Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 156(1-2): 317-331, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439385

RESUMO

Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.


Assuntos
Carbolinas/farmacologia , Morte Celular/efeitos dos fármacos , Glutationa Peroxidase/antagonistas & inibidores , Piperazinas/farmacologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Xenoenxertos , Humanos , Linfoma de Células B/tratamento farmacológico , Camundongos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
2.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993102

RESUMO

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias/genética
3.
Nat Mater ; 23(9): 1292-1299, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38413810

RESUMO

Pills are a cornerstone of medicine but can be challenging to swallow. While liquid formulations are easier to ingest, they lack the capacity to localize therapeutics with excipients nor act as controlled release devices. Here we describe drug formulations based on liquid in situ-forming tough (LIFT) hydrogels that bridge the advantages of solid and liquid dosage forms. LIFT hydrogels form directly in the stomach through sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by a drug-containing polymer solution of alginate and four-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels robustly form in the stomachs of live rats and pigs, and are mechanically tough, biocompatible and safely cleared after 24 h. LIFT hydrogels deliver a total drug dose comparable to unencapsulated drug in a controlled manner, and protect encapsulated therapeutic enzymes and bacteria from gastric acid-mediated deactivation. Overall, LIFT hydrogels may expand access to advanced therapeutics for patients with difficulty swallowing.


Assuntos
Hidrogéis , Hidrogéis/química , Animais , Ratos , Suínos , Polietilenoglicóis/química , Alginatos/química
4.
Am J Pathol ; 193(5): 532-547, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804377

RESUMO

Chordoma is a rare malignant tumor demonstrating notochordal differentiation. It is dependent on brachyury (TBXT), a hallmark notochordal gene and transcription factor, and shares histologic features and the same anatomic location as the notochord. This study involved a molecular comparison of chordoma and notochord to identify dysregulated cellular pathways. The lack of a molecular reference from appropriate control tissue limits our understanding of chordoma and its relationship to notochord. Therefore, an unbiased comparison of chordoma, human notochord, and an atlas of normal and cancerous tissue was conducted using gene expression profiling to clarify the chordoma/notochord relationship and potentially identify novel drug targets. The study found striking consistency in gene expression profiles between chordoma and notochord, supporting the hypothesis that chordoma develops from notochordal remnants. A 12-gene diagnostic chordoma signature was identified and the TBXT/transforming growth factor beta (TGF-ß)/SOX6/SOX9 pathway was hyperactivated in the tumor, suggesting that pathways associated with chondrogenesis were a central driver of chordoma development. Experimental validation in chordoma cells confirmed these findings and emphasized the dependence of chordoma proliferation and survival on TGF-ß. The computational and experimental evidence provided the first molecular connection between notochord and chordoma and identified core members of a chordoma regulatory pathway involving TBXT. This pathway provides new therapeutic targets for this unique malignant neoplasm and highlights TGF-ß as a prime druggable candidate.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/patologia , Notocorda/metabolismo , Notocorda/patologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
5.
J Org Chem ; 85(7): 4648-4662, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126173

RESUMO

We describe our design, synthesis, and chemical study of a set of functional epidithiodiketopiperazines (ETPs) and evaluation of their activity against five human cancer cell lines. Our structure-activity relationship-guided substitution of ETP alkaloids offers versatile derivatization while maintaining potent anticancer activity, offering exciting opportunity for their use as there are no examples of complex and potently anticancer (nM) ETPs being directly used as conjugatable probes or warheads. Our synthetic solutions to strategically designed ETPs with functional linkers required advances in stereoselective late-stage oxidation and thiolation chemistry in complex settings, including the application of novel reagents for dihydroxylation and cis-sulfidation of diketopiperazines. We demonstrate that complex ETPs equipped with a strategically substituted azide functional group are readily derivatized to the corresponding ETP-triazoles without compromising anticancer activity. Our chemical stability studies of ETPs along with cytotoxic evaluation of our designed ETPs against A549, DU 145, HeLa, HCT 116, and MCF7 human cancer cell lines provide insights into the impact of structural features on potency and chemical stability, informing future utility of ETPs in chemical and biological studies.


Assuntos
Antineoplásicos , Piperazinas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Dicetopiperazinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Piperazinas/farmacologia , Relação Estrutura-Atividade
6.
J Am Chem Soc ; 141(36): 14411-14420, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31422662

RESUMO

A unified enantioselective total synthesis and anticancer evaluation of all known epoxide-containing communesin alkaloids and related derivatives is described. Our synthesis is predicated on the convergent and modular diazene-directed assembly of two complex fragments to secure the critical C3a-C3a' linkage followed by a guided biomimetic aminal reorganization to deliver the heptacyclic core of these alkaloids. Concise enantioselective syntheses of the fragments were devised, with highlights including the application of a rationally designed sulfinamide chiral auxiliary, an efficient calcium trifluoromethanesulfonate promoted intramolecular amination, and a diastereoselective epoxidation that simultaneously converts the new chiral auxiliary to a versatile amine protective group. The modularity of our convergent approach enabled the rapid synthesis of all epoxide-containing members of the communesin family from a single heterodimeric intermediate, including the first total synthesis of communesins C-E, and G-I, and facilitated our stereochemical revision of (-)-communesin I, the most recently isolated communesin alkaloid. Furthermore, the generality of our biogenetically inspired heterodimer rearrangement was demonstrated in a guided synthesis of a communesin derivative with an unnatural topology. Finally, we report the first comparative analysis of the anticancer activities of all naturally occurring communesin alkaloids A-I and eight complex derivatives against five human cancer cell lines. From these data, we have identified (-)-communesin B as the most potent natural communesin and discovered that derivatives with N8'-sulfonamide substitution exhibit up to a 10-fold increase in potency over the natural alkaloids.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Alcaloides/síntese química , Alcaloides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
7.
Biochemistry ; 57(19): 2814-2827, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29676157

RESUMO

Collagen overproduction is a feature of fibrosis and cancer, while insufficient deposition of functional collagen molecules and/or the secretion of malformed collagen is common in genetic disorders like osteogenesis imperfecta. Collagen secretion is an appealing therapeutic target in these and other diseases, as secretion directly connects intracellular biosynthesis to collagen deposition and biological function in the extracellular matrix. However, small molecule and biological methods to tune collagen secretion are severely lacking. Their discovery could prove useful not only in the treatment of disease, but also in providing tools for better elucidating mechanisms of collagen biosynthesis. We developed a cell-based, high-throughput luminescent assay of collagen type I secretion and used it to screen for small molecules that selectively enhance or inhibit that process. Among several validated hits, the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) robustly decreases the secretion of collagen-I by our model cell line and by human primary cells. In these systems, 17-AAG and other pan-isoform Hsp90 inhibitors reduce collagen-I secretion post-translationally and are not global inhibitors of protein secretion. Surprisingly, the consequences of Hsp90 inhibitors cannot be attributed to inhibition of the endoplasmic reticulum's Hsp90 isoform, Grp94. Instead, collagen-I secretion likely depends on the activity of cytosolic Hsp90 chaperones, even though such chaperones cannot directly engage nascent collagen molecules. Our results highlight the value of a cell-based high-throughput screen for selective modulators of collagen secretion and suggest an unanticipated role for cytosolic Hsp90 in collagen secretion.


Assuntos
Colágeno Tipo I/química , Proteínas de Choque Térmico HSP90/química , Ensaios de Triagem em Larga Escala , Glicoproteínas de Membrana/química , Benzoquinonas/farmacologia , Linhagem Celular , Colágeno Tipo I/biossíntese , Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Lactamas Macrocíclicas/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Isoformas de Proteínas/química
8.
Nat Chem Biol ; 12(2): 109-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656090

RESUMO

Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ∼19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts. This process yielded many novel mechanistic insights, including the identification of activation mechanisms, cellular transporters and direct protein targets. We found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2). These data and analytical tools are available to the research community through the Cancer Therapeutics Response Portal.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Aflatoxinas/química , Aflatoxinas/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Simulação por Computador , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Estrutura Molecular , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real
9.
J Am Chem Soc ; 137(16): 5563-8, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25860544

RESUMO

Lysosomes perform a critical cellular function as a site of degradation for diverse cargoes including proteins, organelles, and pathogens delivered through distinct pathways, and defects in lysosomal function have been implicated in a number of diseases. Recent studies have elucidated roles for the lysosome in the regulation of protein synthesis, metabolism, membrane integrity, and other processes involved in homeostasis. Complex small-molecule natural products have greatly contributed to the investigation of lysosomal function in cellular physiology. Here we report the discovery of a novel, small-molecule modulator of lysosomal acidification derived from diversity-oriented synthesis through high-content screening.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Macrolídeos/farmacologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
10.
J Neurosci ; 33(8): 3582-7, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426685

RESUMO

Dexras1, a small G-protein localized predominantly to the brain, is transcriptionally upregulated by the synthetic glucocorticoid dexamethasone. It has close homology to the Ras subfamily but differs in that Dexras1 contains an extended 7 kDa C-terminal tail. Previous studies in our laboratory showed that NMDA receptor activation, via NO and Dexras1, physiologically stimulates DMT1, the major iron importer. A membrane-permeable iron chelator substantially reduces NMDA excitotoxicity, suggesting that Dexras1-mediated iron influx plays a crucial role in NMDA/NO-mediated cell death. We here report that iron influx is elicited by nitric oxide but not by other proapoptotic stimuli, such as H2O2 or staurosporine. Deletion of Dexras1 in mice attenuates NO-mediated cell death in dissociated primary cortical neurons and retinal ganglion cells in vivo. Thus, Dexras1 appears to mediate NMDA-elicited neurotoxicity via NO and iron influx.


Assuntos
Córtex Cerebral/fisiologia , Ácido Glutâmico/toxicidade , N-Metilaspartato/toxicidade , Células Ganglionares da Retina/fisiologia , Proteínas ras/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Células HEK293 , Humanos , Ferro/metabolismo , Ferro/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/fisiologia , N-Metilaspartato/fisiologia , Óxido Nítrico/fisiologia , Óxido Nítrico/toxicidade , Células PC12 , Ratos , Proteínas ras/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA