Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 26(13): 3122-3126, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27177826

RESUMO

(-)-Lomaiviticin A (1) is a cytotoxic bacterial metabolite that induces double-strand breaks in DNA. Here we show that the cytotoxicity of (-)-lomaiviticin A (1) is synergistically potentiated in the presence of VE-821 (7), an inhibitor of ataxia telangiectasia and Rad3-related protein (ATR). While 0.5nM 1 or 10µM 7 alone are non-lethal to K562 cells, co-incubation of the two leads to high levels of cell kill (81% and 94% after 24 and 48h, respectively). Mechanistic data indicate that cells treated with 1 and 7 suffer extensive DNA double-strand breaks and apoptosis. These data suggest combinations of 1 and 7 may be a valuable chemotherapeutic strategy.


Assuntos
Fluorenos/farmacologia , Pirazinas/farmacologia , Sulfonas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluorenos/síntese química , Fluorenos/química , Humanos , Células K562 , Estrutura Molecular , Pirazinas/química , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonas/química
2.
J Am Chem Soc ; 137(17): 5741-7, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25849366

RESUMO

(-)-Lomaiviticin A (1) and the monomeric lomaiviticin aglycon [aka: (-)-MK7-206, (3)] are cytotoxic agents that induce double-strand breaks (DSBs) in DNA. Here we elucidate the cellular responses to these agents and identify synthetic lethal interactions with specific DNA repair factors. Toward this end, we first characterized the kinetics of DNA damage by 1 and 3 in human chronic myelogenous leukemia (K562) cells. DSBs are rapidly induced by 3, reaching a maximum at 15 min post addition and are resolved within 4 h. By comparison, DSB production by 1 requires 2-4 h to achieve maximal values and >8 h to achieve resolution. As evidenced by an alkaline comet unwinding assay, 3 induces extensive DNA damage, suggesting that the observed DSBs arise from closely spaced single-strand breaks (SSBs). Both 1 and 3 induce ataxia telangiectasia mutated- (ATM-) and DNA-dependent protein kinase- (DNA-PK-) dependent production of phospho-SER139-histone H2AX (γH2AX) and generation of p53 binding protein 1 (53BP1) foci in K562 cells within 1 h of exposure, which is indicative of activation of nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. Both compounds also lead to ataxia telangiectasia and Rad3-related- (ATR-) dependent production of γH2AX at later time points (6 h post addition), which is indicative of replication stress. 3 is also shown to induce apoptosis. In accord with these data, 1 and 3 were found to be synthetic lethal with certain mutations in DNA DSB repair. 1 potently inhibits the growth of breast cancer type 2, early onset- (BRCA2-) deficient V79 Chinese hamster lung fibroblast cell line derivative (VC8), and phosphatase and tensin homologue deleted on chromosome ten- (PTEN-) deficient human glioblastoma (U251) cell lines, with LC50 values of 1.5 ± 0.5 and 2.0 ± 0.6 pM, respectively, and selectivities of >11.6 versus the isogenic cell lines transfected with and expressing functional BRCA2 and PTEN genes. 3 inhibits the growth of the same cell lines with LC50 values of 6.0 ± 0.5 and 11 ± 4 nM and selectivities of 84 and 5.1, for the BRCA2 and PTEN mutants, respectively. These data argue for the evaluation of these agents as treatments for tumors that are deficient in BRCA2 and PTEN, among other DSB repair factors.


Assuntos
Proteína BRCA2/antagonistas & inibidores , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fluorenos/farmacologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proteína BRCA2/deficiência , Linhagem Celular , Cricetulus , Reparo do DNA , Fluorenos/química , Humanos , Células K562 , Cinética , Estrutura Molecular , PTEN Fosfo-Hidrolase/deficiência , Relação Estrutura-Atividade
3.
Biochemistry ; 47(31): 8070-9, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18616294

RESUMO

Comparative mutagenesis of gamma- or X-ray-induced tandem DNA lesions G[8,5-Me]T and T[5-Me,8]G intrastrand cross-links was investigated in simian (COS-7) and human embryonic (293T) kidney cells. For G[8,5-Me]T in 293T cells, 5.8% of progeny contained targeted base substitutions, whereas 10.0% showed semitargeted single-base substitutions. Of the targeted mutations, the G --> T mutation occurred with the highest frequency. The semitargeted mutations were detected up to two bases 5' and three bases 3' to the cross-link. The most prevalent semitargeted mutation was a C --> T transition immediately 5' to the G[8,5-Me]T cross-link. Frameshifts (4.6%) (mostly small deletions) and multiple-base substitutions (2.7%) also were detected. For the T[5-Me,8]G cross-link, a similar pattern of mutations was noted, but the mutational frequency was significantly higher than that of G[8,5-Me]T. Both targeted and semitargeted mutations occurred with a frequency of approximately 16%, and both included a dominant G --> T transversion. As in 293T cells, more than twice as many targeted mutations in COS cells occurred in T[5-Me,8]G (11.4%) as in G[8,5-Me]T (4.7%). Also, the level of semitargeted single-base substitutions 5' to the lesion was increased and 3' to the lesion decreased in T[5-Me,8]G relative to G[8,5-Me]T in COS cells. It appeared that the majority of the base substitutions at or near the cross-links resulted from incorporation of dAMP opposite the template base, in agreement with the so-called "A-rule". To determine if human polymerase eta (hpol eta) might be involved in the mutagenic bypass, an in vitro bypass study of G[8,5-Me]T in the same sequence was carried out, which showed that hpol eta can bypass the cross-link incorporating the correct dNMP opposite each cross-linked base. For G[8,5-Me]T, nucleotide incorporation by hpol eta was significantly different from that by yeast pol eta in that the latter was more error-prone opposite the cross-linked Gua. The incorporation of the correct nucleotide, dAMP, by hpol eta opposite cross-linked T was 3-5-fold more efficient than that of a wrong nucleotide, whereas incorporation of dCMP opposite the cross-linked G was 10-fold more efficient than that with dTMP. Therefore, the nucleotide incorporation pattern by hpol eta was not consistent with the observed cellular mutations. Nevertheless, at and near the lesion, hpol eta was more error-prone compared to a control template. The in vitro data suggest that translesion synthesis by another Y-family DNA polymerase and/or flawed participation of an accessory protein is a more likely scenario in the mutagenesis of these lesions in mammalian cells. However, hpol eta may play a role in correct bypass of the cross-links.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Raios gama , Guanina/química , Timina/química , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Análise Mutacional de DNA , Replicação do DNA/genética , Replicação do DNA/efeitos da radiação , Vetores Genéticos/genética , Humanos , Estrutura Molecular , Mutação/efeitos da radiação
4.
Biochemistry ; 45(51): 15921-30, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176115

RESUMO

Human XPA is an important DNA damage recognition protein in nucleotide excision repair (NER). We previously observed that XPA binds to the DNA lesion as a homodimer [Liu, Y., Liu, Y., Yang, Z., Utzat, C., Wang, G., Basu, A. K., and Zou, Y. (2005) Biochemistry 44, 7361-7368]. Herein we report that XPA recognized undamaged DNA double-strand/single-strand (ds-ssDNA) junctions containing ssDNA branches with binding affinity (Kd = 49.1 +/- 5.1 nM) much higher than its ability to bind to DNA damage. The recognized DNA junction structures include the Y-shape junction (with both 3'- and 5'-ssDNA branches), 3'-overhang junction (with a 3'-ssDNA branch), and 5'-overhang junction (with a 5'-ssDNA branch). Using gel filtration chromatography and gel mobility shift assays, we showed that the highly efficient binding appeared to be carried out by the XPA monomer and that the binding was largely independent of RPA. Furthermore, XPA efficiently bound to six-nucleotide mismatched DNA bubble substrates with or without DNA adducts including C8 guanine adducts of AF, AAF, and AP and the T[6,4]T photoproducts. Using a set of defined DNA substrates with varying degrees of DNA bending, we also found that the XPC-HR23B complex recognized DNA bending, whereas neither XPA nor the XPA-RPA complex could bind to bent DNA. We propose that, besides DNA damage recognition, XPA may also play a novel role in stabilizing, via its high affinity to ds-ssDNA junctions, the DNA strand opening surrounding the lesion for stable formation of preincision NER intermediates. Our results provide a plausible mechanistic interpretation for the indispensable requirement of XPA for both global genome and transcription-coupled repairs. Since ds-ssDNA junctions are common intermediates in many DNA metabolic pathways, the additional potential role of XPA in cellular processes is discussed.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Conformação de Ácido Nucleico , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Animais , Baculoviridae/genética , Sequência de Bases , Linhagem Celular , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica/genética , Spodoptera/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética
5.
Nat Chem ; 6(6): 504-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24848236

RESUMO

The metabolite (-)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar-picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (-)-lomaiviticin A nicks and cleaves plasmid DNA by a pathway that is independent of reactive oxygen species and iron, and that the potent cytotoxicity of (-)-lomaiviticin A arises from the induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3 ± 0.6:1. Labelling studies suggest that this cleavage occurs via a radical pathway. The structurally related isolates (-)-lomaiviticin C and (-)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (-)-lomaiviticin A compared to that of other members of this family.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fluorenos/toxicidade , Neoplasias/patologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Imunofluorescência , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células Tumorais Cultivadas
6.
Nucleosides Nucleotides Nucleic Acids ; 28(2): 67-77, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19219737

RESUMO

Two different approaches to synthesize oligonucleotides containing the 2 '-deoxyguanosine adducts formed by nitropyrenes are described. A direct reaction of an unmodified oligonucleotide with an activated nitropyrene derivative is a convenient biomimetic approach for generating the major adducts in DNA. A total synthetic approach, by contrast, involves several synthetic steps, including Buchwald-Hartwig Pd-catalyzed coupling, but can be used for incorporating both the major and minor adducts in DNA in high yield.


Assuntos
Adutos de DNA/química , Desoxiguanosina/síntese química , Oligonucleotídeos/síntese química , Pirenos/química , Desoxiguanosina/química , Oligonucleotídeos/química
7.
Chem Res Toxicol ; 18(9): 1339-46, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16167825

RESUMO

Nucleotide excision repair (NER) plays an important role in maintaining the integrity of DNA by removing various types of bulky or distorting DNA adducts in both prokaryotic and eukaryotic cells. In Escherichia coli, the excision repair proteins UvrA, UvrB, and UvrC recognize and incise the bulky DNA damages induced by UV light and chemical carcinogens. In this process, when a putative lesion in DNA is identified initially by UvrA, a subsequent strand opening is carried out by UvrB that not only ensures that the distortion is indeed due to a damaged nucleotide but also recognizes the chemical structure of the modified nucleotides with varying efficiencies. UvrB also recruits UvrC that catalyzes both the 3'- and the 5'-incisions. Herein, we examined the interaction of UvrABC with a DNA substrate containing a single G[8,5-Me]T cross-link and compared it with T[6,4]T (the 6-4 pyrimidine-pyrimidone photoproduct) and the C8 guanine adduct of N-acetyl-2-aminofluorene (AAF). The intrastrand vicinal cross-link G[8,5-Me]T containing a covalent bond between the C8 position of guanine and the 5-methyl carbon of the 3'-thymine is formed by X-radiation, while T[6,4]T is a vicinal cross-link induced by the UV light. We also selected the AAF adduct for comparison because it represents a highly distorting monoadduct containing a covalent linkage at the C8 position of guanine. The dissociation constants (K(d)) for UvrA protein binding to DNA substrates containing the G[8,5-Me]T, T[6,4]T, and AAF adducts, as determined by gel mobility shift assays, were 3.1 +/- 1.3, 2.8 +/- 0.9, and 8.2 +/- 1.9, respectively. Although UvrA had a considerably higher affinity for G[8,5-Me]T than for the AAF adduct, the G[8,5-Me]T intrastrand cross-link was incised by UvrABC much less efficiently than the T[6,4]T intrastrand cross-link and the AAF adduct. Similar incision results also were obtained with the DNA substrates containing the adducts in a six-nucleotide bubble, indicating that the inefficient incision of G[8,5-Me]T cross-link by UvrABC was probably due to the lack of efficient recognition of the adduct by UvrB at the second step of DNA damage recognition in the E. coli NER. Indeed, as compared to T[6,4]T and AAF substrates, which clearly showed UvrB-DNA complex formation, very little UvrB complex was detectable with the G[8,5-Me]T substrate. Our result suggests that G[8,5-Me]T intrastrand cross-link is more resistant to excision repair in comparison with the T[6,4]T and AAF adducts and thus will likely persist longer in E. coli cells.


Assuntos
Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanina/metabolismo , Timina/metabolismo , Sequência de Bases , Cromatografia Líquida de Alta Pressão , DNA/química , DNA/genética , DNA/metabolismo , Escherichia coli/enzimologia , Raios gama , Guanina/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Especificidade por Substrato , Timina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA