Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35512705

RESUMO

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Assuntos
Organogênese , Transcriptoma , Animais , DNA/genética , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica/métodos , Mamíferos/genética , Camundongos , Organogênese/genética , Gravidez , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
2.
Nature ; 604(7907): 723-731, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418686

RESUMO

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.


Assuntos
Macaca fascicularis , Transcriptoma , Animais , Comunicação Celular , Macaca fascicularis/genética , Receptores Virais/genética , Transcriptoma/genética , Via de Sinalização Wnt
3.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605050

RESUMO

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Assuntos
Neovascularização da Córnea , Síndromes do Olho Seco , Ratos , Humanos , Camundongos , Animais , Feminino , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Roedores/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Inflamação/tratamento farmacológico , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/induzido quimicamente , Fator de Transcrição STAT3/metabolismo
5.
STAR Protoc ; 5(1): 102825, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280199

RESUMO

Spatial transcriptomics analysis allows the examination of the biological characteristics and spatial distribution of individual lung cells at a single-cell resolution. However, due to the presence of cavities in the alveoli of the lungs, it is challenging to section them for spatial transcriptomics experiments. Here, we present a protocol for acquiring high-quality fresh mouse lung spatial transcriptomics data. We describe steps for lung perfusion, acquiring frozen slices, collecting cDNA from lung sections, and data analysis. For complete details on the use and execution of this protocol, please refer to Jiang et al.1.


Assuntos
Análise de Dados , Perfilação da Expressão Gênica , Animais , Camundongos , DNA Complementar , Perfusão , Pulmão
6.
Biomed Pharmacother ; 170: 115975, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070246

RESUMO

Osteoarthritis (OA) is characterized by gradual articular cartilage degradation, accompanied by persistent low-grade joint inflammation, correlating with radiographic and pain-related progression. The latent therapeutic potential of DZ2002, a reversible inhibitor of S-adenosyl-L-homocysteine hydrolase (SAHH), holds promise for OA intervention. This study endeavored to examine the therapeutic efficacy of DZ2002 within the milieu of OA. The cytotoxicity of DZ2002 was evaluated using the MTT assay on bone marrow-derived macrophages. The inhibitory impact of DZ2002 during the process of osteoclastogenesis was assessed using TRAP staining, analysis of bone resorption pits, and F-actin ring formation. Mechanistic insights were derived from qPCR and Western blot analyses. Through the intra-articular injection of monosodium iodoacetate (MIA), an experimental rat model of OA was successfully instituted. This was subsequently accompanied by a series of assessments including Von Frey filament testing, analysis of weight-bearing behaviors, and micro-CT imaging, all aimed at assessing the effectiveness of DZ2002. The findings emphasized the effectiveness of DZ2002 in mitigating osteoclastogenesis induced by M-CSF/RANKL, evident through a reduction in TRAP-positive OCs and bone resorption. Moreover, DZ2002 modulated bone resorption-associated gene and protein expression (CTSK, CTR, Integrin ß3) via the MEK/ERK pathway. Encouragingly, DZ2002 also alleviates MIA-induced pain, cartilage degradation, and bone loss. In conclusion, DZ2002 emerges as a potential therapeutic contender for OA, as evidenced by its capacity to hinder in vitro M-CSF/RANKL-induced osteoclastogenesis and mitigate in vivo osteoarthritis progression. This newfound perspective provides substantial support for considering DZ2002 as a compelling agent for osteoarthritis intervention.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite , Ratos , Animais , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Cartilagem Articular/metabolismo , Reabsorção Óssea/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças
7.
Nat Genet ; 56(5): 953-969, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627598

RESUMO

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/ß-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.


Assuntos
Homeostase , Regeneração Hepática , Fígado , Via de Sinalização Wnt , Animais , Regeneração Hepática/genética , Camundongos , Fígado/metabolismo , Via de Sinalização Wnt/genética , Hepatócitos/metabolismo , Hepatócitos/citologia , Proliferação de Células/genética , Análise de Célula Única , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Transcriptoma , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Masculino
8.
J Genet Genomics ; 50(9): 625-640, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36990426

RESUMO

The ability to explore life kingdoms is largely driven by innovations and breakthroughs in technology, from the invention of the microscope 350 years ago to the recent emergence of single-cell sequencing, by which the scientific community has been able to visualize life at an unprecedented resolution. Most recently, the Spatially Resolved Transcriptomics (SRT) technologies have filled the gap in probing the spatial or even three-dimensional organization of the molecular foundation behind the molecular mysteries of life, including the origin of different cellular populations developed from totipotent cells and human diseases. In this review, we introduce recent progresses and challenges on SRT from the perspectives of technologies and bioinformatic tools, as well as the representative SRT applications. With the currently fast-moving progress of the SRT technologies and promising results from early adopted research projects, we can foresee the bright future of such new tools in understanding life at the most profound analytical level.


Assuntos
Tecnologia , Transcriptoma , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica , Biologia Computacional
9.
Front Neurosci ; 17: 1170355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440917

RESUMO

In mammals, early organogenesis begins soon after gastrulation, accompanied by specification of various type of progenitor/precusor cells. In order to reveal dynamic chromatin landscape of precursor cells and decipher the underlying molecular mechanism driving early mouse organogenesis, we performed single-cell ATAC-seq of E8.5-E10.5 mouse embryos. We profiled a total of 101,599 single cells and identified 41 specific cell types at these stages. Besides, by performing integrated analysis of scATAC-seq and public scRNA-seq data, we identified the critical cis-regulatory elements and key transcription factors which drving development of spinal cord and somitogenesis. Furthermore, we intersected accessible peaks with human diseases/traits-related loci and found potential clinical associated single nucleotide variants (SNPs). Overall, our work provides a fundamental source for understanding cell fate determination and revealing the underlying mechanism during postimplantation embryonic development, and expand our knowledge of pathology for human developmental malformations.

10.
Cell Res ; 33(8): 585-603, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337030

RESUMO

Dissecting and understanding the cancer ecosystem, especially that around the tumor margins, which have strong implications for tumor cell infiltration and invasion, are essential for exploring the mechanisms of tumor metastasis and developing effective new treatments. Using a novel tumor border scanning and digitization model enabled by nanoscale resolution-SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we identified a 500 µm-wide zone centered around the tumor border in patients with liver cancer, referred to as "the invasive zone". We detected strong immunosuppression, metabolic reprogramming, and severely damaged hepatocytes in this zone. We also identified a subpopulation of damaged hepatocytes with increased expression of serum amyloid A1 and A2 (referred to collectively as SAAs) located close to the border on the paratumor side. Overexpression of CXCL6 in adjacent malignant cells could induce activation of the JAK-STAT3 pathway in nearby hepatocytes, which subsequently caused SAAs' overexpression in these hepatocytes. Furthermore, overexpression and secretion of SAAs by hepatocytes in the invasive zone could lead to the recruitment of macrophages and M2 polarization, further promoting local immunosuppression, potentially resulting in tumor progression. Clinical association analysis in additional five independent cohorts of patients with primary and secondary liver cancer (n = 423) showed that patients with overexpression of SAAs in the invasive zone had a worse prognosis. Further in vivo experiments using mouse liver tumor models in situ confirmed that the knockdown of genes encoding SAAs in hepatocytes decreased macrophage accumulation around the tumor border and delayed tumor growth. The identification and characterization of a novel invasive zone in human cancer patients not only add an important layer of understanding regarding the mechanisms of tumor invasion and metastasis, but may also pave the way for developing novel therapeutic strategies for advanced liver cancer and other solid tumors.


Assuntos
Ecossistema , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Neoplasias Hepáticas/patologia , Hepatócitos/metabolismo , Terapia de Imunossupressão , Linhagem Celular Tumoral
11.
Biomed Pharmacother ; 153: 113399, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834986

RESUMO

Aberrant microbe-immune cell interaction is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Cortex Periplocae is a famous traditional Chinese medicine with putative anti-rheumatoid arthritis and anti-dyspepsia effects. Here, we show that the Periploca sepium periplosides (PePs), a cardiac glycosides-free pregnane glycosides extract from root bark of Cortex Periplocae, alleviates colon inflammation, improves intestinal epithelial barrier function, and prevents colitis-associated tumorigenesis in mice with colitis and CAC. Mechanistically, PePs treatment modulates abnormal gut microbiota composition in model mice, especially enriches an anti-inflammatory commensal bacterium A. muciniphila BAA-835. We further demonstrate that the altered gut microbiota following PePs treatment plays an important role in modulation of intestinal Type 17 immunity in both colitis and CAC mouse model. Our results indicate that PePs may be used as a potential gut microbiota modulator to treat IBD and CAC.


Assuntos
Neoplasias Associadas a Colite , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Colite/complicações , Colite/tratamento farmacológico , Colite/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/patologia
12.
Gigascience ; 122022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38091510

RESUMO

BACKGROUND: The basal ganglia are a complex of interconnected subcortical structures located beneath the mammalian cerebral cortex. The degeneration of dopaminergic neurons in the basal ganglia is the primary pathological feature of Parkinson's disease. Due to a lack of integrated analysis of multiomics datasets across multiple basal ganglia brain regions, very little is known about the regulatory mechanisms of this area. FINDINGS: We utilized high-throughput transcriptomic and epigenomic analysis to profile over 270,000 single-nucleus cells to create a cellular atlas of the basal ganglia, characterizing the cellular composition of 4 regions of basal ganglia in adult macaque brain, including the striatum, substantia nigra (SN), globus pallidum, and amygdala. We found a distinct epigenetic regulation on gene expression of neuronal and nonneuronal cells across regions in basal ganglia. We identified a cluster of SN-specific astrocytes associated with neurodegenerative diseases and further explored the conserved and primate-specific transcriptomics in SN cell types across human, macaque, and mouse. Finally, we integrated our epigenetic landscape of basal ganglia cells with human disease heritability and identified a regulatory module consisting of candidate cis-regulatory elements that are specific to medium spiny neurons and associated with schizophrenia. CONCLUSIONS: In general, our macaque basal ganglia atlas provides valuable insights into the comprehensive transcriptome and epigenome of the most important and populous cell populations in the macaque basal ganglia. We have identified 49 cell types based on transcriptomic profiles and 47 cell types based on epigenomic profiles, some of which exhibit region specificity, and characterized the molecular relationships underlying these brain regions.

13.
Adv Sci (Weinh) ; 9(29): e2203040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986392

RESUMO

The effective treatment of advanced cervical cancer remains challenging. Herein, single-nucleus RNA sequencing (snRNA-seq) and SpaTial enhanced resolution omics-sequencing (Stereo-seq) are used to investigate the immunological microenvironment of cervical squamous cell carcinoma (CSCC). The expression levels of most immune suppressive genes in the tumor and inflammation areas of CSCC are not significantly higher than those in the non-cancer samples, except for LGALS9 and IDO1. Stronger signals of CD56+ NK cells and immature dendritic cells are found in the hypermetabolic tumor areas, whereas more eosinophils, immature B cells, and Treg cells are found in the hypometabolic tumor areas. Moreover, a cluster of pro-tumorigenic cancer-associated myofibroblasts (myCAFs) are identified. The myCAFs may support the growth and metastasis of tumors by inhibiting lymphocyte infiltration and remodeling of the tumor extracellular matrix. Furthermore, these myCAFs are associated with poorer survival probability in patients with CSCC, predict resistance to immunotherapy, and might be present in a small fraction (< 30%) of patients with advanced cancer. Immunohistochemistry and multiplex immunofluorescence staining are conducted to validate the spatial distribution and potential function of myCAFs. Collectively, these findings enhance the understanding of the immunological microenvironment of CSCC and shed light on the treatment of advanced CSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Tecido Conjuntivo , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , RNA Nuclear Pequeno , Análise de Sequência de RNA , Transcriptoma/genética , Microambiente Tumoral/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
14.
Dev Cell ; 57(10): 1271-1283.e4, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35512700

RESUMO

Drosophila has long been a successful model organism in multiple biomedical fields. Spatial gene expression patterns are critical for the understanding of complex pathways and interactions, whereas temporal gene expression changes are vital for studying highly dynamic physiological activities. Systematic studies in Drosophila are still impeded by the lack of spatiotemporal transcriptomic information. Here, utilizing spatial enhanced resolution omics-sequencing (Stereo-seq), we dissected the spatiotemporal transcriptomic changes of developing Drosophila with high resolution and sensitivity. We demonstrated that Stereo-seq data can be used for the 3D reconstruction of the spatial transcriptomes of Drosophila embryos and larvae. With these 3D models, we identified functional subregions in embryonic and larval midguts, uncovered spatial cell state dynamics of larval testis, and revealed known and potential regulons of transcription factors within their topographic background. Our data provide the Drosophila research community with useful resources of organism-wide spatiotemporally resolved transcriptomic information across developmental stages.


Assuntos
Drosophila , Transcriptoma , Animais , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/metabolismo , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
15.
Science ; 377(6610): eabp9444, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048929

RESUMO

The molecular mechanism underlying brain regeneration in vertebrates remains elusive. We performed spatial enhanced resolution omics sequencing (Stereo-seq) to capture spatially resolved single-cell transcriptomes of axolotl telencephalon sections during development and regeneration. Annotated cell types exhibited distinct spatial distribution, molecular features, and functions. We identified an injury-induced ependymoglial cell cluster at the wound site as a progenitor cell population for the potential replenishment of lost neurons, through a cell state transition process resembling neurogenesis during development. Transcriptome comparisons indicated that these induced cells may originate from local resident ependymoglial cells. We further uncovered spatially defined neurons at the lesion site that may regress to an immature neuron-like state. Our work establishes spatial transcriptome profiles of an anamniote tetrapod brain and decodes potential neurogenesis from ependymoglial cells for development and regeneration, thus providing mechanistic insights into vertebrate brain regeneration.


Assuntos
Ambystoma mexicanum , Regeneração do Cérebro , Células-Tronco Neurais , Ambystoma mexicanum/fisiologia , Animais , Células-Tronco Neurais/fisiologia , Análise de Célula Única , Telencéfalo/fisiologia , Transcriptoma
16.
Nat Commun ; 13(1): 6747, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347848

RESUMO

Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell transcriptomic and chromatin accessibility (single-cell ATAC) data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult female cynomolgus monkey brain, and integrated this dataset with Stereo-seq (spatial enhanced resolution omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.


Assuntos
Neurônios , Córtex Pré-Frontal , Animais , Feminino , Macaca fascicularis/genética , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Redes Reguladoras de Genes , Cromatina/genética , Cromatina/metabolismo
17.
Sci Data ; 7(1): 217, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641764

RESUMO

The emergence of social organization (eusociality) is a major event in insect evolution. Although previous studies have investigated the mechanisms underlying caste differentiation and social behavior of eusocial insects including ants and honeybees, the molecular circuits governing sociality in these insects remain obscure. In this study, we profiled the transcriptome and chromatin accessibility of brain tissues in three Monomorium pharaonis ant castes: queens (including mature and un-mated queens), males and workers. We provide a comprehensive dataset including 16 RNA-sequencing and 16 assay for transposase accessible chromatin (ATAC)-sequencing profiles. We also demonstrate strong reproducibility of the datasets and have identified specific genes and open chromatin regions in the genome that may be associated with the social function of these castes. Our data will be a valuable resource for further studies of insect behaviour, particularly the role of brain in the control of eusociality.


Assuntos
Formigas/genética , Encéfalo , Cromatina , Transcriptoma , Animais , Comportamento Animal , Feminino , Genoma de Inseto , Masculino , RNA Ribossômico 16S/genética , Comportamento Social
18.
Sci Data ; 6(1): 65, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110271

RESUMO

The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is a fundamental epigenomics approach and has been widely used in profiling the chromatin accessibility dynamics in multiple species. A comprehensive reference of ATAC-seq datasets for mammalian tissues is important for the understanding of regulatory specificity and developmental abnormality caused by genetic or environmental alterations. Here, we report an adult mouse ATAC-seq atlas by producing a total of 66 ATAC-seq profiles from 20 primary tissues of both male and female mice. The ATAC-seq read enrichment, fragment size distribution, and reproducibility between replicates demonstrated the high quality of the full dataset. We identified a total of 296,574 accessible elements, of which 26,916 showed tissue-specific accessibility. Further, we identified key transcription factors specific to distinct tissues and found that the enrichment of each motif reflects the developmental similarities across tissues. In summary, our study provides an important resource on the mouse epigenome and will be of great importance to various scientific disciplines such as development, cell reprogramming, and genetic disease.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina/genética , Epigenômica , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Transposases
19.
Nat Commun ; 10(1): 470, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692544

RESUMO

Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a technique for simultaneously assaying chromatin accessibility and the transcriptome within the same single cell. We show that the combined single cell signatures enable accurate construction of regulatory relationships between cis-regulatory elements and the target genes at single-cell resolution, providing a new dimension of features that helps direct discovery of regulatory patterns specific to distinct cell identities. Moreover, we generate the first single cell integrated map of chromatin accessibility and transcriptome in early embryos and demonstrate the robustness of scCAT-seq in the precise dissection of master transcription factors in cells of distinct states. The ability to obtain these two layers of omics data will help provide more accurate definitions of "single cell state" and enable the deconvolution of regulatory heterogeneity from complex cell populations.


Assuntos
Cromatina/genética , Epigenômica , Regulação da Expressão Gênica , Análise de Célula Única/métodos , Transcriptoma , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células HCT116 , Células HeLa , Humanos , Células K562 , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA