Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chin Med Sci J ; 33(1): 45-52, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29620514

RESUMO

Objective To identify the osteogenesis genes whose expression is altered in hypertrophic chondrocytes treated with H2O2. Methods Murine chondrogenitor cells (ATDC5) were differentiated into hypertrophic chondrocytes by Insulin-Transferrin-Selenium (ITS) treatment, and then treated with H2O2. Suitable conditions (concentration, time) were determined by using the MTT assay. After total RNA isolation and cDNA synthesis, the levels of 84 genes were determined using the PCR array, whereas quantitative RT-PCR was carried out to validate the PCR array data. Result We identified 9 up-regulated genes and 12 down-regulated genes, encoding proteins with various functions, such as collagen proteins, transcription factors, proteins involved in skeletal development and bone mineral metabolism, as well as cell adhesion molecules. Quantitative RT-PCR confirmed the altered expression of 5 down-regulated genes (Smad2, Smad4, transforming growth factor $\beta$ receptor 1, transforming growth factor $\beta$ receptor 3, and matrix metalloproteinase 10). Conclusions H2O2 significantly changed the expression of several genes involved in a variety of biological functions. Because of the link between oxidative damage and Kashin-Beck disease, these genes may also be involved in the deep-zone necrosis of the cartilage observed in Kashin-Beck disease.


Assuntos
Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Insulina/farmacologia , Doença de Kashin-Bek/genética , Camundongos , Estresse Oxidativo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Selênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transferrina/farmacologia
2.
Biomed Environ Sci ; 30(5): 351-362, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28549491

RESUMO

OBJECTIVE: To investigate chondrocyte apoptosis and the expression of biochemical markers associated with apoptosis in Kashin-Beck disease (KBD) and in an established T-2 toxin- and selenium (Se) deficiency-induced rat model. METHODS: Cartilages were collected from the hand phalanges of five patients with KBD and five healthy children. Sprague-Dawley rats were administered a selenium-deficient diet for 4 weeks prior to T-2 toxin exposure. The apoptotic chondrocytes were observed by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Caspase-3, p53, Bcl-2, and Bax proteins in the cartilages were visualized by immunohistochemistry, their protein levels were determined by Western blotting, and mRNA levels were determined by real-time reverse transcription polymerase chain reaction. RESULTS: Increased chondrocyte apoptosis was observed in the cartilages of children with KBD. Increased apoptotic and caspase-3-stained cells were observed in the cartilages of rats fed with normal and Se-deficient diets plus T-2 toxin exposure compared to those in rats fed with normal and Se-deficient diets. Caspase-3, p53, and Bax proteins and mRNA levels were higher, whereas Bcl-2 levels were lower in rats fed with normal or Se-deficiency diets supplemented with T-2 toxin than the corresponding levels in rats fed with normal diet. CONCLUSION: T-2 toxin under a selenium-deficient nutritional status induces chondrocyte death, which emphasizes the role of chondrocyte apoptosis in cartilage damage and progression of KBD.


Assuntos
Apoptose/efeitos dos fármacos , Cartilagem Articular/fisiopatologia , Condrócitos/fisiologia , Doença de Kashin-Bek/fisiopatologia , Selênio/deficiência , Toxina T-2/farmacologia , Adolescente , Animais , Biomarcadores , Criança , Feminino , Humanos , Doença de Kashin-Bek/etiologia , Masculino , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Modelos Animais , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
3.
Rheumatol Int ; 33(1): 157-66, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22258458

RESUMO

The objective of this study is to observe pathogenic lesions of joint cartilages in rats fed with T-2 toxin under a selenium deficiency nutrition status in order to determine possible etiological factors causing Kashin-Beck disease (KBD). Sprague-Dawley rats were fed selenium-deficient or control diets for 4 weeks prior to their being exposed to T-2 toxin. Six dietary groups were formed and studied 4 weeks later, i.e., controls, selenium-deficient, low T-2 toxin, high T-2 toxin, selenium-deficient diet plus low T-2 toxin, and selenium-deficient diet plus high T-2 toxin. Selenium deficiencies were confirmed by the determination of glutathione peroxidase activity and selenium levels in serum. The morphology and pathology (chondronecrosis) of knee joint cartilage of experimental rats were observed using light microscopy and the expression of proteoglycans was determined by histochemical staining. Chondronecrosis in deep zone of articular cartilage of knee joints was seen in both the low and high T-2 toxin plus selenium-deficient diet groups, these chondronecrotic lesions being very similar to chondronecrosis observed in human KBD. However, the chondronecrosis observed in the rat epiphyseal growth plates of animals treated with T-2 toxin alone or T-2 toxin plus selenium-deficient diets were not similar to that found in human KBD. Our results indicate that the rat can be used as a suitable animal model for studying etiological factors contributing to the pathogenesis (chondronecrosis) observed in human KBD. However, those changes seen in epiphyseal growth plate differ from those seen in human KBD probably because of the absence of growth plate closure in the rat.


Assuntos
Doenças das Cartilagens/patologia , Cartilagem Articular/patologia , Doença de Kashin-Bek/patologia , Selênio/deficiência , Joelho de Quadrúpedes/patologia , Toxina T-2/toxicidade , Ração Animal/efeitos adversos , Ração Animal/análise , Animais , Peso Corporal/efeitos dos fármacos , Doenças das Cartilagens/induzido quimicamente , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutationa Peroxidase/sangue , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Doença de Kashin-Bek/fisiopatologia , Masculino , Necrose/induzido quimicamente , Necrose/patologia , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley , Selênio/sangue , Selênio/farmacocinética , Joelho de Quadrúpedes/metabolismo
4.
Artigo em Chinês | MEDLINE | ID: mdl-23595304

RESUMO

OBJECTIVE: To study the role of c-jun N-terminal kinase (JNK) signaling pathway in chondrocyte apoptosis induced by nitric oxide (NO) using NO donor sodium nitroprusside (SNP) and JNK inhibitor SP600125. METHODS: Articular chondrocytes were separated from New Zealand rabbits aged 3 weeks by mechanical digestion and enzyme digestion and identified by toluidine blue staining, and then the chondrocytes were treated with SNP and SP600125 for 24 h. The cell apoptosis was evaluated by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL), and the expression levels of nuclear factor-kappa B (NF-κB) p65 and p53 were measured by western blot. RESULTS: Compared with those in control group, the early apoptotic rate of SNP-treated chondrocytes increased as the concentration of SNProse, exhibiting a concentration dependency (P < 0.05), and the expression levels of NF-κB p65 and p53 also increased (P < 0.05); JNK inhibitor SP600125 inhibited these increases (P < 0.05). CONCLUSION: JNK signaling pathway plays an important role in NO-induced chondrocyte apoptosis. JNK inhibitor SP600125 can reduce NO-induced apoptosis and expression of NF-κB p65 and p53 in articular chondrocytes of rabbits in a concentration-dependent manner.


Assuntos
Apoptose/efeitos dos fármacos , Condrócitos/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Óxido Nítrico/farmacologia , Animais , Antracenos/farmacologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , NF-kappa B/metabolismo , Coelhos , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Toxicology ; 492: 153529, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120063

RESUMO

Chronic arsenic exposure causes myocardial damage. The aim of this study is to investigate if oxidative stress and reduction in NO is involved in the myocardial damage induced by arsenic in drinking water. Rats were divided into a control group and different doses of sodium arsenite. With increasing sodium arsenite concentrations in drinking water, localised inflammatory foci and necrotic myocardial tissues were gradually observed. Compared to the control group, the activities and gene expression of antioxidant enzymes in arsenic-exposed rats decreased. NO content and the NOS activity as well as the expression of NOS mRNA in the myocardial tissue of exposed rats, decreased, and the extracellular NO content of cardiomyocytes treated with sodium arsenite also decreased. The rate of cell apoptosis induced by sodium arsenite decreased after treatment with sodium nitroprusside (an NO donor). In conclusion, arsenic exposure in drinking water can lead to myocardial injury and cardiomyocyte apoptosis through oxidative stress and a reduction in NO content.


Assuntos
Arsênio , Arsenitos , Água Potável , Ratos , Animais , Arsênio/toxicidade , Estresse Oxidativo , Arsenitos/toxicidade , Compostos de Sódio/toxicidade
6.
Front Oncol ; 12: 886034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664776

RESUMO

Long non-coding RNAs (lncRNAs) are more than 200 nucleotides in length and are implicated in the development of human cancers, without protein-coding function. Mounting evidence indicates that cancer initiation and progression are triggered by lncRNA dysregulation. Recently, a growing number of studies have found that LINC00665, a long intergenic non-protein coding RNA, may be associated with various cancers, including gastrointestinal tumors, gynecological tumors, and respiratory neoplasms. LINC00665 was reported to be significantly dysregulated in cancers and has an important clinical association. It participates in cell proliferation, migration, invasion, and apoptosis through different biological pathways. In this review, we summarize the current findings on LINC00665, including its biological roles and molecular mechanisms in various cancers. LINC00665 may be a potential prognostic biomarker and novel therapeutic target for cancers.

7.
World J Gastroenterol ; 27(30): 5060-5075, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34497435

RESUMO

BACKGROUND: Chronic stress during pregnancy may increase visceral hyperalgesia of offspring in a sex-dependent way. Combining adult stress in offspring will increase this sensitivity. Based on the evidence implicating estrogen in exacerbating visceral hypersensitivity in female rodents in preclinical models, we predicted that chronic prenatal stress (CPS) + chronic adult stress (CAS) will maximize visceral hyperalgesia; and that estrogen plays an important role in colonic hyperalgesia. AIM: The aim was to illuminate the role of estrogen in colonic hyperalgesia and its underlying mechanisms. METHODS: We established a CPS plus CAS rodent model in which the balloon was used to distend the colorectum. The single-fiber recording in vivo and patch clamp experiments in vitro were used to monitor the colonic neuron's activity. The reverse transcription-polymerase chain reaction, western blot, and immunofluorescence were used to study the effects of CPS and CAS on colon primary afferent sensitivity. We used ovariectomy and letrozole to reduce estrogen levels of female rats respectively in order to assess the role of estrogen in female-specific enhanced primary afferent sensitization. RESULTS: Spontaneous activity and single fiber activity were significantly greater in females than in males. The enhanced sensitization in female rats mainly came from low-threshold neurons. CPS significantly increased single-unit afferent fiber activity in L6-S2 dorsal roots in response. Activity was further enhanced by CAS. In addition, the excitability of colon-projecting dorsal root ganglion (DRG) neurons increased in CPS + CAS rats and was associated with a decrease in transient A-type K+ currents. Compared with ovariectomy, treatment with the aromatase inhibitor letrozole significantly reduced estrogen levels in female rats, confirming the gender difference. Moreover, mice treated with letrozole had decreased colonic DRG neuron excitability. The intrathecal infusion of estrogen increased brain-derived neurotrophic factor (BDNF) protein levels and contributed to the response to visceral pain. Western blotting showed that nerve growth factor protein was upregulated in CPS + CAS mice. CONCLUSION: This study adds to the evidence that estrogen-dependent sensitization of primary afferent colon neurons is involved in the development of chronic stress-induced visceral hypersensitivity in female rats.


Assuntos
Dor Visceral , Animais , Colo , Estrogênios/farmacologia , Feminino , Gânglios Espinais , Hiperalgesia/etiologia , Masculino , Camundongos , Neurônios , Gravidez , Ratos , Ratos Sprague-Dawley , Dor Visceral/etiologia
8.
Toxicology ; 464: 152989, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673134

RESUMO

T-2 toxin leads to chondrocyte apoptosis and excessive extracellular matrix degradation. The aim of this study is to investigate if endoplasmic reticulum stress (ERS) - initiated apoptosis is involved in the chondrocyte damage induced by T-2 toxin. In vivo, rats were divided into a control group, T-2 toxin 200 ng/g BW/d group, the protein levels of GRP78, CHOP, and caspase-12 were detected using immunohistochemistry in articular cartilage tissues. In vitro, C28/I2 and ATDC5 chondrocytes were treated with various concentrations of T-2 toxin. For the salubrinal protection assay, cells were pretreated with 20 µM salubrinal for 1 h, and treated with and without T-2 toxin for 24 h. The cell viability was determined using the MTT assay; and the cell apoptosis was determined using the Flow Cytometry Assay; the mRNA and protein levels of the ERS markers and ECM were determined using RT-PCR and western blotting. This study found that the expressions of GRP78, CHOP, and caspase-12 is higher in T-2 toxin group than in control group both in vivo and in vitro, and the T-2 toxin administration promoted chondrocyte apoptosis, suppressed matrix synthesis, and accelerated cellular catabolism via the ERS signaling pathway. In addition, this study found that salubrinal prevented chondrocyte injury by inhibiting ERS-mediated apoptosis via the PERK-eIF2α-ATF4-CHOP signaling pathway. Collectively, this study provides a new clue to elucidate the mechanism of T-2 toxin-induced chondrocyte damage, and presents a novel therapeutic possibility of salubrinal for Osteoarthropathy such as osteoarthritis (OA) and Kaschin-Beck disease (KBD).


Assuntos
Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Cinamatos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Toxina T-2/toxicidade , Tioureia/análogos & derivados , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Linhagem Celular , Condrócitos/patologia , Citometria de Fluxo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tioureia/farmacologia
9.
Biomed Environ Sci ; 23(4): 267-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20934113

RESUMO

OBJECTIVE: To evaluate the relationship of expressions of nucleoside diphosphate kinase (nm23) and proliferating cell nuclear antigen (PCNA), as well as apoptosis, with the prognosis of HCC patients by analyzing their pathological and clinical data. METHODS: The expressions of nm23 and PCNA were analyzed by immunohistochemistry and the apoptotic phenomena were detected by TUNEL technique in the liver samples from 43 HCC tissues, 39 para-neoplastic tissues, and 10 normal tissues. The mean apoptosis index (AI) and proliferative index (PI) in individual sample were calculated. RESULTS: As shown by the detection, 32.6% of carcinomas had negative nm23 signal in tumor tissues, whereas all para-neoplastic and normal tissues had positive nm23. The AI in nm23 positive HCC was significantly higher than that in nm23 negative one, with statistical difference (P<0.05). Furthermore, the expressions of nm23, and the values of AI and PI were contrastively analyzed with some main pathological and clinical data of HCC. It revealed that HCC with extrahepatic metastasis showed remarkable correlation with the negative nm23 (P=0.013) and higher PI values of HCC (P=0.015). The disease-free survival in HCC patients with negative nm23 expression was significantly poorer than that in patients with positive nm23 expression. CONCLUSIONS: These data suggest that expressions of nm23 protein in tumor tissues are correlated with occurrences of metastasis and length of survival of the HCC patients, which may be an indicator for their prognosis.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Fígado/enzimologia , Nucleosídeo NM23 Difosfato Quinases/biossíntese , Adulto , Idoso , Apoptose , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Proliferação de Células , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Estimativa de Kaplan-Meier , Fígado/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Antígeno Nuclear de Célula em Proliferação/biossíntese
10.
Toxicon ; 186: 12-18, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32698025

RESUMO

The T-2 toxin exerts a variety of toxic effects on both experimental animals and humans. The integrin family plays a major role in mediating cell-ECM interactions. Therefore, the present study aimed to investigate the involvement of integrin α2ß1 in T-2 toxin-induced C28/I2 chondrocyte damage. The pathological damage of articular cartilage injury induced by T-2 toxin was observed by H&E staining. The expression levels of collagen 2 and MMP-13 (Matrix metalloproteinases 13) were detected using immunohistochemistry in articular cartilage tissues and western blotting in the cells. The blocking effect of integrin α2ß1 inhibitor on T-2 toxin-induced chondrocyte matrix degradation was examined by western blotting. Further, the effect of integrin α2ß1 inhibitor on T-2 toxin-induced chondrocyte apoptosis was analyzed. About 100 ng/g body weight (BW)/day T-2 toxin was fed to Sprague-Dawley (SD) rats, T-2 toxin treatment (0, 6, 12, and 24 ng/mL) induced C28/I2 chondrocytes. Both in vivo and in vitro, chondrocyte survival was inhibited, and the production of type II collagen was significantly reduced (p < 0.05). However, the level of MMP-13 was up-regulated (p < 0.05). Matrix degradation was effectively blocked after the pre-treatment by integrin α2ß1 inhibitor (p < 0.05). Conclusively, Integrin α2ß1 is a critical signaling pathway for communication between cells and the extracellular matrix, the present study provides a new clue to elucidate the mechanism of T-2 toxin-induced chondrocyte damage.


Assuntos
Colágeno Tipo II/metabolismo , Integrina alfa2beta1/metabolismo , Toxina T-2/toxicidade , Animais , Cartilagem Articular , Colágeno , Humanos , Metaloproteinase 13 da Matriz , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 38(2): 163-9, 2009 03.
Artigo em Chinês | MEDLINE | ID: mdl-19363824

RESUMO

OBJECTIVE: To observe the effect of Tanshinone II A on the expression of epidermal growth facter (EGF) and epidermal growth facter recepter (EGFR) in human hepatocellular carcinoma cell line SMMC-7721. METHODS: The human hepatocellular carcinoma SMMC-7721 cells cultured in vitro was treated with different concentrations of Tanshinone II A. The proliferation of the cells was measured by MTT assay, and the apoptosis of the cells was investigated by flow cytometry and cytochemical staining with Hoechst 33342. The expression of EGF and EGFR was detected by immunocytochemistry method. The levels of EGF in medium were measured by radioimmunoassay. RESULT: Tanshinone II A inhibited the growth of SMMC-7721 cells remarkably in a dose-dependent manner. The inhibitory rate reached the peak (72.5%) after 0.5 microg/ml Tanshinone II A was used for 48 h, which was significantly higher than that in the controls (P<0.05). FCM analysis showed that when SMMC-7721 cells were treated with 0.5 microg/ml Tanshinone II A, the apoptosis rates for 24 h, 48 h and 72 h were (4.06+/-0.27)%, (7.58+/-0.56)% and (5.23+/-0.13)%, respectively which were markedly higher than those in the controls (all P<0.01). SMMC-7721 cell apoptosis with cell shrinkage, nuclear chromatin concentration and fragmentation as well as the formation of apoptotic bodies were observed by cytochemical staining when treated with Tanshinone II A. The immunocytochemistry showed that the expressions of EGF and EGFR were down regulated while the concentration of Tanshinone II A was increasing. The high expression rates for EGF and EGFR were 10%, 20%, respectively, and the gray scale was 181.52+/-1.63, 179.37+/-1.59, which were markedly higher than those in the controls (all P<0.05). The levels of EGF in medium measured by radioimmunoassay were decreased significantly after Tanshinone II A treatment. CONCLUSION: Tanshinone II A can inhibit cell proliferation and induce apoptosis in hepatocellular carcinoma cell line SMMC-7721, which may be related to the down-regulation of EGF and EGFR protein expression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Neoplasias Hepáticas/metabolismo , Fenantrenos/farmacologia , Abietanos , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/efeitos dos fármacos , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Humanos , Neoplasias Hepáticas/patologia
12.
Acta Pharmacol Sin ; 29(12): 1451-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19026164

RESUMO

AIM: To determine whether the antitumor factor nm23 is related with antioxidation. METHODS: Full-length human nm23-H1 was cloned into a mammalianexpressing vector and transiently introduced into HeLa cells. RESULTS: A remarkably low level of reactive oxygen species (ROS) was detected in the cells overexpressing nm23-H1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays found that the cells transfected with a nm23- H1-expressing plasmid had higher viability and stronger resistance to oxidative stress. Immunoprecipitation tests revealed that endogenous nm23-H1 formed a protein complex with p53. Furthermore, the intracellular levels of p53 and p53- regulated gene GPX1 were obviously increased in the cells overexpressing nm23- H1. The downregulation of p53 in the cells overexpressing nm23-H1 resulted in a higher cellular ROS level and lower cell viability. CONCLUSION: The findings suggest that nm23-H1 may act as a cellular protector against oxidative stress, possibly triggering the p53-related antioxidative pathway.


Assuntos
Glutationa Peroxidase/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Estresse Oxidativo , Proteína Supressora de Tumor p53/metabolismo , Animais , Glutationa Peroxidase/genética , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Oxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Glutationa Peroxidase GPX1
13.
J Zhejiang Univ Sci B ; 9(6): 455-63, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18543398

RESUMO

OBJECTIVE: To investigate the effects of T-2 toxin on expressions of Fas, p53, Bcl-xL, Bcl-2, Bax and caspase-3 on human chondrocytes. METHODS: Human chondrocytes were treated with T-2 toxin (1-20 ng/ml) for 5 d. Fas, p53 and other apoptosis-related proteins such as Bax, Bcl-2, Bcl-xL, caspase-3 were determined by Western blot analysis and their mRNA expressions were determined by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Increases in Fas, p53 and the pro-apoptotic factor Bax protein and mRNA expressions and a decrease of the anti-apoptotic factor Bcl-xL were observed in a dose-dependent manner after exposures to 1-20 ng/ml T-2 toxin, while the expression of the anti-apoptotic factor Bcl-2 was unchanged. Meanwhile, T-2 toxin could also up-regulate the expressions of both pro-caspase-3 and caspase-3 in a dose-dependent manner. CONCLUSION: These data suggest a possible underlying molecular mechanism for T-2 toxin to induce the apoptosis signaling pathway in human chondrocytes by regulation of apoptosis-related proteins.


Assuntos
Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Toxina T-2/toxicidade , Apoptose/efeitos dos fármacos , Sequência de Bases , Western Blotting , Caspase 3/genética , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Primers do DNA/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
14.
J Zhejiang Univ Sci B ; 9(1): 22-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18196609

RESUMO

OBJECTIVE: To identify the relationship between T-2 toxin and Kashin-Beck disease (KBD), the effects of T-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro. METHODS: Chondrocytes were isolated from human articular cartilage and cultured in vitro. Hyaluronic acid (HA), soluble CD44 (sCD44), IL-1beta and TNF-alpha levels in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). CD44 content in chondrocyte membrane was determined by flow cytometry (FCM). CD44, hyaluronic acid synthetase-2 (HAS-2) and aggrecanases mRNA levels in chondrocytes were determined using reverse transcription polymerase chain reaction (RT-PCR). Immunocytochemical method was used to investigate expressions of BC-13, 3-B-3(-) and 2-B-6 epitopes in the cartilage reconstructed in vitro. RESULTS: T-2 toxin inhibited CD44, HAS-2, and aggrecan mRNA expressions, but promoted aggrecanase-2 mRNA expression. Meanwhile, CD44 expression was found to be the lowest in the chondrocytes cultured with T-2 toxin and the highest in control plus selenium group. In addition, ELISA results indicated that there were higher sCD44, IL-1beta and TNF-alpha levels in T-2 toxin group. Similarly, higher HA levels were also observed in T-2 toxin group using radioimmunoprecipitation assay (RIPA). Furthermore, using monoclonal antibodies BC-13, 3-B-3 and 2-B-6, strong positive immunostaining was found in the reconstructed cartilage cultured with T-2 toxin, whereas no positive staining or very weak staining was observed in the cartilage cultured without T-2 toxin. Selenium could partly inhibit the effects of T-2 toxin above. CONCLUSION: T-2 toxin could inhibit aggrecan synthesis, promote aggrecanases and pro-inflammatory cytokines production, and consequently induce aggrecan degradation in chondrocytes. These will perturb metabolism balance between aggrecan synthesis and degradation in cartilage, inducing aggrecan loss in the end, which may be the initiation of the cartilage degradation.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Proteoglicanas/metabolismo , Selênio/farmacologia , Toxina T-2/toxicidade , Cartilagem Articular/metabolismo , Células Cultivadas , DNA/análise , Citometria de Fluxo , Humanos , Receptores de Hialuronatos/análise , Imuno-Histoquímica , Interleucina-1beta/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/análise
15.
Eur J Pharmacol ; 824: 40-47, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29409910

RESUMO

NO plays a key role in the pathological mechanisms of articular diseases. As cytoskeletal proteins are responsible for the polymerization, stabilization, and dynamics of the cytoskeleton network, we investigated whether cytoskeletal proteins are the intracellular pathological targets of NO. We aimed at clarifying whether the cytoskeleton perturbations involved in apoptosis are induced in rabbit articular chondrocytes by NO, which can be liberated by sodium nitroprusside (SNP) treatment. The first passage rabbit articular chondrocytes were cultured as monolayer for the experiments, and the effects of NO were tested in the presence of JNK-specific inhibitor, SP600125. SNP treatment of cultured chondrocytes caused significant apoptosis in a concentration-dependent manner (time and dose), as evaluated by TUNEL assay and Annexin V flow cytometry, while the apoptosis was reduced by the SP600125 addition 30 min before SNP treatment. Besides, SP600125 decreased significantly the protein expression of total caspase-3 and the intracellular gene expression of caspase-3, measured by Western blot analysis and PCR. SP600125 also increased the cytoskeletal protein expressions. These results suggested that JNK pathway plays a critical role in the NO-induced chondrocyte apoptosis, and SP600125 treatment blocks the dissolution of the cytoskeletal proteins via activation of caspase-3 pathways.


Assuntos
Antracenos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Condrócitos/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Óxido Nítrico/metabolismo , Proteólise/efeitos dos fármacos , Animais , Caspase 3/genética , Condrócitos/citologia , Condrócitos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Transdução de Sinais/efeitos dos fármacos
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(3): 312-316, 2017 03 20.
Artigo em Chinês | MEDLINE | ID: mdl-28377345

RESUMO

OBJECTIVE: To express and purify polyphosphate kinase (PPK) from Proteus mirabilis and prepare the polyclonal antibody against PPK. METHODS: The antigenicity and hydrophobicity of PPK were analyzed using software. The N-terminal conservative sequence containing 309 amino acids was selected as the target peptide, and its corresponding gene sequence with modification based on prokaryotic cells-preferred codon was synthesized and inserted into plasmid pET28b(+). The constructed recombinant plasmid was transformed into Escherichia coli BL21 (DE3) and induced with IPTG. The expressed fusion protein was purified using Ni-affinity chromatography. The purified protein was injected along with adjuvant in rabbits to prepare the polyclonal antibodies against PPK. RESULTS AND CONCLUSION: PPK fusion protein expressed by E. coli was purified successfully using Ni-affinity chromatography. ELISA result demonstrated that the harvested rabbit anti-sera against PPK had a high titer of 1:512 000, and Western blotting showed a good specificity of the antibody, which can be used further study of the role of PPK in the pathogenesis of Proteus mirabilis infection.


Assuntos
Anticorpos/imunologia , Fosfotransferases (Aceptor do Grupo Fosfato)/imunologia , Proteus mirabilis/enzimologia , Animais , Especificidade de Anticorpos , Western Blotting , Escherichia coli , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
17.
Nat Commun ; 8(1): 1159, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079782

RESUMO

Autophagy is a degradative pathway that delivers cellular components to the lysosome for degradation. The role of autophagy in cell differentiation is poorly understood. Here we show that CaMKII can directly phosphorylate Beclin 1 at Ser90 to promote K63-linked ubiquitination of Beclin 1 and activation of autophagy. Meanwhile, CaMKII can also promote K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2) by catalyzing phosphorylation of Id proteins and recruiting TRAF-6. Ubiquitinated Id-1/Id-2 can then bind to p62 and be transported to autolysosomes for degradation. Id degradation promotes the differentiation of neuroblastoma cells and reduces the proportion of stem-like cells. Our study proposes a mechanism by which autophagic degradation of Id proteins can regulate cell differentiation. This suggests that targeting of CaMKII and the regulation of autophagic degradation of Id may be an effective therapeutic strategy to induce cell differentiation in neuroblastoma.


Assuntos
Proteína Beclina-1/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Neuroblastoma/metabolismo , Animais , Autofagia , Diferenciação Celular , Fibroblastos/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisina/química , Lisossomos/metabolismo , Camundongos , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Serina/química , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 37(4): 583-6, 2006 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-16909607

RESUMO

OBJECTIVE: To investigate the relationship of T-2 toxin-induced chondrocytes apoptosis with nitric oxide(NO) and Fas apoptosis pathway. METHODS: Human chondrocytes cultured in vitro were treated with different concentrations of T-2 toxin at different time (1-5 d). Cell viability of the treated cells was measured by MTT assay. Apoptotic ultrostructural changes of the treated cells were observed with electron microscopy. Biological changes of apoptosis were detected by annexin V/PI Flow cytometer (FCM). The levels of NO in culture media were detected by colorimetric method of Griess assay. Nitric oxide synthase (iNOS) and Fas protein were measured by Western blot. RESULTS: In this study the results shown the dose-dependent and time-dependent effects of T-2 toxin, within a range of concentration (1-2000 ng/mL) and a period of time (1-5 d), on the T-2 toxin-treated chondrocytes. Apoptotic body was found in T-2 toxin-treated chondrocytes by electron microscopy. Early-stage apoptosis rate and late-stage apoptosis rate were both increased in T-2 toxin-treated cells when compared with non-treated cells in a dose-dependent manner. The levels of NO in T-2 toxin-treated culture media were higher than that of normal control. Over-expressions of iNOS and Fas protein were detected in T-2 toxin-treated cells. T-2 toxin-induced apoptosis was noted to be significtnly correlated with the level of NO production and the levels of iNOS and Fas protein expression. CONCLUSION: T-2 toxin can enhance NO production and upregulate the expression of iNOS and Fas protein. Both NO and Fas signaling pathway are involved in T-2 toxin-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Condrócitos/citologia , Óxido Nítrico/biossíntese , Toxina T-2/toxicidade , Receptor fas/biossíntese , Células Cultivadas , Condrócitos/metabolismo , Humanos , Óxido Nítrico Sintase Tipo II/biossíntese
19.
Curr Alzheimer Res ; 13(3): 297-306, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26679857

RESUMO

Mitochondrial dysfunction, oxidative stress and ß -amyloid (Aß) formation are thought to cause neuronal and synaptic degeneration underlying cognitive decline in Alzheimer's disease (AD). The senescence-accelerated mouse-prone 8 (SAMP8) mice have been used as an animal model for mechanistic and translational research for AD. In the present study we characterized mitochondrial and synaptic alterations in SAMP8 mice relative to SAMR1control mice and explored a protective effect of the small molecule peptide SS31, a cell membrane penetrant antioxidant, on mitochondrial and synaptic protein integrity as well as cognitive performance. Electron microscopic analysis revealed mitochondrial/synaptic deterioration in 10 months-old SAMP8 relative to SAMR1 mice, with the changes in the former rescued following 8 weeks treatment with SS31 (5 mg/kg/day, i.p.). Elevation of Aß42, mitochondrial fission protein (DLP1, Fis1) and matrix protein cyclophilin D (CypD), and reductions of mitochondrial fusion protein (Mfn2) and synaptic (i.e., synaptophysin, postsynaptic density protein 95 and growth associated protein 43) proteins, were detected in hippocampal lysates in SAMP8 mice relative to SAMR1. The above altered protein expressions in the SAMP8 mouse brain were restored with the SS31 treatment. Moreover, the SS31 treatment rescued learning and memory deficits detected in 10 month-old SAMP8 mice. Together, the findings suggest that this mitochondria-targeting antioxidant peptide may be of potential utility for AD therapy, with its pharmacological efficacy involves lowering of central Aß levels and protection of mitochondrial homeostasis and synaptic integrity, which may help slow down cognitive decline.


Assuntos
Envelhecimento/efeitos dos fármacos , Peptídeos beta-Amiloides/antagonistas & inibidores , Transtornos Cognitivos/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Oligopeptídeos/uso terapêutico , Sinapses/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/patologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtornos Cognitivos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/patologia , Oligopeptídeos/farmacologia , Sinapses/patologia
20.
Neurosci Lett ; 386(1): 18-22, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15975716

RESUMO

Changes in the expression of glial glutamate transporters (GLAST and GLT-1) were examined in the spinal cord of rats with chemotherapy (taxol)-induced mechanical hyperalgesia. Immunohistochemical studies show that the expression of both GLAST and GLT-1 in the L4-L5 spinal dorsal horn is decreased by 24% (P<0.001) and 23% (P<0.001), respectively, in rats with taxol-induced hyperalgesia as compared with those in control rats. These changes were further confirmed using an enzyme-linked immunosorbent assay that confirmed downregulation of GLAST by 36% (P<0.05) and GLT-1 by 18% (P<0.05) in the L4-L5 spinal cord of taxol-treated rats. These data indicate that downregulation of glutamate transporters may contribute to the development of hyperalgesia induced by taxol and suggest that glutamate transporters may be a new target for treatment of pain.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Hiperalgesia/metabolismo , Paclitaxel , Doenças do Sistema Nervoso Periférico/metabolismo , Células do Corno Posterior/metabolismo , Simportadores/metabolismo , Sistema X-AG de Transporte de Aminoácidos/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Transportador 1 de Aminoácido Excitatório , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática , Ácido Glutâmico/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células do Corno Posterior/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Simportadores/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA