Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Subcell Biochem ; 103: 95-120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120466

RESUMO

Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55-60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.


Assuntos
Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/terapia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia , Exercício Físico
2.
Osteoporos Int ; 33(12): 2453-2466, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35776148

RESUMO

The overall incidence of imminent fracture after a prior fragility fracture was 7.58% in the first year and 11.58% in the first 2 years. Approximately half of re-fractures occurred in the first 2 years after a fragility fracture. Older patients that have suffered from a fragility fracture should be treated promptly, with immediate care and a secondary fracture prevention to prevent the high imminent risk of a fracture. INTRODUCTION: Imminent fractures refer to the fractures that occur within 2 years of an initial fracture. It is well known that the risk of a subsequent fracture is not constant with time and occurs shortly after the initial one. This systematic review and meta-analysis aimed to present the existing data on imminent fracture worldwide. METHODS: Literature search was conducted in Pubmed, Embase, and Web of Science databases until 26 October 2021 for studies reporting the incidence of imminent osteoporotic fractures among people aged 50 years or older. The overall incidence of imminent fracture was pooled and subgroup analyses of index fracture sites and regions on incidence of imminent fracture were performed, with the 95% confidence interval (CI) being calculated. Percentage of imminent fracture occurring in follow-up period was calculated and pooled by meta-analysis. Hazard ratio (HR) was used to estimate the gender differences on the imminent risk of fracture. RESULTS: A total of 1446 articles were identified. Nineteen observational studies were eligible for our systematic review, in which 18 were used for quantitative analysis. Pooled overall incidence of imminent fracture in the first year after an osteoporotic fracture was 7.58% (95% CI 5.84 to 9.31%) and cumulative incidence in the first 2 years was 11.58% (95% CI 8.94 to 14.21%). Subgroup analysis showed that in the first 2 years, the pooled incidence in Asia was 7.30% (95% CI 3.42 to 11.18%), whilst incidence in Europe/North America was 13.17% (95% CI 10.14 to 16.20%). In included studies with follow-up period of more than 5 years, pooled imminent fracture percentage in the first 2 years was 47.24% (95% CI 26.18 to 68.30%). Hazard ratio (HR) on gender showed that women had an overall slight increase in risk of imminent fractures (HR 1.18, 95% CI 1.11 to 1.25). CONCLUSION: The incidence of imminent fracture is high globally at 11.58%. Approximately half of all refractures occur in the first 2 years after an index fragility fracture. Older patients that have suffered from a fragility fracture should be treated promptly. Also, immediate care and secondary fracture prevention are necessary to prevent the high imminent risk of a fracture, especially within the first 2 years.


Assuntos
Fraturas por Osteoporose , Humanos , Feminino , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/prevenção & controle , Incidência , Bases de Dados Factuais , Europa (Continente) , Ásia , Estudos Observacionais como Assunto
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361730

RESUMO

Sarcopenia is an age-related geriatric syndrome characterized by the gradual loss of muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to be beneficial to structural and functional outcomes of skeletal muscles, while magnesium (Mg) is a cofactor associated with better indices of skeletal muscle mass and strength. We hypothesized that LMHFV, Mg and their combinations could suppress inflammation and sarcopenic atrophy, promote myogenesis via PI3k/Akt/mTOR pathway in senescence-accelerated mouse P8 (SAMP8) mice and C2C12 myoblasts. Results showed that Mg treatment and LMHFV could significantly decrease inflammatory expression (C/EBPα and LYVE1) and modulate a CD206-positive M2 macrophage population at month four. Mg treatment also showed significant inhibitory effects on FOXO3, MuRF1 and MAFbx mRNA expression. Coapplication showed a synergistic effect on suppression of type I fiber atrophy, with significantly higher IGF-1, MyoD, MyoG mRNA (p < 0.05) and pAkt protein expression (p < 0.0001) during sarcopenia. In vitro inhibition of PI3K/Akt and mTOR abolished the enhancement effects on myotube formation and inhibited MRF mRNA and p85, Akt, pAkt and mTOR protein expressions. The present study demonstrated that the PI3K/Akt/mTOR pathway is the predominant regulatory mechanism through which LMHFV and Mg enhanced muscle regeneration and suppressed atrogene upregulation.


Assuntos
Fosfatidilinositol 3-Quinases , Sarcopenia , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Sarcopenia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Magnésio/farmacologia , Vibração , Atrofia Muscular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Músculo Esquelético/metabolismo , RNA Mensageiro , Macrófagos/metabolismo , Suplementos Nutricionais
4.
FASEB J ; 34(3): 4234-4252, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961009

RESUMO

Fragility fractures are related to the loss of bone integrity and deteriorated morphology of osteocytes. Our previous studies have reported that low-magnitude high-frequency vibration (LMHFV) promoted osteoporotic fracture healing. As osteocytes are known for mechanosensing and initiating bone repair, we hypothesized that LMHFV could enhance osteoporotic fracture healing through enhancing morphological changes in the osteocyte lacuna-canalicular network (LCN) and mineralization. A metaphyseal fracture model was established in female Sprague-Dawley rats to investigate changes in osteocytes and healing outcomes from early to late phase post-fracture. Our results showed that the LCN exhibited an exuberant outgrowth of canaliculi in the osteoporotic fractured bone at day 14 after LMHFV. LMHFV upregulated the E11, dentin matrix protein 1 (DMP1), and fibroblast growth factor 23 (FGF23), but downregulated sclerostin (Sost) in osteocytes. Moreover, LMHFV promoted mineralization with significant enhancements of Ca/P ratio, mineral apposition rate (MAR), mineralizing surface (MS/BS), and bone mineral density (BMD) in the osteoporotic group. Consistently, better healing was confirmed by microarchitecture and mechanical properties, whereas the enhancement in osteoporotic group was comparable or even greater than the normal group. This is the first report to reveal the enhancement effect of LMHFV on the osteocytes' morphology and functions in osteoporotic fracture healing.


Assuntos
Consolidação da Fratura/fisiologia , Osteócitos/citologia , Fraturas por Osteoporose/terapia , Vibração/uso terapêutico , Animais , Densidade Óssea/fisiologia , Feminino , Imuno-Histoquímica , Testes Mecânicos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Fraturas por Osteoporose/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
5.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445423

RESUMO

Low-magnitude high-frequency vibration (LMHFV) has previously been reported to modulate the acute inflammatory response of ovariectomy-induced osteoporotic fracture healing. However, the underlying mechanisms are not clear. In the present study, we investigated the effect of LMHFV on the inflammatory response and the role of the p38 MAPK mechanical signaling pathway in macrophages during the healing process. A closed femoral fracture SD rat model was used. In vivo results showed that LMHFV enhanced activation of the p38 MAPK pathway at the fracture site. The acute inflammatory response, expression of inflammatory cytokines, and callus formation were suppressed in vivo by p38 MAPK inhibition. However, LMHFV did not show direct in vitro enhancement effects on the polarization of RAW264.7 macrophage from the M1 to M2 phenotype, but instead promoted macrophage enlargement and transformation to dendritic monocytes. The present study demonstrated that p38 MAPK modulated the enhancement effects of mechanical stimulation in vivo only. LMHFV may not have exerted its enhancement effects directly on macrophage, but the exact mechanism may have taken a different pathway that requires further investigation in the various subsets of immune cells.


Assuntos
Citocinas/sangue , Consolidação da Fratura , Fraturas por Osteoporose/terapia , Vibração/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Fraturas por Osteoporose/sangue , Fraturas por Osteoporose/imunologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Microtomografia por Raio-X
6.
J Orthop Translat ; 47: 63-73, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007034

RESUMO

Background: The interaction between muscle and bone is shown to be clinically important but the underlying mechanisms are largely unknown. The canonical Wnt/ß-catenin signaling pathway is reported to be involved in muscle-bone crosstalk, but its detailed function remains unclear. This systematic review aims to investigate and elucidate the role of the Wnt/ß-catenin signaling pathways in muscle-bone crosstalk. Methods: We conducted a literature search on the Web of Science, PubMed, EBSCO and Embase with keywords "Wnt*", "bone*" and "muscle*". A systematic review was completed according to the guideline of preferred reporting items of systematic reviews and meta-analyses (PRISMA). Data synthesis included species (human, animal or cell type used), treatments involved, outcome measures and key findings with respect to Wnts. Results: Seventeen papers were published from 2007 to 2021 and were extracted from a total of 1529 search results in the databases of Web of Science (468 papers), PubMed (457 papers), EBSCO (371) and Embase (233). 12 Wnt family members were investigated in the papers, including Wnt1, Wnt2, Wnt2b, Wnt3a, Wnt4, Wnt5a, Wnt8a, Wnt8b, Wnt9a, Wnt10a, Wnt10b and Wnt16. Many studies showed that muscles were able to increase or decrease osteogenesis of bone, while bone increased myogenesis of muscle through Wnt/ß-catenin signaling pathways. Wnt3a, Wnt4 and Wnt10b were shown to play important roles in the crosstalk between muscle and bone. Conclusions: Wnt3a, Wnt4 and Wnt10b are found to play important mediatory roles in muscle-bone crosstalk. The role of Wnt4 was mostly found to regulate muscle from the bone side. Whilst the role of Wnt10b during muscle ageing was proposed, current evidence is insufficient to clarify the specific role of Wnt/ß-catenin signaling in the interplay between sarcopenia and osteoporosis. More future studies are required to investigate the exact regulatory roles of Wnts in muscle-bone crosstalk in musculoskeletal disease models such as sarcopenia and osteoporosis. Translational potential of this article: The systematic review provides an extensive overview to reveal the roles of Wnt/ß-catenin signaling pathways in muscle-bone crosstalk. These results provide novel research directions to further understand the underlying mechanism of sarcopenia, osteoporosis, and their crosstalk, finally helping the future development of new therapeutic interventions.

7.
J Biomed Mater Res A ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963690

RESUMO

Approximately 5%-10% of fractures go on to delayed healing and nonunion, posing significant clinical, economic, and social challenges. Current treatment methods involving open bone harvesting and grafting are associated with considerable pain and potential morbidity at the donor site. Hence, there is growing interest in minimally invasive approaches such as bone marrow aspirate concentrate (BMAC), which contains mesenchymal stromal cells (MSCs), macrophages (Mφ), and T cells. However, the use of cultured or activated cells for treatment is not yet FDA-approved in the United States, necessitating further exploration of optimal cell types and proportions for effective bone formation. As our understanding of osteoimmunology advances, it has become apparent that factors from anti-inflammatory Mφ (M2) promote bone formation by MSCs. Additionally, M2 Mφ promote T helper 2 (Th2) cells and Treg cells, both of which enhance bone formation. In this study, we investigated the interactions among MSCs, Mφ, and T cells in bone formation and explored the potential of subsets of BMAC. Coculture experiments were conducted using primary MSCs, Mφ, and CD4+ T cells at specific ratios. Our results indicate that nonactivated T cells had no direct influence on osteogenesis by MSCs, while coculturing MSCs with Mφ and T cells at a ratio of 1:5:10 positively impacted bone formation. Furthermore, higher numbers of T cells led to increased M2 polarization and a higher proportion of Th2 cells in the early stages of coculture. These findings suggest the potential for enhancing bone formation by adjusting immune and mesenchymal cell ratios in BMAC. By understanding the interactions and effects of immune cells on bone formation, we can develop more effective strategies and protocols for treating bone defects and nonunions. Further studies are needed to investigate these interactions in vivo and explore additional factors influencing MSC-based therapies.

8.
Biomolecules ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540803

RESUMO

Max L. Lee was not included as an author in the original publication [...].

9.
J Biomed Mater Res B Appl Biomater ; 112(1): e35360, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247252

RESUMO

Nontraumatic osteonecrosis of the femoral head (ONFH) is a refractory condition that commonly results in femoral head collapse and degenerative arthritis of the hip. In the early stages, surgical procedures for hip preservation, including core decompression (CD), have been developed to prevent progressive collapse of the femoral head. Optimization of bone regeneration and biological augmentation may further enhance the therapeutic efficacy of CD for ONFH. Thus, combining CD with cell-based therapy has recently been proposed. In fact, patients treated with cell-based therapy using autologous bone marrow concentrate demonstrate improved survivorship of the femoral head, compared with conventional CD alone. Preclinical research studies to investigate adjunctive therapies for CD often utilize the rabbit model of corticosteroid-induced ONFH. Mesenchymal stem cells (MSCs) are known to promote osteogenesis and angiogenesis, and decrease inflammation in bone. Local drug delivery systems have the potential to achieve targeted therapeutic effects by precisely controlling the drug release rate. Scaffolds can provide an osteoconductive structural framework to facilitate the repair of osteonecrotic bone tissue. We focused on the combination of both cell-based and scaffold-based therapies for bone tissue regeneration in ONFH. We hypothesized that combining CD and osteoconductive scaffolds would provide mechanical strength and structural cell guidance; and that combining CD and genetically modified (GM) MSCs to express relevant cytokines, chemokines, and growth factors would promote bone tissue repair. We developed GM MSCs that overexpress the anti-inflammatory, pro-reconstructive cytokines platelet-derived growth factor-BB to provide MSCs with additional benefits and investigated the efficacy of combinations of these GM MSCs and scaffolds for treatment of ONFH in skeletally mature male New Zealand white rabbits. In the future, the long-term safety, efficacy, durability, and cost-effectiveness of these and other biological and mechanical treatments must be demonstrated for the patients affected by ONFH.


Assuntos
Cabeça do Fêmur , Procedimentos Ortopédicos , Humanos , Animais , Masculino , Coelhos , Corticosteroides , Regeneração Óssea , Citocinas
10.
Aging Cell ; : e14156, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532712

RESUMO

Neuromuscular junction (NMJ) degeneration is one of pathological factors of sarcopenia. Low-magnitude high-frequency vibration (LMHFV) was reported effective in alleviating the sarcopenia progress. However, no previous study has investigated treatment effects of LMHFV targeting NMJ degeneration in sarcopenia. We first compared morphological differences of NMJ between sarcopenic and non-sarcopenic subjects, as well as young and old C57BL/6 mice. We then systematically characterized the age-related degeneration of NMJ in SAMP8 against its control strain, SAMR1 mice, from 3 to 12 months old. We also investigated effects of LMHFV in SAMP8 on the maintenance of NMJ during the onset of sarcopenia with respect to the Agrin-LRP4-MuSK-Dok7 pathway and investigated the mechanism related to ERK1/2 signaling. We observed sarcopenic/old NMJ presented increased acetylcholine receptors (AChRs) cluster fragmentation and discontinuity than non-sarcopenic/young NMJ. In SAMP8, NMJ degeneration (morphologically at 6 months and functionally at 8 months) was observed associated with the sarcopenia onset (10 months). SAMR1 showed improved NMJ morphology and function compared with SAMP8 at 10 months. Skeletal muscle performance was improved at Month 4 post-LMHFV treatment. Vibration group presented improved NMJ function at Months 2 and 6 posttreatment, accompanied with alleviated morphological degeneration at Month 4 posttreatment. LMHFV increased Dok7 expression at Month 4 posttreatment. In vitro, LMHFV could promote AChRs clustering in myotubes by increasing Dok7 expression through suppressing ERK1/2 phosphorylation. In conclusion, NMJ degeneration was observed associated with the sarcopenia onset in SAMP8. LMHFV may attenuate NMJ degeneration and sarcopenia progression by increasing Dok7 expression through suppressing ERK1/2 phosphorylation.

11.
J Orthop Translat ; 46: 91-102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38817243

RESUMO

The neuromuscular junction (NMJ) is a specialized chemical synapse that converts neural impulses into muscle action. Age-associated NMJ degeneration, which involves nerve terminal and postsynaptic decline, denervation, and loss of motor units, significantly contributes to muscle weakness and dysfunction. Although physical training has been shown to make substantial modifications in NMJ of both young and aged animals, the results are often influenced by methodological variables in existing studies. Moreover, there is still lack of strong consensus on the specific effects of exercise on improving the morphology and function of the ageing NMJ. Consequently, the purpose of this study was to conduct a systematic review to elucidate the effects of exercise training on NMJ compartments in the elderly. We conducted a systematic review using PubMed, Embase, and Web of Science databases, employing relevant keywords. Two independent reviewers selected studies that detailed NMJ changes during exercise in ageing, written in English, and available in full text. In total, 20 papers were included. We examined the altered adaptation of the NMJ to exercise, focusing on presynaptic and postsynaptic structures and myofibers in older animals or humans. Our findings indicated that aged NMJs exhibited different adaptive responses to physical exercise compared to younger counterparts. Endurance training, compared with resistance and voluntary exercise regimens, was found to have a more pronounced effect on NMJ structural remodeling, particularly in fast twitch muscle fibers. Physical exercise was observed to promote the formation and maintenance of acetylcholine receptor (AChR) clusters by increasing the recombinant docking protein 7 (Dok7) expression and stabilizing Agrin and lipoprotein receptor-related protein 4 (LRP4). These insights suggest that research on exercise-related therapies could potentially attenuate the progression of neuromuscular degeneration. Translational potential of this article: This systematic review provides a detailed overview of the effects of different types of physical exercise on improving NMJ in the elderly, providing scientific support for the timely intervention of muscle degeneration in the elderly by physical exercise, and providing help for the development of new therapeutic interventions in the future.

12.
BMJ Open ; 14(1): e074858, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38176874

RESUMO

INTRODUCTION: Sarcopenia is characterised by age-related loss of skeletal muscle and function and is associated with risks of adverse outcomes. The prevalence of sarcopenia increases due to ageing population and effective interventions is in need. Previous studies showed that ß-hydroxy ß-methylbutyrate (HMB) supplement and vibration treatment (VT) enhanced muscle quality, while the coapplication of the two interventions had further improved muscle mass and function in sarcopenic mice model. This study aims to investigate the efficacy of this combination treatment in combating sarcopenia in older people. The findings of this study will demonstrate the effect of combination treatment as an alternative for managing sarcopenia. METHODS AND ANALYSIS: In this single-blinded randomised controlled trial, subjects will be screened based on the Asian Working Group for Sarcopenia (AWGS) 2019 definition. 200 subjects who are aged 65 or above and identified sarcopenic according to the AWGS algorithm will be recruited. They will be randomised to one of the following four groups: (1) Control+ONS; (2) HMB+ONS; (3) VT+ONS and (4) HMB+VT + ONS, where ONS stands for oral nutritional supplement. ONS will be taken in the form of protein formular once/day; HMB supplements will be 3 g/day; VT (35 Hz, 0.3 g, where g=gravitational acceleration) will be received for 20 mins/day and at least 3 days/week. The primary outcome assessments are muscle strength and function. Subjects will be assessed at baseline, 3-month and 6-month post treatment. ETHICS AND DISSEMINATION: This study was approved by Joint CUHK-NTEC (The Chinese University of Hong Kong and New Territories East Cluster) Clinical Research Management Office (Ref: CRE-2022.223-T) and conformed to the Declaration of Helsinki. Trial results will be published in peer-reviewed journals and disseminated at academic conferences. TRIAL REGISTRATION NUMBER: NCT05525039.


Assuntos
Sarcopenia , Animais , Camundongos , Humanos , Idoso , Sarcopenia/complicações , Músculo Esquelético , Força Muscular , Envelhecimento , Hong Kong , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
J Orthop Translat ; 38: 76-83, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36381246

RESUMO

Background: Cognitive impairment is a major challenge for elderlies, as it can progress in a rapid manner and effective treatments are limited. Sarcopenic elderlies have a higher risk of dementia. This scoping review aims to reveal whether muscle is a mediator of cognitive function from pre-clinical evidence. Methods: PubMed, Embase, and Web of Science were searched to Feb 2nd, 2022, using the keywords (muscle) AND (cognition OR dementia OR Alzheimer) AND (mouse OR rat OR animal). The PRISMA guideline was used in this study. Results: A total of 17 pre-clinical studies were selected from 7638 studies. 4 studies reported that muscle atrophy and injury harmed memory, functional factors, and neurons in the brain for rodents with or without Alzheimer's disease (AD). 3 studies observed exercise induced muscle to secrete factors, including lactate, fibronectin type III domain-containing protein 5 (FNDC5), and cathepsin B, which plays essential roles in the elevation of cognitive functions and brain-derived neurotrophic factor (BDNF) levels. Muscle-targeted treatments including electrical stimulation and intramuscular injections had effective remote effects on the hippocampus. 6 studies showed that muscle-specific overexpression of scFv59 and Neprilysin, or myostatin knockdown alleviated AD symptoms. 1 study showed that muscle insulin resistance also led to deficient hippocampal neurogenesis in MKR mice. Conclusions: The skeletal muscle is involved in the mediation of cognitive function. The evidence was established by the response in the brain (altered number of neurons, functional factors, and other AD pathological characteristics) with muscle atrophy or injury, muscle secretory factors, and muscle-targeted treatments. The translational potential of this paper: This study summarizes the current evidence in how muscle affects cognition in molecular levels, which supports muscle-specific treatments as potential clinical strategies to prevent cognitive dysfunction.

14.
Ageing Res Rev ; 91: 102048, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652311

RESUMO

BACKGROUND: Sarcopenia is the accelerated loss of muscle mass, strength and function. Mitochondrial dysfunction was related to the progression of sarcopenia; meanwhile, microRNAs were regarded as core roles in regulating mitochondrial function. Physical exercise is a well-accepted approach to attenuate sarcopenia, yet very few studies depict the molecular mechanisms. The aim of this systematic review is to explore the potential relationships among physical exercise, mitochondrial function, and microRNAs, which may give new insight for retarding sarcopenia. METHODS: A systematic literature search was performed in PubMed, Embase and Web of Science. The keywords were combined as "(microRNA OR miR) AND mitochondri* AND muscle AND exercise" and searched in all fields. PRISMA guidelines were followed. Information was extracted from the included studies for review. RESULTS: In this review, 18 preclinical studies and 5 clinical studies were included. Most of the included studies suggested that effective physical exercise had positive effects on mitochondrial functions by regulating microRNAs. The results showed that 12 microRNAs improved mitochondrial functions, while 18 microRNAs suppressed them. Meanwhile, the results showed that 5 microRNAs improved muscle performance. CONCLUSIONS: This systematic review provides an up-to-date sequential overview and highlights the potential relationship among exercise, mitochondrial function, and microRNAs in muscle. Meanwhile, evidence revealed that physical exercise can improve muscle performance by up-regulating mitochondrial functions, especially mitochondrial biogenesis, through modulating microRNAs.


Assuntos
MicroRNAs , Sarcopenia , Humanos , MicroRNAs/genética , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Mitocôndrias/genética , Força Muscular/fisiologia
15.
Front Cell Dev Biol ; 11: 1213641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457301

RESUMO

Novel minimally invasive strategies are needed to obtain robust bone healing in complex fractures and bone defects in the elderly population. Local cell therapy is one potential option for future treatment. Mesenchymal stromal cells (MSCs) are not only involved in osteogenesis but also help direct the recruitment of macrophages during bone regeneration via MSC-macrophage crosstalk. The C-C motif chemokine ligand 2 (CCL2) is an inflammatory chemokine that is associated with the migration of macrophages and MSCs during inflammation. This study investigated the use of CCL2 as a therapeutic target for local cell therapy. MSCs and macrophages were isolated from 10 to 12 week-old BALB/c male mice. Genetically modified CCL2 over-expressing MSCs were produced using murine CCL2-secreting pCDH-CMV-mCCL2-copGFP expressing lentivirus vector. Osteogenic differentiation assays were performed using MSCs with or without macrophages in co-culture. Cell migration assays were also performed. MSCs transfected with murine CCL2-secreting pCDH-CMV-mCCL2-copGFP expressing lentivirus vector showed higher levels of CCL2 secretion compared to unaltered MSCs (p < 0.05). Genetic manipulation did not affect cell proliferation. CCL2 did not affect the osteogenic ability of MSCs alone. However, acute (1 day) but not sustained (7 days) stimulation with CCL2 increased the alizarin red-positive area when MSCs were co-cultured with macrophages (p < 0.001). Both recombinant CCL2 (p < 0.05) and CCL2 released from MSCs (p < 0.05) facilitated macrophage migration. We demonstrated that acute CCL2 stimulation promoted subsequent osteogenesis in co-culture of MSCs and macrophages. Acute CCL2 stimulation potentially facilitates osteogenesis during the acute inflammatory phase of bone healing by directing local macrophage migration, fostering macrophage-MSC crosstalk, and subsequently, by activating or licensing of MSCs by macrophage pro-inflammatory cytokines. The combination of CCL2, MSCs, and macrophages could be a potential strategy for local cell therapy in compromised bone healing.

16.
Inflamm Regen ; 43(1): 29, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231450

RESUMO

Aging of the global population increases the incidence of osteoporosis and associated fragility fractures, significantly impacting patient quality of life and healthcare costs. The acute inflammatory reaction is essential to initiate healing after injury. However, aging is associated with "inflammaging", referring to the presence of systemic low-level chronic inflammation. Chronic inflammation impairs the initiation of bone regeneration in elderly patients. This review examines current knowledge of the bone regeneration process and potential immunomodulatory therapies to facilitate bone healing in inflammaging.Aged macrophages show increased sensitivity and responsiveness to inflammatory signals. While M1 macrophages are activated during the acute inflammatory response, proper resolution of the inflammatory phase involves repolarizing pro-inflammatory M1 macrophages to an anti-inflammatory M2 phenotype associated with tissue regeneration. In aging, persistent chronic inflammation resulting from the failure of M1 to M2 repolarization leads to increased osteoclast activation and decreased osteoblast formation, thus increasing bone resorption and decreasing bone formation during healing.Inflammaging can impair the ability of stem cells to support bone regeneration and contributes to the decline in bone mass and strength that occurs with aging. Therefore, modulating inflammaging is a promising approach for improving bone health in the aging population. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that may benefit bone regeneration in inflammation. Preconditioning MSCs with pro-inflammatory cytokines affects MSCs' secretory profile and osteogenic ability. MSCs cultured under hypoxic conditions show increased proliferation rates and secretion of growth factors. Resolution of inflammation via local delivery of anti-inflammatory cytokines is also a potential therapy for bone regeneration in inflammaging. Scaffolds containing anti-inflammatory cytokines, unaltered MSCs, and genetically modified MSCs can also have therapeutic potential. MSC exosomes can increase the migration of MSCs to the fracture site and enhance osteogenic differentiation and angiogenesis.In conclusion, inflammaging can impair the proper initiation of bone regeneration in the elderly. Modulating inflammaging is a promising approach for improving compromised bone healing in the aging population.

17.
Front Endocrinol (Lausanne) ; 14: 1077255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936175

RESUMO

Background: Elderly people with low lean and high fat mass, are diagnosed with sarcopenic obesity (SO), and often have poor clinical outcomes. This study aimed to explore the relationship between obesity and sarcopenia, and the optimal proportion of fat and muscle for old individuals. Methods: Participants aged 60 years or above were instructed to perform bioelectrical impedance analysis to obtain the muscle and fat indicators, and handgrip strength was also performed. Sarcopenia was diagnosed according to predicted appendicular skeletal muscle mass and function. Body mass index (BMI) and body fat percentage (BF%) were used to define obesity. The association of muscle and fat indicators were analyzed by Pearson's correlation coefficient. Pearson Chi-Square test was utilized to estimate odds ratios (OR) and 95% confidence intervals (CI) on the risk of sarcopenia according to obesity status. Results: 1637 old subjects (74.8 ± 7.8 years) participated in this study. Not only fat mass, but also muscle indicators were positively correlated to BMI and body weight (p < 0.05). Absolute muscle and fat mass in different positions had positive associations (p < 0.05). Muscle mass and strength were negatively related to appendicular fat mass percentage (p < 0.05). When defined by BMI (OR = 0.69, 95% CI [0.56, 0.86]; p = 0.001), obesity was a protective factor for sarcopenia, whilst it was a risk factor when using BF% (OR = 1.38, 95% CI [1.13, 1.69]; p = 0.002) as the definition. The risk of sarcopenia reduced with the increase of BMI in both genders. It was increased with raised BF% in males but displayed a U-shaped curve for females. BF% 26.0-34.6% in old females and lower than 23.9% in old males are recommended for sarcopenia and obesity prevention. Conclusion: Skeletal muscle mass had strong positive relationship with absolute fat mass but negative associations with the percentage of appendicular fat mass. Obesity was a risk factor of sarcopenia when defined by BF% instead of BMI. The management of BF% can accurately help elderly people prevent against both sarcopenia and obesity.


Assuntos
Composição Corporal , Obesidade , Sarcopenia , Idoso , Feminino , Humanos , Masculino , Peso Corporal , Força da Mão , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/diagnóstico , Sarcopenia/etiologia , Sarcopenia/prevenção & controle , Índice de Massa Corporal
18.
Biomolecules ; 14(1)2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38254652

RESUMO

Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.


Assuntos
Interface Osso-Implante , Longevidade , Humanos , Idoso , Desenvolvimento Ósseo , Inflamação
19.
Obes Rev ; 24(2): e13534, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443946

RESUMO

Aging and obesity are two global concerns in public health. Sarcopenic obesity (SO), defined as the combination of age-related sarcopenia and obesity, has become a pressing issue. This systematic review and meta-analysis summarize the current clinical evidence relevant to SO. PubMed, Embase, and Web of Science were searched, and 106 clinical studies with 167,151 elderlies were included. The estimated prevalence of SO was 9% in both men and women. Obesity was associated with 34% reduced risk of sarcopenia (odds ratio [OR] 0.66, 95% CI 0.48-0.91; p < 0.001). The pooled hazard ratio (HR) of all-cause mortality was 1.51 (95% CI 1.14-2.02; p < 0.001) for people with SO compared with healthy individuals. SO was associated with increased risk of cardiovascular disease and related mortality, metabolic disorders, cognitive impairment, arthritis, functional limitation, and lung diseases (all ORs > 1.0, p < 0.05). The attenuated risk of sarcopenia in elderlies with obesity ("obesity paradox") was dependent on higher muscle mass and strength. Apart from unifying the diagnosis of SO, more research is needed to subphenotype people with obesity and sarcopenia for individualized treatment. Meanwhile, the maintenance of proper body composition of muscle and fat may delay or attenuate the adverse outcomes of aging.


Assuntos
Doenças Cardiovasculares , Sarcopenia , Masculino , Humanos , Feminino , Idoso , Sarcopenia/complicações , Sarcopenia/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia , Envelhecimento/fisiologia , Composição Corporal , Doenças Cardiovasculares/complicações
20.
Front Immunol ; 14: 1199751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675119

RESUMO

Background: Dysregulated inflammation is associated with many skeletal diseases and disorders, such as osteolysis, non-union of fractures, osteonecrosis, osteoarthritis and orthopaedic infections. We previously showed that continuous infusion of lipopolysaccharide (LPS) contaminated polyethylene particles (cPE) caused prolonged inflammation and impaired bone formation. However, the metabolic and bioenergetic processes associated with inflammation of bone are unknown. Mitochondria are highly dynamic organelles that modulate cell metabolism and orchestrate the inflammatory responses that involve both resident and recruited cells. Glycolytic reprogramming, the shift from oxidative phosphorylation (OXPHOS) to glycolysis causes inappropriate cell activation and function, resulting in dysfunctional cellular metabolism. We hypothesized that impaired immunoregulation and bone regeneration from inflammatory states are associated with glycolytic reprogramming and mitochondrial dysfunction in macrophages (Mφ) and mesenchymal stromal cells (MSCs). Methods: We used the Seahorse XF96 analyzer and real-time qPCR to study the bioenergetics of Mφ and MSCs exposed to cPE. To understand the oxygen consumption rate (OCR), we used Seahorse XF Cell Mito Stress Test Kit with Seahorse XF96 analyzer. Similarly, Seahorse XF Glycolytic Rate Assay Kit was used to detect the extracellular acidification rate (ECAR) and Seahorse XF Real-Time ATP Rate Assay kit was used to detect the real-time ATP production rates from OXPHOS and glycolysis. Real-time qPCR was performed to analyze the gene expression of key enzymes in glycolysis and mitochondrial biogenesis. We further detected the gene expression of proinflammatory cytokines in Mφ and genes related to cell differentiation in MSC during the challenge of cPE. Results: Our results demonstrated that the oxidative phosphorylation of Mφ exposed to cPE was significantly decreased when compared with the control group. We found reduced basal, maximal and ATP-production coupled respiration rates, and decreased proton leak in Mφ during challenge with cPE. Meanwhile, Mφ showed increased basal glycolysis and proton efflux rates (PER) when exposed to cPE. The percentage (%) of PER from glycolysis was higher in Mφ exposed to cPE, indicating that the contribution of the glycolytic pathway to total extracellular acidification was elevated during the challenge of cPE. In line with the results of OCR and ECAR, we found Mφ during cPE challenge showed higher glycolytic ATP (glycoATP) production rates and lower mitochondrial ATP (mitoATP) production rates which is mainly from OXPHOS. Interestingly, MSCs showed enhanced glycolysis during challenge with cPE, but no significant changes in oxygen consumption rates (OCR). In accordance, seahorse assay of real-time ATP revealed glycoATP rates were elevated while mitoATP rates showed no significant differences in MSC during challenge with cPE. Furthermore, Mφ and MSCs exposed to cPE showed upregulated gene expression levels of glycolytic regulators and Mφ exposed to cPE expressed higher levels of pro-inflammatory cytokines. Conclusion: This study demonstrated the dysfunctional bioenergetic activity of bone marrow-derived Mφ and MSCs exposed to cPE, which could impair the immunoregulatory properties of cells in the bone niche. The underlying molecular defect related to disordered mitochondrial function could represent a potential therapeutic target during the resolution of inflammation.


Assuntos
Células-Tronco Mesenquimais , Prótons , Humanos , Glicólise , Inflamação , Macrófagos , Citocinas , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA