
7.
Angew Chem Int Ed Engl ; 62(43): e202308292, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37658265

RESUMO

Chemical probes are essential tools for understanding biological systems and for credentialing potential biomedical targets. Programmed cell death 2 (PDCD2) is a member of the B-cell lymphoma 2 (Bcl-2) family of proteins, which are critical regulators of apoptosis. Here we report the discovery and characterization of 10 e, a first-in-class small molecule degrader of PDCD2. We discovered this PDCD2 degrader by serendipity using a chemical proteomics approach, in contrast to the conventional approach for making bivalent degraders starting from a known binding ligand targeting the protein of interest. Using 10 e as a pharmacological probe, we demonstrate that PDCD2 functions as a critical regulator of cell growth by modulating the progression of the cell cycle in T lymphoblasts. Our work provides a useful pharmacological probe for investigating PDCD2 function and highlights the use of chemical proteomics to discover selective small molecule degraders of unanticipated targets.


Assuntos
Proteínas Reguladoras de Apoptose , Linfoma de Células B , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteômica , Apoptose , Proliferação de Células
8.
Angew Chem Int Ed Engl ; 60(29): 15905-15911, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33915015

RESUMO

Aberrant activation of FGFR signaling occurs in many cancers, and ATP-competitive FGFR inhibitors have received regulatory approval. Despite demonstrating clinical efficacy, these inhibitors exhibit dose-limiting toxicity, potentially due to a lack of selectivity amongst the FGFR family and are poorly tolerated. Here, we report the discovery and characterization of DGY-09-192, a bivalent degrader that couples the pan-FGFR inhibitor BGJ398 to a CRL2VHL E3 ligase recruiting ligand, which preferentially induces FGFR1&2 degradation while largely sparing FGFR3&4. DGY-09-192 exhibited two-digit nanomolar DC50 s for both wildtype FGFR2 and several FGFR2-fusions, resulting in degradation-dependent antiproliferative activity in representative gastric cancer and cholangiocarcinoma cells. Importantly, DGY-09-192 induced degradation of a clinically relevant FGFR2 fusion protein in a xenograft model. Taken together, we demonstrate that DGY-09-192 has potential as a prototype FGFR degrader.


Assuntos
Descoberta de Drogas , Proteólise/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Humanos
9.
Mol Cell ; 33(1): 43-52, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150426

RESUMO

The glycine-rich G loop controls ATP binding and phosphate transfer in protein kinases. Here we show that the functions of Src family and Abl protein tyrosine kinases require an electrostatic interaction between oppositely charged amino acids within their G loops that is conserved in multiple other phylogenetically distinct protein kinases, from plants to humans. By limiting G loop flexibility, it controls ATP binding, catalysis, and inhibition by ATP-competitive compounds such as Imatinib. In WeeB mice, mutational disruption of the interaction results in expression of a Lyn protein with reduced catalytic activity, and in perturbed B cell receptor signaling. Like Lyn(-/-) mice, WeeB mice show profound defects in B cell development and function and succumb to autoimmune glomerulonephritis. This demonstrates the physiological importance of the conserved G loop salt bridge and at the same time distinguishes the in vivo requirement for the Lyn kinase activity from other potential functions of the protein.


Assuntos
Biocatálise , Sequência Conservada , Proteínas Quinases/química , Eletricidade Estática , Quinases da Família src/química , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Benzamidas , Biocatálise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Mesilato de Imatinib , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Mutação/genética , Filogenia , Piperazinas/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Chem Inf Model ; 56(1): 35-45, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26650754

RESUMO

The proteins of the Bcl-2 family play key roles in the regulation of programmed cell death by controlling the integrity of the outer mitochondrial membrane and the initiation of the apoptosis process. We performed extensive molecular dynamics simulations to investigate the conformational flexibility of the Bcl-xL protein in both the apo and holo (with Bad peptide and ABT-737) states. The accelerated molecular dynamics method implemented in Amber 14 was used to produce broader conformational sampling of 200 ns simulations. The pocket mining method based on the variational implicit-solvent model tracks the dynamic evolution of the ligand binding site with a druggability score characterizing the maximal affinity achievable by a drug-like molecule. Major movements were observed around the α3-helical domain and the loop region connecting the α1 and α2 helices, reshaping the ligand interaction in the BH3 binding groove. Starting with the apo crystal structure, which is recognized as "closed" and undruggable, the BH3 groove transitioned between the "open" and "closed" states during equilibrium simulation. Further analysis revealed a small percentage of the trajectory frames (∼10%) with a moderate degree of druggability that mimic the ligand-bound states. The ability to attain and detect by computer simulation the most suitable conformational states for ligand binding in advance of compound synthesis and crystal structure solution is of immense value to the application and success of structure-based drug design.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Proc Natl Acad Sci U S A ; 110(50): 20224-9, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277854

RESUMO

Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion. This effort led to the discovery of LGK974, a potent and specific small-molecule Porcupine (PORCN) inhibitor. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of Wnt ligands, a necessary step in the processing of Wnt ligand secretion. We show that LGK974 potently inhibits Wnt signaling in vitro and in vivo, including reduction of the Wnt-dependent LRP6 phosphorylation and the expression of Wnt target genes, such as AXIN2. LGK974 is potent and efficacious in multiple tumor models at well-tolerated doses in vivo, including murine and rat mechanistic breast cancer models driven by MMTV-Wnt1 and a human head and neck squamous cell carcinoma model (HN30). We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide both a strategy and tools for targeting Wnt-driven cancers through the inhibition of PORCN.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Pirazinas/farmacologia , Piridinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases , Animais , Proteína Axina/antagonistas & inibidores , Western Blotting , Linhagem Celular Tumoral , Clonagem Molecular , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mutagênese , Fosforilação/efeitos dos fármacos , Pirazinas/uso terapêutico , Piridinas/uso terapêutico , Ensaio Radioligante , Ratos , Receptores Notch/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Comput Chem ; 36(14): 1047-59, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25766844

RESUMO

We introduce a software package for the analysis of biomolecular solvation. The package collects computer codes that implement numerical methods for a variational implicit-solvent model (VISM). The input of the package includes the atomic data of biomolecules under consideration and the macroscopic parameters such as solute-solvent surface tension, bulk solvent density and ionic concentrations, and the dielectric coefficients. The output includes estimated solvation free energies and optimal macroscopic solute-solvent interfaces that are obtained by minimizing the VISM solvation free-energy functional among all possible solute-solvent interfaces enclosing the solute atoms. We review the VISM with various descriptions of electrostatics. We also review our numerical methods that consist mainly of the level-set method for relaxing the VISM free-energy functional and a compact coupling interface method for the dielectric Poisson-Boltzmann equation. Such numerical methods and algorithms constitute the central modules of the software package. We detail the structure of the package, format of input and output files, workflow of the codes, and the postprocessing of output data. Our demo application to a host-guest system illustrates how to use the package to perform solvation analysis for biomolecules, including ligand-receptor binding systems. The package is simple and flexible with respect to minimum adjustable parameters and a wide range of applications. Future extensions of the package use can include the efficient identification of ligand binding pockets on protein surfaces.


Assuntos
Proteínas/química , Software , Sítios de Ligação , Ligantes , Ligação Proteica , Solubilidade , Soluções , Termodinâmica
14.
RSC Med Chem ; 15(2): 607-611, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389883

RESUMO

Sulfonyl fluoride EM12-SF was developed previously to covalently engage a histidine residue in the sensor loop of cereblon (CRBN) in the E3 ubiquitin ligase complex CRL4CRBN. Here, we further develop the structure-activity relationships of additional sulfonyl fluoride containing ligands that possess a range of cereblon binding potencies in cells. Isoindoline EM364-SF, which lacks a key hydrogen bond acceptor present in CRBN molecular glues, was identified as a potent binder of CRBN. This led to the development of the reversible molecular glue CPD-2743, that retained cell-based binding affinity for CRBN and degraded the neosubstrate IKZF1 to the same extent as EM12, but unlike isoindolinones, lacked SALL4 degradation activity (a target linked to teratogenicity). CPD-2743 had high permeability and lacked efflux in Caco-2 cells, in contrast to the isoindolinone iberdomide. Our methodology expands the repertoire of sulfonyl exchange chemical biology via the advancement of medicinal chemistry design strategies.

15.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260676

RESUMO

Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.

16.
ACS Cent Sci ; 10(6): 1156-1166, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38947214

RESUMO

A systematic strategy to develop dual-warhead inhibitors is introduced to circumvent the limitations of conventional covalent inhibitors such as vulnerability to mutations of the corresponding nucleophilic residue. Currently, all FDA-approved covalent small molecules feature one electrophile, leaving open a facile route to acquired resistance. We conducted a systematic analysis of human proteins in the protein data bank to reveal ∼400 unique targets amendable to dual covalent inhibitors, which we term "molecular bidents". We demonstrated this strategy by targeting two kinases: MKK7 and EGFR. The designed compounds, ZNL-8162 and ZNL-0056, are ATP-competitive inhibitors that form two covalent bonds with cysteines and retain potency against single cysteine mutants. Therefore, molecular bidents represent a new pharmacological modality with the potential for improved selectivity, potency, and drug resistance profile.

17.
J Med Chem ; 67(4): 2837-2848, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38300264

RESUMO

The pyrazolopyrimidine (PP) heterocycle is a versatile and widely deployed core scaffold for the development of kinase inhibitors. Typically, a 4-amino-substituted pyrazolopyrimidine binds in the ATP-binding pocket in a conformation analogous to the 6-aminopurine of ATP. Here, we report the discovery of ZNL0325 which exhibits a flipped binding mode where the C3 position is oriented toward the ribose binding pocket. ZNL0325 and its analogues feature an acrylamide side chain at the C3 position which is capable of forming a covalent bond with multiple kinases that possess a cysteine at the αD-1 position including BTK, EGFR, BLK, and JAK3. These findings suggest that the ability to form a covalent bond can override the preferred noncovalent binding conformation of the heterocyclic core and provides an opportunity to create structurally distinct covalent kinase inhibitors.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Quinases , Trifosfato de Adenosina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo
18.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854003

RESUMO

Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here we report the development of small molecule degraders of the envelope (E) protein of dengue virus. We developed two classes of bivalent E-degraders, linking two previously reported E-binding small molecules, GNF-2 and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E degrader with ABL inhibition while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof-of-concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class antiviral drugs.

19.
Cancer Discov ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38564707

RESUMO

Activating point mutations in the MET tyrosine kinase domain (TKD) are oncogenic in a subset of papillary renal cell carcinomas (PRCC). Here, using comprehensive genomic profiling among >600,000 patients, we identify activating MET TKD point mutations as putative oncogenic driver across diverse cancers, with a frequency of ~0.5%. The most common mutations in the MET TKD defined as oncogenic or likely oncogenic according to OncoKB resulted in amino acid substitutions at positions H1094, L1195, F1200, D1228, Y1230, M1250, and others. Preclinical modeling of these alterations confirmed their oncogenic potential, and also demonstrated differential patterns of sensitivity to type I and type II MET inhibitors. Two patients with metastatic lung adenocarcinoma harboring MET TKD mutations (H1094Y, F1200I) and no other known oncogenic drivers achieved confirmed partial responses to a type I MET inhibitor. Activating MET TKD mutations occur in multiple malignancies and may confer clinical sensitivity to currently available MET inhibitors.

20.
J Chem Phys ; 139(2): 024111, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862933

RESUMO

A phase-field variational implicit-solvent approach is developed for the solvation of charged molecules. The starting point of such an approach is the representation of a solute-solvent interface by a phase field that takes one value in the solute region and another in the solvent region, with a smooth transition from one to the other on a small transition layer. The minimization of an effective free-energy functional of all possible phase fields determines the equilibrium conformations and free energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals interaction, and the electrostatic interaction are coupled together self-consistently through a phase field. The surface energy results from the minimization of a double-well potential and the gradient of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate and efficient methods are designed and implemented to numerically relax an underlying charged molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal that the new theory and methods can capture capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons of the phase-field and the original sharp-interface variational approaches are discussed.


Assuntos
Proteínas de Bactérias/química , Pseudomonas/química , Solventes/química , Simulação por Computador , Íons/química , Modelos Químicos , Modelos Moleculares , Soluções/química , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA