Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835343

RESUMO

Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 µg/g, respectively. A total of seven xanthones, including garcinone C (513.06 µg/g), garcinone D (469.82 µg/g), γ-mangostin (11,100.72 µg/g), 8-desoxygartanin (1490.61 µg/g), gartanin (2398.96 µg/g), α-mangostin (51,062.21 µg/g) and ß-mangostin (1508.01 µg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 µg/g) and cyanidin-3-glucoside (19.72 µg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 µg/mL for the former and 6.23 µg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.


Assuntos
Garcinia mangostana , Neoplasias Hepáticas , Xantonas , Humanos , Antocianinas , Espectrometria de Massas em Tandem , Óleo de Soja , Cromatografia Líquida , Polissorbatos , Xantonas/farmacologia , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Água
2.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838626

RESUMO

The objective of this study was to develop a simultaneous analysis method of furan and its 10 derivatives in different food commodities. The results indicated that furan and its 10 derivatives could be separated within 9.5 min by using a HP-5MS column and gas chromatography-tandem mass spectrometry (GC-MS/MS) with multiple reaction monitoring mode for detection. Furthermore, this method could resolve several furan isomers, such as 2-methyl furan and 3-methyl furan, as well as 2,3-dimethyl furan and 2,5-dimethyl furan. The most optimal extraction conditions were: 5 g of the fruit or juice sample mixed with 5 mL of the saturated NaCl solution, separately, or 1 g of the canned oily fish sample mixed with 9 mL of the saturated NaCl solution, followed by the equilibration of each sample at 35 °C for 15 min, using a carboxen-polydimethylsiloxane SPME arrow to adsorb the analytes for 15 min at 35 °C for subsequent analysis by GC-MS/MS. For method validation of all the analytes in the different food matrices, the recovery was 76-117% and the limit of the quantitation was 0.003-0.675 ng/g, while the relative standard deviation (RSD%) of the intra-day variability range from 1-16%, and that of the inter-day variability was from 4-20%. The method validation data further demonstrated that a reliable method was established for the analysis of furan and its 10 derivatives in commercial foods.


Assuntos
Cloreto de Sódio , Espectrometria de Massas em Tandem , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Extração em Fase Sólida , Furanos/química , Frutas/química
3.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630548

RESUMO

Ginseng (Panax quinquefolius), a popular herbal and nutritional supplement consumed worldwide, has been demonstrated to possess vital biological activities, which can be attributed to the presence of ginsenosides. However, the presence of ginsenosides in ginseng root residue, a by-product obtained during processing of ginseng beverage, remains unexplored. The objectives of this study were to develop a high-performance liquid chromatography-photodiode array detection-mass spectrometry (HPLC-DAD-ESI-MS) and an ultra-high-performance-liquid-chromatography-tandem mass spectrometry (UPLC-HRMS-MS/MS) method for the comparison of ginsenoside analysis in ginseng root residue. Results showed that by employing a Supelco Ascentis Express C18 column (150 × 4.6 mm ID, particle size 2.7 µm) and a gradient mobile phase of deionized water and acetonitrile with a flow rate at 1 mL/min and detection at 205 nm, a total of 10 ginsenosides, including internal standard saikosaponin A, were separated within 18 min and detected by HPLC-DAD-ESI-MS. Whereas with UPLC-HRMS-MS/MS, all the 10 ginsenosides were separated within six minutes by using an Acquity UPLC BEH C18 column (50 × 2.1 mm ID, particle size 1.7 µm, 130 Å) and a gradient mobile phase of ammonium acetate and acetonitrile with column temperature at 50 °C, flow rate at 0.4 mL/min and detection by selected reaction monitoring (SRM) mode. High accuracy and precision was shown, with limit of quantitation (LOQ) ranging from 0.2−1.9 µg/g for HPLC-DAD-ESI-MS and 0.269−6.640 ng/g for UPLC-HRMS-MS/MS. The contents of nine ginsenosides in the ginseng root residue ranged from

Assuntos
Ginsenosídeos , Panax , Acetonitrilas , Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/química , Panax/química , Espectrometria de Massas em Tandem/métodos
4.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071530

RESUMO

Anti-cancer activity of catechin nanoemulsions prepared from Oolong tea leaf waste was studied on prostate cancer cells DU-145 and DU-145-induced tumors in mice. Catechin nanoemulsions composed of lecithin, Tween-80 and water in an appropriate proportion was prepared with high stability, particle size of 11.3 nm, zeta potential of -67.2 mV and encapsulation efficiency of 83.4%. Catechin nanoemulsions were more effective than extracts in inhibiting DU-145 cell growth, with the IC50 being 13.52 and 214.6 µg/mL, respectively, after 48 h incubation. Furthermore, both catechin nanoemulsions and extracts could raise caspase-8, caspase-9 and caspase-3 activities for DU-145 cell apoptosis, arresting the cell cycle at S and G2/M phases. Compared to control, catechin nanoemulsion at 20 µg/mL and paclitaxel at 10 µg/mL were the most effective in reducing tumor volume by 41.3% and 52.5% and tumor weight by 77.5% and 90.6% in mice, respectively, through a decrease in EGF and VEGF levels in serum.


Assuntos
Catequina/química , Emulsões/química , Nanopartículas/química , Folhas de Planta/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Chá/química , Animais , Antineoplásicos/farmacologia , Apoptose , Caspase 8/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Endocitose , Humanos , Concentração Inibidora 50 , Lecitinas/química , Limite de Detecção , Masculino , Camundongos , Camundongos SCID , Nanotecnologia/métodos , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Tamanho da Partícula , Polissorbatos/química , Controle de Qualidade , Solventes , Água/química
5.
J Sci Food Agric ; 99(6): 3106-3116, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30516283

RESUMO

BACKGROUND: Allyl isothiocyanate (AITC), a volatile and water-insoluble compound present in several cruciferous vegetables, has been shown to possess several biological qualities such as anti-bacterial, anti-fungal, and anti-cancer activity. In this study, water-soluble allyl isothiocyanate nanoparticles (AITC-NPs) were prepared by oil dispersed in water (O/W) microemulsion and complex coacervation techniques and evaluated for their anti-inflammatory activity towards macrophage cell RAW 264.7 and anti-cancer effect on human bladder cancer cell HT1376. RESULTS: The AITC-NPs with a particle size of 9.4 nm were stable during heating up to 110 °C or three freeze-thawing cycles. No significant cytotoxicity was shown on Caco-2 and intestine epithelial IEC-6 cells at AITC-NP doses ranging from 0.25 to 2 g L-1 (8.75-70 mg L-1 AITC). However, at 2 g L-1 dosage, AITC-NPs could inhibit the growth of human bladder cancer cells HT1376 by 90%, while their low dosage at 0.25 g L-1 could inhibit migration ability by 83.7, 71.3, 58.4 and 31.4% after 4, 8, 12, and 24 h of incubation, respectively. Compared to AITC and NPs, AITC-NPs showed a better inhibition on lipopolysaccharide (LPS)-induced TNF-α, IL-6, NO and iNOS production in RAW 264.7 macrophage cells. CONCLUSION: The results demonstrate the potential of AITC-NPs as therapeutic agents for the treatment of bladder cancer and the enhancement of immune function. © 2018 Society of Chemical Industry.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Isotiocianatos/farmacologia , Nanopartículas/química , Neoplasias da Bexiga Urinária/fisiopatologia , Animais , Anti-Inflamatórios/química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Humanos , Isotiocianatos/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Células RAW 264.7 , Neoplasias da Bexiga Urinária/tratamento farmacológico
6.
Crit Rev Biotechnol ; 38(7): 1003-1024, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29402135

RESUMO

Amidst numerous emerging nanoparticles, cerium oxide nanoparticles (CNPs) possess fascinating pharmacological potential as they can be used as a therapeutic for various oxidative stress-associated chronic diseases such as cancer, inflammation and neurodegeneration due to unique redox cycling between Ce3+ and Ce4+ oxidation states on their surface. Lattice defects generated by the formation of Ce3+ ions and compensation by oxygen vacancies on CNPs surface has led to switching between CeO2 and CeO2-x during redox reactions making CNPs a lucrative catalytic nanoparticle capable of mimicking key natural antioxidant enzymes such as superoxide dismutase and catalase. Eventually, most of the reactive oxygen species and nitrogen species in biological system are scavenged by CNPs via an auto-regenerative mechanism in which a minimum dose can exhibit catalytic activity for a longer duration. Due to the controversial outcomes on CNPs toxicity, considerable attention has recently been drawn towards establishing relationships between the physicochemical properties of CNPs obtained by different synthesis methods and biological effects ranging from toxicity to therapeutics. Unlike non-redox active nanoparticles, variations in physicochemical properties and the surface properties of CNPs obtained from different synthesis methods can significantly affect their biological activity (inactive, antioxidant, or pro-oxidant). Moreover, these properties can influence the biological identity, cellular interactions, cellular uptake, biodistribution, and therapeutic efficiency. This review aims to highlight the critical role of various physicochemical and the surface properties of CNPs controlling their biological activity based on 165 cited references.


Assuntos
Materiais Biocompatíveis , Cério , Nanopartículas Metálicas , Animais , Biotecnologia , Linhagem Celular , Fenômenos Químicos , Humanos , Camundongos , Propriedades de Superfície
7.
J Sci Food Agric ; 98(1): 51-63, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28516478

RESUMO

BACKGROUND: Curcuminoid from Curcuma longa Linnaeus has been demonstrated to be effective in anti-cancer and anti-inflammation. The objectives of the present study were to prepare curcuminoid dispersion and nanoemulsion from C. longa and determine their oral bioavailabilities in rats. RESULTS: After curcuminoid extraction using 99.5% ethanol, bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin were separated within 10 min by high-performance liquid chromatography using an Eclipse XDB-C18 column (Agilent, Palo Alto, CA, USA) and a gradient mobile phase of 0.1% aqueous formic acid and acetonitrile, with a flow rate of 1 mL min-1 , column temperature of 35 °C and detection wavelength of 425 nm. Curcuminoid nanoemulsion at a particle size of 12.1 nm and encapsulation efficiency 98.8% was prepared using lecithin, Tween 80 and water. A pharmacokinetic study in rats revealed that the parameters including Tmax , Cmax , t1/2 and the area under the curve were higher for curcuminoid nanoemulsions than for curcuminoid dispersion at the same dose employed for gavage administration, whereas, for intravenous injection, an opposite trend was shown. The oral bioavailabilities of BDMC, DMC, curcumin and total curcuminoids in nanoemulsion and dispersion were 34.39 and 4.65%, 39.93 and 5.49%, 47.82 and 9.38%, and 46 and 8.7%, respectively. CONCLUSION: The results of the present study demonstrate a higher oral bioavailability after incorporation of curcuminoid into nanoemulsion, facilitating its application as a botanic drug. © 2017 Society of Chemical Industry.


Assuntos
Curcuma/química , Curcumina/farmacocinética , Extratos Vegetais/farmacocinética , Animais , Curcumina/administração & dosagem , Curcumina/química , Emulsões/administração & dosagem , Emulsões/química , Emulsões/farmacocinética , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 17(1)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26771610

RESUMO

The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to accelerate aging in the brain, kidneys, liver and blood cells. However, studies on aging in male reproductive organs that have used this animal model remain few. Therefore, the current study aimed to optimize a model of male reproductive aging by administering d-gal injections to male mice and to determine the possible mechanism expediting senescence processes during spermatogenesis. In this study, C57Bl/6 mice were randomized into five groups (each containing 8-10 mice according to the daily intraperitoneal injection of vehicle control or 100 or 200 mg/kg dosages of d-gal for a period of six or eight weeks). First, mice subjected to d-gal injections for six or eight weeks demonstrated considerably decreased superoxide dismutase activity in the serum and testis lysates compared to those in the control group. The lipid peroxidation in testis also increased in the d-gal-injected groups. Furthermore, the d-gal-injected groups exhibited a decreased ratio of testis weight/body weight and sperm count compared to the control group. The percentages of both immotile sperm and abnormal sperm increased considerably in the d-gal-injected groups compared to those of the control group. To determine the genes influenced by the d-gal injection during murine spermatogenesis, a c-DNA microarray was conducted to compare testicular RNA samples between the treated groups and the control group. The d-gal-injected groups exhibited RNA transcripts of nine spermatogenesis-related genes (Cycl2, Hk1, Pltp, Utp3, Cabyr, Zpbp2, Speer2, Csnka2ip and Katnb1) that were up- or down-regulated by at least two-fold compared to the control group. Several of these genes are critical for forming sperm-head morphologies or maintaining nuclear integration (e.g., cylicin, basic protein of sperm head cytoskeleton 2 (Cylc2), casein kinase 2, alpha prime interacting protein (Csnka2ip) and katanin p80 (WD40-containing) subunit B1 (Katnb1)). These results indicate that d-gal-injected mice are suitable for investigating male reproductive aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Galactose/farmacologia , Reprodução/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Animais , Galactose/administração & dosagem , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Contagem de Espermatozoides , Superóxido Dismutase/metabolismo , Testículo/efeitos dos fármacos , Testículo/fisiologia
9.
J Cell Mol Med ; 19(7): 1697-709, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25781909

RESUMO

The objectives of this study are to investigate antiproliferative effect and mechanisms of bioactive compounds from Gynostemma pentaphyllum (G. pentaphyllum) on lung carcinoma cell A549. Saponins, carotenoids and chlorophylls were extracted and fractionated by column chromatography, and were subjected to high-performance liquid chromatography-mass spectrometry analyses. The saponin fraction, which consisted mainly of gypenoside (Gyp) XXII and XXIII, rather than the carotenoid and chlorophyll ones, was effective in inhibiting A549 cell growth in a concentration- and a time-dependent manner as evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The estimated half maximal inhibitory concentration (IC50 ) of Gyp on A549 cells was 30.6 µg/ml. Gyp was further demonstrated to induce an apparent arrest of the A549 cell cycle at both the S phase and the G2/M phase, accompanied by a concentration- and a time-dependent increase in the proportions of both the early and late apoptotic cells. Furthermore, Gyp down-regulated cellular expression of cyclin A and B as well as BCL-2, while up-regulated the expression of BAX, DNA degradation factor 35 KD, poly [ADP-ribose] polymerase 1, p53, p21 and caspase-3. Nevertheless, both the treatment of a p53 inhibitor, pifithrin-α, and the small hairpin RNA-mediated p53 knockdown in the A549 cells did not alter the growth inhibition effect induced by Gyp. As a result, the cell cycle arrest and apoptosis of A549 cells induced by Gyp would most likely proceed through p53-independent pathway(s).


Assuntos
Neoplasias Pulmonares/patologia , Proteína Supressora de Tumor p53/metabolismo , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Carotenoides/análise , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clorofila/análise , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Gynostemma/química , Humanos , Espectrometria de Massas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saponinas/análise
10.
Nanotechnology ; 25(15): 155102, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24651082

RESUMO

The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Carotenoides/administração & dosagem , Carotenoides/farmacocinética , Quilomícrons/química , Portadores de Fármacos/química , Micelas , Animais , Antioxidantes/química , Disponibilidade Biológica , Carotenoides/química , Licopeno , Masculino , Ratos , Ratos Sprague-Dawley
11.
Molecules ; 19(11): 17663-81, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25365293

RESUMO

Flavonoids, containing mainly kaempferol rhamnohexoside derivatives, were extracted from Gynostemma pentaphyllum (G. pentaphyllum) and their potential growth inhibition effects against H460 non-small cell lung cancer cells was explored and compared to that on A549 cells. The extracted flavonoids were found to exhibit antiproliferation effects against H460 cells (IC50 = 50.2 µg/mL), although the IC50 of H460 is 2.5-fold that of A549 cells (IC50 = 19.8 µg/mL). Further investigation revealed that H460 cells are more susceptible to kaempferol than A549, whereas A549 cell growth is better inhibited by kaempferol rhamnohexoside derivatives as compared with H460. In addition, flavonoids from G. pentaphyllum induced cell cycle arrest at both S and G2/M phases with concurrent modulated expression of the cellular proteins cyclin A, B, p53 and p21 in A549 cells, but not H460. On the contrary, apoptosis and concomitant alteration in balance of BCL-2 and BAX expression as well as activation of caspase-3 were equally affected between both cells by flavonoid treatment. These observations strongly suggest the growth inhibition discrepancy between H460 and A549 following flavonoid treatment can be attributed to the lack of cell cycle arrest in H460 cells and the differences between H460 and A549 cells may serve as contrasting models for further mechanistic investigations.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Flavonoides/farmacologia , Gynostemma/química , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina B/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Flavonoides/química , Humanos , Quempferóis/farmacologia , Extratos Vegetais/química , Proteína Supressora de Tumor p53/metabolismo
12.
Int J Biol Macromol ; 261(Pt 1): 129722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280696

RESUMO

Valorization of fish processing waste to obtain value-added products such as collagen and bioactive peptides is a vital strategy to increase the economic value, reduce disposal problems, and prevent harmful impacts on both environment and health. This study aims to isolate two collagen peptides from Taiwan Tilapia skin and prepare 12 nanopeptides including nanoemulsion (NE), nanoliposome (NL), and nanogold (NG) without and with folic acid/chitosan (FA/CH) or FA ligand conjugation for comparison of their inhibition efficiency towards lung cancer cells A549 and normal lung cells MRC5. Acid-soluble collagen (yield, 21.58 %) was extracted using 0.5 M acetic acid and hydrolyzed to obtain two tilapia skin collagen peptides TSCP1 (482 Da) and TSCP2 (172 Da) respectively using 2.5 % and 12.5 % alcalase, with sample-to-water ratio at 1:30 (w/v), pH 8, temperature 50 °C, and hydrolysis time 6 h. Characterization of collagen peptides revealed the presence of type 1 collagen with a high amount of amino acids including glycine (32.6-33.1 %), alanine (13.6-14.0 %), proline (10.0-10.5 %), and hydroxyproline (7.3-7.6 %). TSCP1, TSCP2, and 12 nanopeptides showed a higher cytotoxicity towards A549 cells than MRC5 cells, with TSCP2 and its 6 nanopeptides exhibiting a lower IC50 compared to TSCP1 and its 6 nanopeptides. The mean particle size was 15.7, 33.6, and 16.0 nm respectively for TSCP2-NE, TSCP2-NL, and TSCP2-NG, but changed to 14.4, 36.3, and 17.9 nm following ligand conjugation with a shift in zeta potential from negative to positive for TSCP2-NE-FA/CH and TSCP2-NL-FA/CH. All nanopeptides were more effective than peptides in inhibiting the growth of A549 cells, with the lowest IC50 value being shown for TSCP2-NL-FA/CH (5.32 µg/mL), followed by TSCP2-NE-FA/CH (8.3 µg/mL), TSCP2-NE (22.4 µg/mL), TSCP2-NL (82.7 µg/mL), TSCP2-NG-FA (159.8 µg/mL), TSCP2-NG (234.0 µg/mL) and TSCP2 (359.7 µg/mL). Cell proportions of sub-G1, S, and G2/M phases increased dose-dependently, with a possible cell cycle arrest at G2/M phase. The proportion of necrotic cells was the highest for TSCP2, TSCP2-NE, TSCP2-NE-FA/CH, and TSCP2-NL, while that of late apoptotic cells dominated for TSCP2-NL-FA/CH, TSCP2-NG, and TSCP2-NG-FA. Similarly, TSCP2 and its 6 nanopeptides showed a dose-dependent rise in caspase-3, caspase-8, and caspase-9 activities for execution of apoptosis, with the ligand-conjugated nanopeptides being the most efficient, followed by nanopeptides and peptides. The outcome of this study demonstrated an effective strategy for valorization of Taiwan tilapia skin to obtain collagen peptides and their nanopeptides possessing anticancer activity and form a basis for in vivo study in the future.


Assuntos
Neoplasias Pulmonares , Tilápia , Animais , Humanos , Ácido Fólico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ligantes , Taiwan , Colágeno/química , Peptídeos/química , Pulmão
13.
Foods ; 13(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254486

RESUMO

This study aims to explore the effects of frying conditions on the formation of HAs and PAHs in crispy pork spareribs, a popular meat commodity sold on Taiwan's market. Raw pork spareribs were marinated, coated with sweet potato powder, and fried in soybean oil and palm oil at 190 °C/6 min or 150 °C/12 min, followed by an analysis of HAs and PAHs via QuEChERS coupled with UPLC-MS/MS and GC-MS/MS, respectively. Both HAs and PAHs in pork spareribs during frying followed a temperature- and time-dependent rise. A total of 7 HAs (20.34-25.97 µg/kg) and 12 PAHs (67.69-85.10 µg/kg) were detected in pork spareribs fried in soybean oil and palm oil at 150 °C/12 min or 190 °C/6 min, with palm oil producing a higher level of total HAs and a lower level of total PAHs than soybean oil. The content changes of amino acid, reducing sugar, and creatinine played a vital role in affecting HA formation, while the degree of oil unsaturation and the contents of precursors including benzaldehyde, 2-cyclohexene-1-one, and trans,trans-2,4-decadienal showed a crucial role in affecting PAH formation. The principal component analysis revealed that HAs and PAHs were formed by different mechanisms, with the latter being more liable to formation in pork spareribs during frying, while the two-factorial analysis indicated that the interaction between oil type and frying condition was insignificant for HAs and PAHs generated in crispy pork spareribs. Both CcdP (22.67-32.78 µg/kg) and Pyr (16.70-22.36 µg/kg) dominated in PAH formation, while Harman (14.46-17.91 µg/kg) and Norharman (3.41-4.55 µg/kg) dominated in HA formation in crispy pork spareribs during frying. The outcome of this study forms a basis for learning both the variety and content of HAs and PAHs generated during the frying of pork spareribs and the optimum frying condition to minimize their formation.

14.
Food Chem ; 446: 138760, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402760

RESUMO

The prevention and control of heterocyclic aromatic amines (HAA) formation to mitigate of potential risks to humans, can be achieved by targeting their precursors. In this study, the detailed roles of individual and excess component (20 common α-amino acids, creatine, creatinine, and glucose) on HAA formation in roasted beef patties were examined using UPLC-MS/MS. The results confirmed the reported classical precursors of HAAs. Some components regulated the competitive production of Norharman and Harman. Glycine (Gly) and glucose favored Norharman formation, while cysteine (Cys) and phenylalanine (Phe) for Harman. Serine (Ser) and threonine (Thr) were identified as potential precursors for IQx-type HAAs. Interestingly, methionine (Met), Gly, Thr, Cys, alanine (Ala), and Ser were revealed as more targeted underlying precursors for 1,6-DMIP and 1,5,6-TMIP, and the formation mechanism was inferred. Furthermore, Pro, Leu, His, Ile, Lys and Asp were considered as great inhibitors for HAAs.


Assuntos
Creatina , Glucose , Animais , Bovinos , Humanos , Creatinina , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Aminas , Aminoácidos , Fragmentos de Peptídeos
15.
Curr Res Food Sci ; 8: 100727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577418

RESUMO

The favorable inhibitory effect of tea polyphenols on heterocyclic aromatic amines (HAAs) has been confirmed in many past studies. The objective of this study was to investigate the structure-activity relationship of catechins that act as inhibitors of HAA formation in chemical models. Two kinds of quantitative structure-activity relationship models for catechin-inhibiting-HAA were established. We chose two kinds of HAAs including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and five catechins including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), epicatechin (EC), and catechin (C). The inhibitory effect of five catechins were in the following order: EGCG > ECG > EGC > C > EC. Thereinto, EGCG and ECG showed dramatically better inhibition on the formation of PhIP and MeIQx, especially EGCG. Further, the mechanisms of catechin-inhibiting-HAA were speculated by correlation analysis. The free radical-scavenging ability was predicted to be the most relevant to the inhibitory effect of ECG, EGC, EC and C on HAAs. Differently, the phenylacetaldehyde-trapping ability might be the more important mechanism of EGCG inhibiting PhIP in chemical model system. This study may bring a broader idea for controlling the formation of HAAs according to the structure of catechins.

16.
Food Chem ; 446: 138849, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460280

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), prominent carcinogens formed during food processing, pose health risks through long-term consumption. This study focuses on 16 priority PAHs in the European Union, investigating their formation during pyrolysis. Glucose, amino acids and fatty acids are important food nutrients. To further explore whether these nutrients in food form PAHs during heating, a single chemical model method was used to heat these nutrients respectively, and GC-MS/MS was used to identify and quantify the obtained components. Glucose is the most basic nutrient in food, so the influence of water, pH, temperature and other factors on the formation of PAHs was studied in the glucose model. At the same time, the models of amino acids and fatty acids were used to assist in improving the entire nutrient research system. According to our results, some previously reported mechanisms of PAHs formation by fatty acids heating were confirmed. In addition, glucose and amino acids could also produce many PAHs after heating, and some conclusions were improved by comparing the intermediates of PAHs from three types of nutrients.


Assuntos
Aminoácidos , Hidrocarbonetos Policíclicos Aromáticos , Ácidos Graxos , Glucose , Modelos Químicos , Espectrometria de Massas em Tandem , Nutrientes
17.
Foods ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238760

RESUMO

Rabbiteye blueberry leaves, a waste produced after harvest of blueberry, are rich in polyphenols. This study aims to analyze phenolic acids and flavonoids in blueberry leaves by UPLC-MS/MS and prepare nanoemulsions for determining anti-aging activity in mice. Overall, 30% ethanol was the most suitable extraction solvent for total phenolic acids and total flavonoids. A total of four phenolic acids and four flavonoids were separated within seven minutes for further identification and quantitation by UPLC-MS/MS in selective reaction monitoring (SRM) mode, with 3-O-caffeoylquinic acid being present in the highest amount (6474.2 µg/g), followed by quercetin-3-O-galactoside (1943.9 µg/g), quercetin-3-O-rutinoside (1036.6 µg/g), quercetin-3-O-glucoside (867.2 µg/g), 5-O-caffeoylquinic acid (815.8 µg/g), kaempferol-3-O-glucoside (309.7 µg/g), 3,5-dicaffeoylquinic acid (195.3 µg/g), and 4,5-dicaffeoylquinic acid (60.8 µg/g). The blueberry nanoemulsion was prepared by using an appropriate ratio of soybean oil, Tween 80, glycerol, ethanol, and water at 1.2%, 8%, 2%, 2%, and 86.8%, respectively, and mixing with dried blueberry extract, with the mean particle size and zeta potential being 16 nm and -54 mV, respectively. A high stability was observed during storage of nanoemulsion for 90 days at 4 °C and heated at 100 °C for 2 h. An animal study revealed that this nanoemulsion could elevate dopamine content in mice brain as well as superoxide dismutase, glutathione peroxidase, and catalase activities in mice liver while reducing the contents of malondialdehyde and protein carbonyl in mice brains. Collectively, the high-dose nanoemulsion possessed the highest efficiency in improving mice aging with a promising potential for development into a health food.

19.
Pharmaceutics ; 15(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765272

RESUMO

This study aims to isolate collagen peptides from waste sturgeon fish skin, and prepare nanoemulsions for studying their anti-diabetic and wound-healing effects in mice. Collagen peptides were extracted and purified by acetic acid with sonication, followed by two-stage hydrolysis with 0.1% pepsin and 5% flavourzyme, and ultrafiltration with 500 Da molecular weight (MW) cut-off dialysis membrane. Animal experiments were performed with collagen peptides obtained by pepsin hydrolysis (37 kDa) and pepsin plus flavourzyme hydrolysis (728 Da) as well as their nanoemulsions prepared at two different doses (100 and 300 mg/kg/day). The mean particle size of low-MW and low-dose nanoemulsion, low-MW and high-dose nanoemulsion, high-MW and low-dose nanoemulsion and high-MW and high-dose nanoemulsion was, respectively, 16.9, 15.3, 28.1 and 24.2 nm, the polydispersity index was 0.198, 0.215, 0.231 and 0.222 and zeta potential was -61.2, -63.0, -41.4 and -42.7 mV. These nanoemulsions were highly stable over a 90-day storage period (4 °C and 25 °C) and heating at 40-100 °C (0.5-2 h). Experiments in mice revealed that the low-MW and high-dose nanoemulsion was the most effective in decreasing fasting blood glucose (46.75%) and increasing wound-healing area (95.53%). Collectively, the sturgeon fish skin collagen peptide-based nanoemulsion is promising for development into a health food or wound-healing drug.

20.
Front Nutr ; 10: 1229192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599679

RESUMO

Introduction: Cinnamomum osmophloeum Kanehira (C. osmophloeum), a broad-leaved tree species of Taiwan, contains phenolic acids, flavonoids, and phenylpropanoids such as cinnamaldehyde and cinnamic acid in leaves. Many reports have shown that the cinnamon leaf extract possesses anti-inflammatory, hypoglycemic, hypolipidemic and neuroprotective functions. This study aims to analyze bioactive compounds in C. osmophloeum (cinnamon leaves) by UPLC-MS/MS and prepare hydrosol, cinnamon leaf extract and cinnamon leaf nanoemulsion for comparison in improving Parkinson's disease (PD) in rats. Methods: After extraction and determination of total phenolic and total flavonoid contents, cinnamaldehyde and the other bioactive compounds were analyzed in cinnamon leaves and hydrosol by UPLC-MS/MS. Cinnamon leaf nanoemulsion was prepared by mixing a suitable proportion of cinnamon leaf extract, soybean oil, lecithin, Tween 80 and deionized water, followed by characterization of particle size and polydispersity index by dynamic light scattering analyzer, particle size and shape by transmission electron microscope, encapsulation efficiency, as well as storage and heating stability. Fifty-six male Sprague-Dawley rats aged 8 weeks were divided into seven groups with group 1 as control (sunflower oil) and group 2 as induction (2 mg/kg bw rotenone in sunflower oil plus 10 mL/kg bw saline), while the other groups including rotenone injection (2 mg/kg bw) followed by high-dose of 60 mg/kg bw (group 3) or low-dose of 20 mg/kg bw (group 4) for tube feeding of cinnamon leaf extract or cinnamon leaf nanoemulsion at the same doses (groups 5 and 6) every day for 5 weeks as well as group 7 with rotenone plus hydrosol containing 0.5 g cinnamon leaf powder at a dose of 10 mL/kg bw. Biochemical analysis of brain tissue (striatum and midbrain) was done to determine dopamine, α-synuclein, tyrosine hydroxylase, superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde contents by using commercial kits, while catalepsy performed by bar test. Results and discussion: An extraction solvent of 80% ethanol was found to be the most optimal with a high yield of 15 bioactive compounds being obtained following UPLC analysis. A triple quadrupole tandem mass spectrometer with electrospray ionization mode was used for identification and quantitation, with cinnamaldehyde present at the highest amount (17985.2 µg/g). The cinnamon leaf nanoemulsion was successfully prepared with the mean particle size, zeta potential, polydispersity index and encapsulation efficiency being 30.1 nm, -43.1 mV, 0.149 and 91.6%, respectively. A high stability of cinnamon leaf nanoemulsion was shown over a 90-day storage period at 4 and heating at 100 for 2 h. Animal experiments revealed that the treatments of cinnamon leaf extract, nanoemulsion and hydrosol increased the dopamine contents from 17.08% to 49.39% and tyrosine hydroxylase levels from 17.07% to 25.59%, while reduced the α-synuclein levels from 17.56% to 15.95% in the striatum of rats. Additionally, in the midbrain of rats, an elevation of activities of superoxide dismutase (6.69-16.82%), catalase (8.56-16.94%), and glutathione peroxidase (2.09-16.94%) was shown, while the malondialdehyde content declined by 15.47-22.47%. Comparatively, the high-dose nanoemulsion exerted the most pronounced effect in improving PD in rats and may be a promising candidate for the development of health food or botanic drug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA