Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 317(6): R921-R931, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664867

RESUMO

There is significant interest in the potential utility of small-molecule activator compounds to mitigate cardiac arrhythmia caused by loss of function of hERG1a voltage-gated potassium channels. Zebrafish (Danio rerio) have been proposed as a cost-effective, high-throughput drug-screening model to identify compounds that cause hERG1a dysfunction. However, there are no reports on the effects of hERG1a activator compounds in zebrafish and consequently on the utility of the model to screen for potential gain-of-function therapeutics. Here, we examined the effects of hERG1a blocker and types 1 and 2 activator compounds on isolated zkcnh6a (zERG3) channels in the Xenopus oocyte expression system as well as action potentials recorded from ex vivo adult zebrafish whole hearts using optical mapping. Our functional data from isolated zkcnh6a channels show that under the conditions tested, these channels are blocked by hERG1a channel blockers (dofetilide and terfenadine), and activated by type 1 (RPR260243) and type 2 (NS1643, PD-118057) hERG1a activators with higher affinity than hKCNH2a channels (except NS1643), with differences accounted for by different biophysical properties in the two channels. In ex vivo zebrafish whole hearts, two of the three hERG1a activators examined caused abbreviation of the action potential duration (APD), whereas hERG1a blockers caused APD prolongation. These data represent, to our knowledge, the first pharmacological characterization of isolated zkcnh6a channels and the first assessment of hERG enhancing therapeutics in zebrafish. Our findings lead us to suggest that the zebrafish ex vivo whole heart model serves as a valuable tool in the screening of hKCNH2a blocker and activator compounds.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Coração/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Clorobenzenos/farmacologia , Cresóis/farmacologia , Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fenetilaminas/farmacologia , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Terfenadina/farmacologia , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , ortoaminobenzoatos/farmacologia
2.
Biophys J ; 108(6): 1400-1413, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25809253

RESUMO

Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (-34 ± 4 mV) is similar to wild-type (WT) (-37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (-131 ± 4 mV for K525C and -120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.


Assuntos
Cresóis/metabolismo , Cresóis/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Fluorometria , Humanos , Potenciais da Membrana/fisiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Oócitos , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Transfecção , Xenopus laevis
3.
Biophys J ; 106(5): 1057-69, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24606930

RESUMO

In Shaker-like channels, the activation gate is formed at the bundle crossing by the convergence of the inner S6 helices near a conserved proline-valine-proline motif, which introduces a kink that allows for electromechanical coupling with voltage sensor motions via the S4-S5 linker. Human ether-a-go-go-related gene (hERG) channels lack the proline-valine-proline motif and the location of the intracellular pore gate and how it is coupled to S4 movement is less clear. Here, we show that proline substitutions within the S6 of hERG perturbed pore gate closure, trapping channels in the open state. Performing a proline scan of the inner S6 helix, from Ile(655) to Tyr(667) revealed that gate perturbation occurred with proximal (I655P-Q664P), but not distal (R665P-Y667P) substitutions, suggesting that Gln(664) marks the position of the intracellular gate in hERG channels. Using voltage-clamp fluorimetry and gating current analysis, we demonstrate that proline substitutions trap the activation gate open by disrupting the coupling between the voltage-sensing unit and the pore of the channel. We characterize voltage sensor movement in one such trapped-open mutant channel and demonstrate the kinetics of what we interpret to be intrinsic hERG voltage sensor movement.


Assuntos
Substituição de Aminoácidos , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Espaço Intracelular/metabolismo , Ativação do Canal Iônico , Prolina , Motivos de Aminoácidos , Animais , Transporte de Elétrons , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Modelos Moleculares , Porosidade , Xenopus/genética
4.
J Biol Chem ; 288(7): 4782-91, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23283979

RESUMO

Protons impart isoform-specific modulation of inactivation in neuronal, skeletal muscle, and cardiac voltage-gated sodium (Na(V)) channels. Although the structural basis of proton block in Na(V) channels has been well described, the amino acid residues responsible for the changes in Na(V) kinetics during extracellular acidosis are as yet unknown. We expressed wild-type (WT) and two pore mutant constructs (H880Q and C373F) of the human cardiac Na(V) channel, Na(V)1.5, in Xenopus oocytes. C373F and H880Q both attenuated proton block, abolished proton modulation of use-dependent inactivation, and altered pH modulation of the steady-state and kinetic parameters of slow inactivation. Additionally, C373F significantly reduced the maximum probability of use-dependent inactivation and slow inactivation, relative to WT. H880Q also significantly reduced the maximum probability of slow inactivation and shifted the voltage dependence of activation and fast inactivation to more positive potentials, relative to WT. These data suggest that Cys-373 and His-880 in Na(V)1.5 are proton sensors for use-dependent and slow inactivation and have implications in isoform-specific modulation of Na(V) channels.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Prótons , Canais de Sódio Disparados por Voltagem/metabolismo , Acidose/metabolismo , Sequência de Aminoácidos , Animais , Arritmias Cardíacas/metabolismo , Eletrofisiologia/métodos , Feminino , Humanos , Isquemia , Dados de Sequência Molecular , Isquemia Miocárdica/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Oócitos/metabolismo , Técnicas de Patch-Clamp , Homologia de Sequência de Aminoácidos , Canais de Sódio , Fatores de Tempo , Xenopus
5.
Pflugers Arch ; 466(10): 1911-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24407947

RESUMO

hERG K(+) channel function is vital for normal cardiac rhythm, yet the mechanisms underlying the unique biophysical characteristics of the channel, such as slow activation and deactivation gating, are incompletely understood. The S4-S5 linker is thought to transduce voltage sensor movement to opening of the pore gate, but may also integrate signals from cytoplasmic domains. Previously, we showed that substitutions of G546 within the S4-S5 linker destabilize the closed state of the channel. Here, we present results of a glycine-scan in the background of 546L. We demonstrate site-specific restoration of WT-like activation which suggests that flexibility in the N-terminal portion of the S4-S5 linker is critical for the voltage dependence of hERG channel activation. In addition, we show that the voltage dependence of deactivation, which was recently shown to be left-shifted from that of activation due to voltage sensor mode-shift, is also modulated by the S4-S5 linker. The G546L mutation greatly attenuated the coupling of voltage sensor mode-shift to the pore gate without altering the mode-shift itself. Indeed, all of the S4-S5 linker mutations tested similarly reduced coupling of the mode-shift to the pore gate. These data demonstrate a key role for S4-S5 linker in the unique activation and deactivation gating of hERG channels. Furthermore, uncoupling of the mode-shift to the pore by S4-S5 linker mutations parallels the effects of mutations in the N-terminus suggestive of functional interactions between the two regions.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico , Sequência de Aminoácidos , Animais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Xenopus
6.
Eur Biophys J ; 43(2-3): 59-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24362825

RESUMO

Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico , Prótons , Potenciais de Ação/efeitos dos fármacos , Animais , Sítios de Ligação , Cádmio/farmacologia , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Concentração de Íons de Hidrogênio , Mutação , Xenopus
7.
Cardiovasc Res ; 119(15): 2522-2535, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37739930

RESUMO

AIMS: Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS: The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION: Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Miócitos Cardíacos , Potenciais de Ação , Éteres , Canal de Potássio ERG1/genética
8.
Am J Physiol Cell Physiol ; 302(12): C1797-806, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22517356

RESUMO

Human ether-a-go-go-related gene (hERG) potassium channels are critical determinants of cardiac repolarization. Loss of function of hERG channels is associated with Long QT Syndrome, arrhythmia, and sudden death. Acidosis occurring as a result of myocardial ischemia inhibits hERG channel function and may cause a predisposition to arrhythmias. Acidic pH inhibits hERG channel maximal conductance and accelerates deactivation, likely by different mechanisms. The mechanism underlying the loss of conductance has not been demonstrated and is the focus of the present study. The data presented demonstrate that, unlike in other voltage-gated potassium (Kv) channels, substitution of individual histidine residues did not abolish the pH dependence of hERG channel conductance. Abolition of inactivation, by the mutation S620T, also did not affect the proton sensitivity of channel conductance. Instead, voltage-dependent channel inhibition (δ = 0.18) indicative of pore block was observed. Consistent with a fast block of the pore, hERG S620T single channel data showed an apparent reduction of the single channel current amplitude at low pH. Furthermore, the effect of protons was relieved by elevating external K(+) or Na(+) and could be modified by charge introduction within the outer pore. Taken together, these data strongly suggest that extracellular protons inhibit hERG maximal conductance by blocking the external channel pore.


Assuntos
Acidose/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico , Miocárdio/metabolismo , Potássio/metabolismo , Animais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Histidina , Humanos , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Mutação , Oócitos , Sódio/metabolismo , Fatores de Tempo , Xenopus laevis
9.
Biophys J ; 99(9): 2841-52, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21044581

RESUMO

Human ether-a-go-go related gene (hERG) channel gating is associated with slow activation, yet the mechanistic basis for this is unclear. Here, we examine the effects of mutation of a unique glycine residue (G546) in the S4-S5 linker on voltage sensor movement and its coupling to pore gating. Substitution of G546 with residues possessing different physicochemical properties shifted activation gating by ∼-50 mV (with the exception of G546C). With the activation shift taken into account, the time constant of activation was also accelerated, suggesting a stabilization of the closed state by ∼1.6-4.3 kcal/mol (the energy equivalent of one to two hydrogen bonds). Predictions of the α-helical content of the S4-S5 linker suggest that the presence of G546 in wild-type hERG provides flexibility to the helix. Deactivation gating was affected differentially by the G546 substitutions. G546V induced a pronounced slow component of closing that was voltage-independent. Fluorescence measurements of voltage sensor movement in G546V revealed a slow component of voltage sensor return that was uncoupled from charge movement, suggesting a direct effect of the mutation on voltage sensor movement. These data suggest that G546 plays a critical role in channel gating and that hERG channel closing involves at least two independently modifiable reconfigurations of the voltage sensor.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/fisiologia , Substituição de Aminoácidos , Animais , Fenômenos Biofísicos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Feminino , Humanos , Ligação de Hidrogênio , Técnicas In Vitro , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Cinética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Oócitos/metabolismo , Fenótipo , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Xenopus laevis
10.
Front Physiol ; 11: 624129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519527

RESUMO

Long-QT Syndrome (LQTS) is a cardiac electrical disorder, distinguished by irregular heart rates and sudden death. Accounting for ∼40% of cases, LQTS Type 2 (LQTS2), is caused by defects in the Kv11.1 (hERG) potassium channel that is critical for cardiac repolarization. Drug block of hERG channels or dysfunctional channel variants can result in acquired or inherited LQTS2, respectively, which are typified by delayed repolarization and predisposition to lethal arrhythmia. As such, there is significant interest in clear identification of drugs and channel variants that produce clinically meaningful perturbation of hERG channel function. While toxicological screening of hERG channels, and phenotypic assessment of inherited channel variants in heterologous systems is now commonplace, affordable, efficient, and insightful whole organ models for acquired and inherited LQTS2 are lacking. Recent work has shown that zebrafish provide a viable in vivo or whole organ model of cardiac electrophysiology. Characterization of cardiac ion currents and toxicological screening work in intact embryos, as well as adult whole hearts, has demonstrated the utility of the zebrafish model to contribute to the development of therapeutics that lack hERG-blocking off-target effects. Moreover, forward and reverse genetic approaches show zebrafish as a tractable model in which LQTS2 can be studied. With the development of new tools and technologies, zebrafish lines carrying precise channel variants associated with LQTS2 have recently begun to be generated and explored. In this review, we discuss the present knowledge and questions raised related to the use of zebrafish as models of acquired and inherited LQTS2. We focus discussion, in particular, on developments in precise gene-editing approaches in zebrafish to create whole heart inherited LQTS2 models and evidence that zebrafish hearts can be used to study arrhythmogenicity and to identify potential anti-arrhythmic compounds.

11.
J Gen Physiol ; 151(2): 231-246, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30530765

RESUMO

hERG channels underlie the delayed-rectifier K+ channel current (IKr), which is crucial for membrane repolarization and therefore termination of the cardiac action potential. hERG channels display unusually slow deactivation gating, which contributes to a resurgent current upon repolarization and may protect against post-depolarization-induced arrhythmias. hERG channels also exhibit robust mode shift behavior, which reflects the energetic separation of activation and deactivation pathways due to voltage sensor relaxation into a stable activated state. The mechanism of relaxation is unknown and likely contributes to slow hERG channel deactivation. Here, we use extracellular acidification to probe the structural determinants of voltage sensor relaxation and its influence on the deactivation gating pathway. Using gating current recordings and voltage clamp fluorimetry measurements of voltage sensor domain dynamics, we show that voltage sensor relaxation is destabilized at pH 6.5, causing an ∼20-mV shift in the voltage dependence of deactivation. We show that the pH dependence of the resultant loss of mode shift behavior is similar to that of the deactivation kinetics acceleration, suggesting that voltage sensor relaxation correlates with slower pore gate closure. Neutralization of D509 in S3 also destabilizes the relaxed state of the voltage sensor, mimicking the effect of protons, suggesting that acidic residues on S3, which act as countercharges to S4 basic residues, are involved in stabilizing the relaxed state and slowing deactivation kinetics. Our findings identify the mechanistic determinants of voltage sensor relaxation and define the long-sought mechanism by which protons accelerate hERG deactivation.


Assuntos
Canal de Potássio ERG1/química , Ativação do Canal Iônico , Prótons , Animais , Canal de Potássio ERG1/metabolismo , Humanos , Potenciais da Membrana , Domínios Proteicos , Xenopus
12.
J Gen Physiol ; 142(3): 289-303, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23980197

RESUMO

Human ether-à-go-go-related gene (hERG, Kv11.1) potassium channels have unusually slow activation and deactivation kinetics. It has been suggested that, in fast-activating Shaker channels, a highly conserved Phe residue (F290) in the S2 segment forms a putative gating charge transfer center that interacts with S4 gating charges, i.e., R362 (R1) and K374 (K5), and catalyzes their movement across the focused electric field. F290 is conserved in hERG (F463), but the relevant residues in the hERG S4 are reversed, i.e., K525 (K1) and R537 (R5), and there is an extra positive charge adjacent to R537 (i.e., K538). We have examined whether hERG channels possess a transfer center similar to that described in Shaker and if these S4 charge differences contribute to slow gating in hERG channels. Of five hERG F463 hydrophobic substitutions tested, F463W and F463Y shifted the conductance-voltage (G-V) relationship to more depolarized potentials and dramatically slowed channel activation. With the S4 residue reversals (i.e., K525, R537) taken into account, the closed state stabilization by F463W is consistent with a role for F463 that is similar to that described for F290 in Shaker. As predicted from results with Shaker, the hERG K525R mutation destabilized the closed state. However, hERG R537K did not stabilize the open state as predicted. Instead, we found the neighboring K538 residue to be critical for open state stabilization, as K538R dramatically slowed and right-shifted the voltage dependence of activation. Finally, double mutant cycle analysis on the G-V curves of F463W/K525R and F463W/K538R double mutations suggests that F463 forms functional interactions with K525 and K538 in the S4 segment. Collectively, these data suggest a role for F463 in mediating closed-open equilibria, similar to that proposed for F290 in Shaker channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Ativação do Canal Iônico , Sequência de Aminoácidos , Animais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Eletricidade Estática , Xenopus
13.
Front Pharmacol ; 3: 83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22586397

RESUMO

The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

14.
J Physiol ; 568(Pt 3): 749-66, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16109731

RESUMO

Inward rectification is caused by voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines such as spermine. In the present study, we compared inward rectification in the Kir3.1/Kir3.4 channel, which underlies the cardiac current I(K,ACh), and the Kir2.1 channel, which underlies the cardiac current I(K,1). Sustained outward current at potentials positive to the K+ reversal potential was observed through Kir3.1/Kir3.4, but not Kir2.1, demonstrating that Kir3.1/Kir3.4 exhibits weaker inward rectification than Kir2.1. We show that Kir3.1/Kir3.4 is more sensitive to extracellular spermine block than Kir2.1, and that intracellular and extracellular polyamines can permeate Kir3.1/Kir3.4, but not Kir2.1, to a limited extent. We describe a simple kinetic model in which polyamines act as permeant blockers of Kir3.1/Kir3.4, but as relatively impermeant blockers of Kir2.1. The model shows the difference in sensitivity to extracellular spermine block, as well as the difference in the extent of inward rectification between the two channels. This suggests that Kir3.1/Kir3.4 exhibits weaker inward rectification than Kir2.1 because of the difference in the balance of polyamine block and permeation of the two channels.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Oócitos/fisiologia , Poliaminas/farmacocinética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Células CHO , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Cricetinae , Cricetulus , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/efeitos dos fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Espermina/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA