Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am J Transplant ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734417

RESUMO

The strategy for progressive multifocal leukoencephalopathy (PML) in solid organ transplant recipients primarily focuses on reducing immunosuppressive therapy. However, this approach offers limited efficacy and carries a high risk of graft loss. Here, we present the case of a 64-year-old male kidney transplant recipient with a high degree of immunosuppression who developed PML in October 2022. Despite the standard reduction of immunosuppressive therapy, the patient's condition continued to deteriorate, as evidenced by worsening neurological symptoms and increasing JC virus (JCV) DNA levels in cerebrospinal fluid. This prompted the innovative use of BKPyV-virus-specific T cell (BKPyV-VST) therapy, given the genetic similarities between BK and JCVs. Infusion of third-party donor BKPyV-VST resulted in clinical stabilization, a significant reduction in JCV-DNA levels, and the emergence of a JCV-specific T cell response, as observed in enzyme-linked immunospot assays and TCRß sequencing. This represents the first case report of successful third-party BKPyV-VST therapy in a kidney recipient presenting PML, without graft-versus-host disease or graft dysfunction.

2.
Cytotherapy ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715777

RESUMO

BACKGROUND AIMS: The increasing demand of clinical-grade mesenchymal stromal cells (MSCs) for use in advanced therapy medicinal products (ATMPs) require a re-evaluation of manufacturing strategies, ensuring scalability from two-dimensional (2D) surfaces to volumetric (3D) productivities. Herein we describe the design and validation of a Good Manufacturing Practice-compliant 3D culture methodology using microcarriers and 3-L single-use stirred tank bioreactors (STRs) for the expansion of Wharton's jelly (WJ)-derived MSCs in accordance to current regulatory and quality requirements. METHODS: MSC,WJ were successfully expanded in 3D and final product characterization was in conformity with Critical Quality Attributes and product specifications previously established for 2D expansion conditions. RESULTS: After 6 days of culture, cell yields in the final product from the 3D cultures (mean 9.48 × 108 ± 1.07 × 107 cells) were slightly lower but comparable with those obtained from 2D surfaces (mean 9.73 × 108 ± 2.36 × 108 cells) after 8 days. In all analyzed batches, viability was >90%. Immunophenotype of MSC,WJ was highly positive for CD90 and CD73 markers and lacked of expression of CD31, CD45 and HLA-DR. Compared with 2D expansions, CD105 was detected at lower levels in 3D cultures due to the harvesting procedure from microcarriers involving trypsin at high concentration, and this had no impact on multipotency. Cells presented normal karyotype and strong immunomodulatory potential in vitro. Sterility, Mycoplasma, endotoxin and adventitious virus were negative in both batches produced. CONCLUSIONS: In summary, we demonstrated the establishment of a feasible and reproducible 3D bioprocess using single-use STR for clinical-grade MSC,WJ production and provide evidence supporting comparability of 3D versus 2D production strategies. This comparability exercise evaluates the direct implementation of using single-use STR for the scale-up production of MSC,WJ and, by extension, other cell types intended for allogeneic therapies.

3.
Cytotherapy ; 23(2): 146-156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32981857

RESUMO

BACKGROUND AIMS: Spinal cord injury (SCI) represents a devastating condition leading to severe disability related to motor, sensory and autonomic dysfunction. Stem cell transplantation is considered a potential emerging therapy to stimulate neuroplastic and neuroregenerative processes after SCI. In this clinical trial, the authors investigated the safety and clinical recovery effects of intrathecal infusion of expanded Wharton jelly mesenchymal stromal cells (WJ-MSCs) in chronic complete SCI patients. METHODS: The authors designed a randomized, double-blind, crossover, placebo-controlled, phase 1/2a clinical trial (NCT03003364). Participants were 10 patients (7 males, 3 females, age range, 25-47 years) with chronic complete SCI (American Spinal Injury Association A) at dorsal level (T3-11). Patients were randomly assigned to receive a single dose of intrathecal ex vivo-expanded WJ-MSCs (10 × 106 cells) from human umbilical cord or placebo and were then switched to the other arm at 6 months. Clinical evaluation (American Spinal Injury Association impairment scale motor and sensory score, spasticity, neuropathic pain, electrical perception and pain thresholds), lower limb motor evoked potentials (MEPs) and sensory evoked potentials (SEPs), Spinal Cord Independence Measure and World Health Organization Quality of Life Brief Version were assessed at baseline, 1 month, 3 months and 6 months after each intervention. Urodynamic studies and urinary-specific quality of life (Qualiveen questionnaire) as well as anorectal manometry, functional assessment of bowel dysfunction (Rome III diagnostic questionnaire) and severity of fecal incontinence (Wexner score) were conducted at baseline and at 6 months after each intervention. RESULTS: Intrathecal transplantation of WJ-MSCs was considered safe, with no significant side effects. Following MSC infusion, the authors found significant improvement in pinprick sensation in the dermatomes below the level of injury compared with placebo. Other clinically relevant effects, such as an increase in bladder maximum capacity and compliance and a decrease in bladder neurogenic hyperactivity and external sphincter dyssynergy, were observed only at the individual level. No changes in motor function, spasticity, MEPs, SEPs, bowel function, quality of life or independence measures were observed. CONCLUSIONS: Intrathecal transplantation of human umbilical cord-derived WJ-MSCs is a safe intervention. A single intrathecal infusion of WJ-MSCs in patients with chronic complete SCI induced sensory improvement in the segments adjacent to the injury site.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Geleia de Wharton , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Traumatismos da Medula Espinal/terapia
4.
Cytotherapy ; 22(1): 44-51, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883947

RESUMO

BACKGROUND AIMS: In 2016, specifications for both pre-cryopreserved and post-thawed cord blood were defined in the sixth edition of NetCord Foundation for the Accreditation of Cellular Therapy (FACT) Standards for Cord Blood Banks. However, for several experts, harmonization regarding flow cytometry analysis performed on post-thawed samples is still a concern. A multicenter study led by Héma-Québec aimed to provide scientific data to support the cord blood accreditation bodies such as NetCord FACT in the revision of standards. METHODS: Twelve cord blood units were processed for plasma and red cell reduction following standard operating procedures. Cord blood unit aliquots were shipped to eight participating centers under cryogenic conditions for analysis before and after standardization of protocol. Repeatability of stem cell count, measured pre- and post-intervention with the centers, was estimated using multilevel linear regression models with a heterogeneous compound symmetry correlation structure among repeated measures. RESULTS: Excellent inter-center repeatability was reported by each participant regarding the viable CD34+ cells concentration, and a successful improvement effect of protocol standardization was also observed. However, we observed that better control over the critical parameters of the protocol did not have a significant effect on improving homogeneity in the enumeration of CD45+ cells. CONCLUSIONS: The current practice in cord blood selection should now also consider relying on post-thaw CD34+ concentration, providing that all cord blood banks or outsourcing laboratories in charge of the analysis of post-thaw CB samples take into account the consensual recommendations provided in this work and adhere to a good-quality management system.


Assuntos
Antígenos CD34/análise , Preservação de Sangue/métodos , Sangue Fetal/citologia , Antígenos Comuns de Leucócito/análise , Células-Tronco/citologia , Bioensaio , Armazenamento de Sangue/métodos , Contagem de Células , Ensaio de Unidades Formadoras de Colônias , Criopreservação/métodos , Citometria de Fluxo/métodos , Humanos
5.
Cytotherapy ; 21(1): 32-40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447901

RESUMO

BACKGROUND AIMS: Multipotent mesenchymal stromal cell (MSC)-based medicines are extensively investigated for use in regenerative medicine and immunotherapy applications. The International Society for Cell and Gene Therapy (ISCT) proposed a panel of cell surface molecules for MSC identification that includes human leukocyte antigen (HLA)-DR as a negative marker. However, its expression is largely unpredictable despite production under tightly controlled conditions and compliance with current Good Manufacturing Practices. Herein, we report the frequency of HLA-DR expression in 81 batches of clinical grade bone marrow (BM)-derived MSCs and investigated its impact on cell attributes and culture environment. METHODS: The levels of 15 cytokines (interleukin [IL]-1ß, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, interferon-γ, soluble CD40 ligand and tumor necrosis factor-α) were determined in sera supplements and supernatants of BM-MSC cultures. Identity, multipotentiality and immunopotency assays were performed on high (>20% of cells) and low (≤20% of cells) HLA-DR+ cultures. RESULTS: A correlation was found between HLA-DR expression and levels of IL-17F and IL-33. Expression of HLA-DR did neither affect MSC identity, in vitro tri-lineage differentiation potential (into osteogenic, chondrogenic and adipogenic lineages), nor their ability to inhibit the proliferation of stimulated lymphocytes. DISCUSSION: Out of 81 batches of BM-MSCs for autologous use analyzed, only three batches would have passed the ISCT criteria (<2%), whereas 60.5% of batches were compliant with low HLA-DR values (≤20%). Although a cause-effect relationship cannot be drawn, we have provided a better understanding of signaling events and cellular responses in expansion culture conditions relating with HLA-DR expression.


Assuntos
Antígenos HLA-DR/imunologia , Interleucina-17/sangue , Interleucina-33/sangue , Células-Tronco Mesenquimais/imunologia , Cultura Primária de Células/métodos , Adipogenia , Biomarcadores/metabolismo , Medula Óssea/imunologia , Diferenciação Celular/fisiologia , Células Cultivadas , Condrogênese , Humanos , Ativação Linfocitária , Transplante de Células-Tronco Mesenquimais , Osteogênese
6.
Pediatr Transplant ; 23(8): e13584, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31556188

RESUMO

Cytomegalovirus encephalitis is a challenging life-threatening complication following hematopoietic stem cell transplantation for which medical treatment is usually ineffective or toxic. However, in recent years, adoptive T-cell therapy has been reported to provide a significant chance of cure for patients with viral infections. Herein, two cases of pediatric patients successfully treated with third-party donor-derived virus-specific T cells for CMV meningoencephalitis are reported.


Assuntos
Infecções por Citomegalovirus/terapia , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Meningoencefalite/terapia , Meningoencefalite/virologia , Complicações Pós-Operatórias/terapia , Complicações Pós-Operatórias/virologia , Criança , Feminino , Humanos , Lactente , Masculino , Indução de Remissão
7.
Cytotherapy ; 19(9): 1060-1069, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28734679

RESUMO

BACKGROUND AIMS: Biodistribution of candidate cell-based therapeutics is a critical safety concern that must be addressed in the preclinical development program. We aimed to design a decision tree based on a series of studies included in actual dossiers approved by competent regulatory authorities, noting that the design, execution and interpretation of pharmacokinetics studies using this type of therapy is not straightforward and presents a challenge for both developers and regulators. METHODS: Eight studies were evaluated for the definition of a decision tree, in which mesenchymal stromal cells (MSCs) were administered to mouse, rat and sheep models using diverse routes (local or systemic), cell labeling (chemical or genetic) and detection methodologies (polymerase chain reaction [PCR], immunohistochemistry [IHC], fluorescence bioimaging, and magnetic resonance imaging [MRI]). Moreover, labeling and detection methodologies were compared in terms of cost, throughput, speed, sensitivity and specificity. RESULTS: A decision tree was defined based on the model chosen: (i) small immunodeficient animals receiving heterologous MSC products for assessing biodistribution and other safety aspects and (ii) large animals receiving homologous labeled products; this contributed to gathering data not only on biodistribution but also on pharmacodynamics. PCR emerged as the most convenient technique despite the loss of spatial information on cell distribution that can be further assessed by IHC. DISCUSSION: This work contributes to the standardization in the design of biodistribution studies by improving methods for accurate assessment of safety. The evaluation of different animal models and screening of target organs through a combination of techniques is a cost-effective and timely strategy.


Assuntos
Algoritmos , Técnicas de Apoio para a Decisão , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Imuno-Histoquímica/métodos , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/fisiologia , Camundongos , Reação em Cadeia da Polimerase/métodos , Ratos , Projetos de Pesquisa , Ovinos
8.
Cytotherapy ; 18(9): 1197-208, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27424149

RESUMO

BACKGROUND: Multipotent mesenchymal stromal cells (MSC) have achieved a notable prominence in the field of regenerative medicine, despite the lack of common standards in the production processes and suitable quality controls compatible with Good Manufacturing Practice (GMP). Herein we describe the design of a bioprocess for bone marrow (BM)-derived MSC isolation and expansion, its validation and production of 48 consecutive batches for clinical use. METHODS: BM samples were collected from the iliac crest of patients for autologous therapy. Manufacturing procedures included: (i) isolation of nucleated cells (NC) by automated density-gradient centrifugation and plating; (ii) trypsinization and expansion of secondary cultures; and (iii) harvest and formulation of a suspension containing 40 ± 10 × 10(6) viable cells. Quality controls were defined as: (i) cell count and viability assessment; (ii) immunophenotype; and (iii) sterility tests, Mycoplasma detection, endotoxin test and Gram staining. RESULTS: A 3-week manufacturing bioprocess was first designed and then validated in 3 consecutive mock productions, prior to producing 48 batches of BM-MSC for clinical use. Validation included the assessment of MSC identity and genetic stability. Regarding production, 139.0 ± 17.8 mL of BM containing 2.53 ± 0.92 × 10(9) viable NC were used as starting material, yielding 38.8 ± 5.3 × 10(6) viable cells in the final product. Surface antigen expression was consistent with the expected phenotype for MSC, displaying high levels of CD73, CD90 and CD105, lack of expression of CD31 and CD45 and low levels of HLA-DR. Tests for sterility, Mycoplasma, Gram staining and endotoxin had negative results in all cases. DISCUSSION: Herein we demonstrated the establishment of a feasible, consistent and reproducible bioprocess for the production of safe BM-derived MSC for clinical use.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Animais , Técnicas de Cultura de Células/normas , Feminino , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos NOD , Controle de Qualidade
9.
Injury ; 55(7): 111596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797000

RESUMO

BACKGROUND: Atrophic pseudoarthrosis is a serious complication with an incidence of 5-10 % of bone fractures located in the diaphysis of long bones. Standard treatments involve aggressive surgical procedures and re-interventions requiring the use of autografts from the iliac crest as a source of bone-forming biological activity (Standard of Care, SoC). In this context, regenerative ex vivo expanded osteogenic cell-based medicines could be of interest. Particularly, Mesenchymal Stromal Cells (MSC) offer new prospects to promote bone tissue repair in pseudoarthrosis by providing biological activity in an osteoconductive and osteoinductive environment. METHODS: We conducted a phase IIa, prospective, randomised, parallel, two-arms, open-label with blinded assessor pilot clinical trial to compare SoC vs. a tissue-engineered product (TEP), composed of autologous bone marrow (BM)-derived MSCs loaded onto allogeneic decellularised, lyophilised spongy bone cubes, in a cohort of 20 patients with non-hypertrophic pseudoarthrosis of long bones. Patients were followed up for 12 months. Radiological bone healing was evaluated by standard X-ray and computed tomography (CT) scanning. Quality of life was measured using the EUROQOL-5D questionnaire. RESULTS: Ten patients were randomized to TEP and 10 to SoC with iliac crest autograft. Manufacturing of TEP was feasible and reproducibly achieved. TEP implantation in the bone defect was successful in all cases and none of the 36 adverse events (AE) reported were related to the treatment. Efficacy analyses were performed in the Full Analysis Set (FAS) population, which included 17 patients after 3 patients withdrew from the study. The degree of consolidation, estimated by measuring Hounsfield units (HU) on CT, showed no significant differences between the two treatment groups at 12 months post treatment (main efficacy variable) (p = 0.4835) or at 6 months. CONCLUSIONS: Although only a small number of patients were included in our study, it is notable that no significant differences were observed between the experimental treatment and SoC, thus suggesting TEP as an alternative where autograft is not available or contraindicated.


Assuntos
Ílio , Transplante de Células-Tronco Mesenquimais , Pseudoartrose , Engenharia Tecidual , Transplante Autólogo , Humanos , Pseudoartrose/cirurgia , Masculino , Feminino , Projetos Piloto , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Ílio/transplante , Engenharia Tecidual/métodos , Resultado do Tratamento , Adulto , Células-Tronco Mesenquimais , Idoso , Transplante Ósseo/métodos , Qualidade de Vida , Autoenxertos
10.
Immunol Res ; 71(5): 725-734, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37120479

RESUMO

Multipotent mesenchymal stromal cells (MSC) offer new therapeutic opportunities based on their ability to modulate an imbalanced immune system. Immunomodulatory potency is typically demonstrated in vitro by measuring the presence of surrogate markers (i.e., indoleamine-2,3-dioxygenase, IDO; tumor necrosis factor receptor type 1, TNFR1) and/or functional assays in co-cultures (i.e., inhibition of lymphoproliferation, polarization of macrophages). However, the biological variability of reagents used in the latter type of assays leads to unreliable and difficult to reproduce data therefore making cross-comparison between batches difficult, both at the intra- and inter-laboratory levels. Herein, we describe a set of experiments aiming at the definition and validation of reliable biological reagents as a first step towards standardization of a potency assay. This approach is based on the co-culture of Wharton's jelly (WJ)-derived MSC and cryopreserved pooled peripheral blood mononuclear cells. Altogether, we successfully defined a robust and reproducible immunopotency assay based on previously described methods incorporating substantial improvements such as cryopreservation of multiple vials of pooled peripheral blood mononuclear cells (PBMC) from 5 individual donors that enable a number of tests with same reagents, also reducing waste of PBMC from individual donors and therefore contributing to a more efficient and ethical method to use substances of human origin (SoHO). The new methodology was successfully validated using 11 batches of clinical grade MSC,WJ. Methods described here contribute to minimize PBMC donor variability while reducing costs, streamlining assay setup and convenience and laying the foundations for harmonization of biological reagents usage in standardized immunopotency assays for MSC. HIGHLIGHTS: • The use of pools of peripheral blood mononuclear cells (PBMCs) in potency assays contributes to robust and reproducible results, which is key in the assessment of mesenchymal stroma cells (MSC) potency for batch release. • Cryopreservation of PBMCs does not impact negatively on their activation and proliferation abilities. • Cryopreserved pools of PBMC constitutes convenient off-the-shelf reagents for potency assays. • Cryopreservation of pooled PBMCs from multiple donors is a way to reduce waste of donated PBMC and its associated costs, as well as reducing the impact of individual donor variability of substances of human origin (SoHO).


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Leucócitos Mononucleares , Proliferação de Células , Técnicas de Cocultura , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Diferenciação Celular
11.
Blood Transfus ; 21(6): 526-537, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37146297

RESUMO

BACKGROUND: Most public cord blood (CB) banks currently discard more than 80% of umbilical CB units not suitable for hemopoietic stem cell transplant due to low stem cell count. Although CB platelets, plasma, and red blood cells have been used for experimental allogeneic applications in wound healing, corneal ulcer treatment, and neonatal transfusion, no standard procedures for their preparation have been defined internationally. MATERIALS AND METHODS: A network of 12 public CB banks in Spain, Italy, Greece, the UK, and Singapore developed a protocol to validate a procedure for the routine production of CB platelet concentrate (CB-PC), CB platelet-poor plasma (CB-PPP), and CB leukoreduced red blood cells (CB-LR-RBC) using locally available equipment and the commercial BioNest ABC and EF medical devices. CB units with >50 mL volume (excluding anticoagulant) and ≥150×109/L platelets were double centrifuged to obtain CB-PC, CB-PPP, and CB-RBC. The CB-RBC were diluted with saline-adenine-glucose-mannitol (SAGM), leukoreduced by filtration, stored at 2-6°C, and tested for hemolysis and potassium (K+) release over 15 days, with gamma irradiation performed on day 14. A set of acceptance criteria was pre-defined. This was for CB-PC: volume ≥5 mL and platelet count 800-1,200×109/L; for CB-PPP: platelet count <50×109/L; and for CB-LR-RBC: volume ≥20 mL, hematocrit 55-65%, residual leukocytes <0.2×106/unit, and hemolysis ≤0.8%. RESULTS: Eight CB banks completed the validation exercise. Compliance with acceptance criteria was 99% for minimum volume and 86.1% for platelet count in CB-PC, and 90% for platelet count in CB-PPP. Compliance in CB-LR-RBC was 85.7% for minimum volume, 98.9% for residual leukocytes, and 90% for hematocrit. Compliance for hemolysis ≤0.8% decreased from 89.0 to 63.2% from day 0 to 15. K+ release increased from 3.0±1.8 to 25.0±7.0 mmol/L from day 0 to 15, respectively. DISCUSSION: The MultiCord12 protocol was a useful tool to develop preliminary standardization of CB-PC, CB-PPP, and CB-LR-RBC.


Assuntos
Armazenamento de Sangue , Hemólise , Recém-Nascido , Humanos , Eritrócitos , Bancos de Sangue , Plaquetas
12.
Stem Cell Res Ther ; 13(1): 408, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962457

RESUMO

BACKGROUND: The increasing number of clinical trials for induced pluripotent stem cell (iPSC)-derived cell therapy products makes the production on clinical grade iPSC more and more relevant and necessary. Cord blood banks are an ideal source of young, HLA-typed and virus screened starting material to produce HLA-homozygous iPSC lines for wide immune-compatibility allogenic cell therapy approaches. The production of such clinical grade iPSC lines (haplolines) involves particular attention to all steps since donor informed consent, cell procurement and a GMP-compliant cell isolation process. METHODS: Homozygous cord blood units were identified and quality verified before recontacting donors for informed consent. CD34+ cells were purified from the mononuclear fraction isolated in a cell processor, by magnetic microbeads labelling and separation columns. RESULTS: We obtained a median recovery of 20.0% of the collected pre-freezing CD34+, with a final product median viability of 99.1% and median purity of 83.5% of the post-thawed purified CD34+ population. CONCLUSIONS: Here we describe our own experience, from unit selection and donor reconsenting, in generating a CD34+ cell product as a starting material to produce HLA-homozygous iPSC following a cost-effective and clinical grade-compliant procedure. These CD34+ cells are the basis for the Spanish bank of haplolines envisioned to serve as a source of cell products for clinical research and therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Antígenos CD34/genética , Antígenos CD34/metabolismo , Bancos de Sangue , Sangue Fetal , Homozigoto , Células-Tronco Pluripotentes Induzidas/metabolismo
13.
Bone Marrow Transplant ; 57(10): 1531-1538, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35804055

RESUMO

Cryopreservation was recommended to ensure continuity in allogeneic hematopoietic progenitor cells (HPC) transplantation during the COVID-19 pandemic. Several groups have shown no impact on clinical outcomes for patients who underwent HPC transplantation with cryopreserved products during the first months of this pandemic. However, concerns about quality control attributes after cryopreservation have been raised. We investigated, in 155 allogeneic peripheral blood cryopreserved HPC, leukocytapheresis characteristics influencing viable CD34+ and CD3+ cells, and CFU-GM recoveries after thawing. Collection characteristics such as volume, nucleated cells (NC)/mL and hematocrit correlated with viable CD34+ and CD3+ cells recoveries after thawing in univariate analysis but only CD3+ cells remained statistically significant in multivariate analysis (r2 = 0.376; P = < 0.001). Additionally, transit time also showed correlation with viable CD34+ (r2 = 0.186), CD3+ (r2 = 0.376) and CFU-GM recoveries (r2 = 0.212) in multivariate analysis. Thus, diluting leukocytapheresis below 200 × 106 NC/mL, avoiding red cells contamination above 2%, cryopreserving below 250 × 106 NC/mL and minimizing transit time below 36 h, prevented poor viable CD34+ and CD3+ cells, and CFU-GM recoveries. In summary, optimizing leukocytapheresis practices and minimizing transportation time may better preserve the quality attributes of HPC when cryopreservation is indicated.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Antígenos CD34/análise , Sobrevivência Celular , Criopreservação , Células-Tronco Hematopoéticas , Humanos , Leucaférese , Pandemias
14.
Bone Marrow Transplant ; 56(10): 2489-2496, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34127808

RESUMO

Cryopreservation was recommended to ensure continuity of unrelated donor (UD) hematopoietic stem cell transplantation (HSCT) during COVID-19 pandemic. However, its impact on clinical outcomes and feasibility was not well known. We compared 32 patients who underwent UD HSCT using cryopreserved peripheral blood stem cells (PBSC) during the COVID-19 pandemic with 32 patients who underwent UD HSCT using fresh PBSC in the previous period. Median neutrophil engraftment was 17.5 and 17.0 days with cryopreserved and fresh grafts, respectively. Non-significant delays were found in platelet recovery days (25.5 versus 19.0; P = 0.192) and full donor chimerism days (35.0 and 31.5; P = 0.872) using cryopreserved PBSC. The rate of acute graft-versus-host disease at 100 days was 41% (95% CI [21-55%]) in cryopreserved group versus 31% (95% CI [13-46%]) in fresh group (P = 0.380). One-hundred days progression-relapse free survival and overall survival did not differ significantly. During COVID-19 pandemic, six frozen UD donations were not transfused and logistical and clinical issues regarding cryopreservation procedure, packaging, and transporting appeared. In summary, UD HSCT with cryopreserved PBSC was safe during this challenging time. More efforts are needed to ensure that all frozen grafts are transplanted and cryopreservation requirements are harmonized.


Assuntos
COVID-19 , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Criopreservação , Células-Tronco Hematopoéticas , Humanos , Pandemias , SARS-CoV-2 , Doadores não Relacionados
15.
Blood Transfus ; 18(3): 208-216, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32281925

RESUMO

BACKGROUND: There are many advantages to using cord blood (CB) as a source of therapeutic platelet and plasma derivatives for regenerative medicine. These include availability, universal use, young donor source, and virally safe biological material, rich in tissue regenerative factors. MATERIALS AND METHODS: We aimed to validate a bioprocess design for the production of cord blood-derived platelet concentrates (CBPC) in a public Cord Blood Bank (CBB). CBPC was defined as a product of 10±5 mL, 1,000±200×109/L total platelets, free of erythrocytes and leukocytes. A total of 300 CB units were centrifuged in two steps to enrich for platelets, in compliance with Good Manufacturing Practice. The samples were tested for the degree of platelet activation present, and the levels of growth factor were analysed to evaluate their potential function. CBPC were then activated after thawing with 10% calcium gluconate to generate platelet gels (CBPG) to treat patients with diabetic foot ulcers. RESULTS: After processing, 84% of the products fulfilled the acceptance criteria. Final products contained 1,017±149×106 platelets/mL in 10±3mL of plasma. Platelet recovery was 50±9%. The methods described here ensure depletion of white and red blood cells down to a residual concentration of 0.2±0.1×106/mL and 0.03±0.02×106/mL, respectively. Platelets showed low levels of activation during processing, but were significantly activated after thawing, as indicated by an increase in CD62p expression. The growth factors EGF, VEGF, bFGF, PDGF AB/BB and TGF-ß1 were at concentrations of 1,706±123 pg/mL; 1,602±227 pg/mL; 314±26 pg/mL; 30±1.5 ng/mL; 24±2 ng/mL (mean±standard error of mean), respectively. For clinical evaluation, a total of 21 CBPG were applied in 3 patients, with no reported adverse events and improvement of ulcers in all of them. DISCUSSION: We designed and validated a highly reproducible, closed system method to manufacture high quality CBPC suitable for clinical applications using CB units not suitable for transplantation in a public CBB.


Assuntos
Bancos de Sangue , Sangue Fetal/química , Fator de Crescimento Derivado de Plaquetas/química , Plasma Rico em Plaquetas/química , Fator de Crescimento Transformador beta1/química , Plaquetas , Pé Diabético/tratamento farmacológico , Humanos
16.
Spine J ; 20(12): 1899-1910, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32730985

RESUMO

BACKGROUND CONTEXT: Although autogenous iliac crest bone graft (AICBG) is considered the gold-standard graft material for spinal fusion, new bone substitutes are being developed to avoid associated complications and disadvantages. By combining autologous bone marrow mesenchymal stromal cells (MSCs) expanded ex vivo and allogenic cancellous bone graft, we obtain a tissue-engineered product that is osteoconductive and potentially more osteogenic and osteoinductive than AICBG, owing to the higher concentration of MSCs. PURPOSE: This study aimed to evaluate the feasibility and safety of implanting a tissue-engineered product consisting of expanded bone marrow MSCs loaded onto allograft bone (MSC+allograft) for spinal fusion in degenerative spine disease, as well as to assess its clinical and radiological efficacy. STUDY DESIGN/SETTING: A prospective, multicenter, open-label, blinded-reader, randomized, parallel, single-dose phase I-II clinical trial. PATIENT SAMPLE: A total of 73 adult patients from 5 hospitals, with Meyerding grade I-II L4-L5 degenerative spondylolisthesis and/or with L4-L5 degenerative disc disease who underwent spinal fusion through transforaminal lumbar interbody fusion (TLIF). OUTCOME MEASURES: Spinal fusion was assessed by plain X-ray at 3, 6, and 12 months and by computed tomography (CT) at 6 and 12 months post-treatment. An independent radiologist performed blinded assessments of all images. Clinical outcomes were measured as change from baseline value: visual analog scale for lumbar and sciatic pain at 12 days, 3, 6, and 12 months posttreatment, and Oswestry Disability Index and Short Form-36 at 3, 6, and 12 months posttreatment. METHODS: Patients who underwent L4-L5 TLIF were randomized for posterior graft type only, and received either MSC+allograft (the tissue-engineered product, group A) or AICBG (standard graft material, group B). Standard graft material was used for anterior fusion in all patients. Feasibility was measured primarily as the percentage of randomized patients who underwent surgery in each treatment group. Safety was assessed by analyzing treatment-emergent adverse events (AEs) for the full experimental phase and appraising their relationship to the experimental treatment. Outcome measures, both radiological and clinical, were compared between the groups. RESULTS: Seventy-three patients were randomized in this study, 36 from the MSC+allograft group and 37 from the AICBG group, and 65 were surgically treated (31 group A, 34 group B). Demographic and comorbidity data showed no difference between groups. Most patients were diagnosed with grade I or II degenerative spondylolisthesis. MSC+allograft was successfully implanted in 86.1% of randomized group A patients. Most patients suffered treatment-emergent AEs during the study (88.2% in group A and 97.1% in group B), none related to the experimental treatment. X-ray-based rates of posterior spinal fusion were significantly higher for the experimental group at 6 months (p=.012) and 12 months (p=.0003). CT-based posterior fusion rates were significantly higher for MSC+allograft at 6 months (92.3% vs 45.7%; p=.0001) and higher, but not significantly, at 12 months (76.5% vs 65.7%; p=.073). CT-based complete response (defined as the presence of both posterior intertransverse fusion and anterior interbody fusion) was significantly higher at 6 months for MSC+allograft than for AICBG (70.6% vs 40%; p=.0038), and remained so at 12 months (70.6% vs 51.4%; p=.023). Clinical results including patient-reported outcomes improved postsurgery, although there were no differences between groups. CONCLUSIONS: Compared with the current gold standard, our experimental treatment achieved a higher rate of posterior spinal fusion and radiographic complete response to treatment at 6 and 12 months after surgery. The treatment clearly improved patient quality of life and decreased pain and disability at rates similar to those for the control arm. The safety profile of the tissue-engineered product was also similar to that for the standard material, and no AEs were linked to the product. Procedural AEs did not increase as a result of BM aspiration. The use of expanded bone marrow MSCs combined with cancellous allograft is a feasible and effective technique for spinal fusion, with no product-related AEs found in our study.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Fusão Vertebral , Medula Óssea , Humanos , Ílio , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Prospectivos , Qualidade de Vida , Fusão Vertebral/efeitos adversos , Resultado do Tratamento
17.
Cells ; 8(5)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117301

RESUMO

BACKGROUND: The selection of assays suitable for testing the potency of clinical grade multipotent mesenchymal stromal cell (MSC)-based products and its interpretation is a challenge for both developers and regulators. Here, we present a bioprocess design for the production of Wharton's jelly (WJ)-derived MSCs and a validated immunopotency assay approved by the competent regulatory authority for batch release together with the study of failure modes in the bioprocess with potential impact on critical quality attributes (CQA) of the final product. Methods: The lymphocyte proliferation assay was used for determining the immunopotency of WJ-MSCs and validated under good manufacturing practices (GMP). Moreover, failure mode effects analysis (FMEA) was used to identify and quantify the potential impact of different unexpected situations on the CQA. Results: A production process based on a two-tiered cell banking strategy resulted in batches with sufficient numbers of cells for clinical use in compliance with approved specifications including MSC identity (expressing CD73, CD90, CD105, but not CD31, CD45, or HLA-DR). Remarkably, all batches showed high capacity to inhibit the proliferation of activated lymphocytes. Moreover, implementation of risk management tools led to an in-depth understanding of the manufacturing process as well as the identification of weak points to be reinforced. Conclusions: The bioprocess design showed here together with detailed risk management and the use of a robust method for immunomodulation potency testing allowed for the robust production of clinical-grade WJ-MSCs under pharmaceutical standards.


Assuntos
Técnicas de Cultura de Células/métodos , Imunomodulação/fisiologia , Células-Tronco Mesenquimais/imunologia , Cordão Umbilical/citologia , Geleia de Wharton/imunologia , Proliferação de Células , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos , Cariótipo , Fenótipo , Medição de Risco
19.
J Tissue Eng Regen Med ; 12(1): e532-e540, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27684058

RESUMO

Pseudoarthrosis is a relatively frequent complication of fractures, in which the lack of mechanical stability and biological stimuli results in the failure of bone union, most frequently in humerus and tibia. Treatment of recalcitrant pseudoarthrosis relies on the achievement of satisfactory mechanical stability combined with adequate local biology. Herein we present two cases of atrophic pseudoarthrosis that received a tissue-engineering product (TEP) composed of autologous bone marrow-derived mesenchymal stromal cells (BM-MSC) combined with deantigenized trabecular bone particles from a tissue bank. The feasibility of the treatment and osteogenic potential of the cell-based medicine was first demonstrated in an ovine model of critical size segmental tibial defect. Clinical-grade autologous BM-MSC were produced following a good manufacturing practice-compliant bioprocess. Results were successful in one case, with pseudoarthrosis resolution, and inconclusive in the other one. The first patient presented atrophic pseudoarthrosis of the humeral diaphysis and was treated with osteosynthesis and TEP resulting in satisfactory consolidation at month 6. The second case presented a recalcitrant pseudoarthrosis of the proximal tibia and the Masquelet technique was followed before filling the defect with the TEP. This patient presented a neuropathic pain syndrome unrelated to the treatment that forced the amputation of the extremity 3 months later. In this case, the histological analysis of the tissue formed at the defect site provided evidence of neovascularization but no overt bone remodelling activity. It is concluded that the use of expanded autologous BM-MSC to treat pseudoarthrosis was demonstrated to be feasible and safe, provided that no clinical complications were reported, and early signs of effectiveness were observed. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pseudoartrose/patologia , Pseudoartrose/terapia , Pesquisa Translacional Biomédica , Adulto , Animais , Atrofia , Células da Medula Óssea/citologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteogênese , Ovinos , Tíbia/patologia , Tíbia/cirurgia , Engenharia Tecidual
20.
Fitoterapia ; 78(3): 235-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17337134

RESUMO

Methanol extracts of Azadirachta indica leaves at concentration from 0.1 to 40 microg/ml showed in vitro an stimulatory activity in stem cell reproduction. These results suggest that the effect of methanol leaf extracts on stem cell reproduction could be of benefit to improve health.


Assuntos
Azadirachta , Proliferação de Células/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico , Folhas de Planta , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA