Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Nature ; 610(7931): 277-282, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224415

RESUMO

Personalized exoskeleton assistance provides users with the largest improvements in walking speed1 and energy economy2-4 but requires lengthy tests under unnatural laboratory conditions. Here we show that exoskeleton optimization can be performed rapidly and under real-world conditions. We designed a portable ankle exoskeleton based on insights from tests with a versatile laboratory testbed. We developed a data-driven method for optimizing exoskeleton assistance outdoors using wearable sensors and found that it was equally effective as laboratory methods, but identified optimal parameters four times faster. We performed real-world optimization using data collected during many short bouts of walking at varying speeds. Assistance optimized during one hour of naturalistic walking in a public setting increased self-selected speed by 9 ± 4% and reduced the energy used to travel a given distance by 17 ± 5% compared with normal shoes. This assistance reduced metabolic energy consumption by 23 ± 8% when participants walked on a treadmill at a standard speed of 1.5 m s-1. Human movements encode information that can be used to personalize assistive devices and enhance performance.


Assuntos
Exoesqueleto Energizado , Caminhada , Tornozelo , Articulação do Tornozelo , Humanos , Velocidade de Caminhada
2.
PLoS Comput Biol ; 19(8): e1010712, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549183

RESUMO

Walking balance is central to independent mobility, and falls due to loss of balance are a leading cause of death for people 65 years of age and older. Bipedal gait is typically unstable, but healthy humans use corrective torques to counteract perturbations and stabilize gait. Exoskeleton assistance could benefit people with neuromuscular deficits by providing stabilizing torques at lower-limb joints to replace lost muscle strength and sensorimotor control. However, it is unclear how applied exoskeleton torques translate to changes in walking kinematics. This study used musculoskeletal simulation to investigate how exoskeleton torques applied to the ankle and subtalar joints alter center of mass kinematics during walking. We first created muscle-driven walking simulations using OpenSim Moco by tracking experimental kinematics and ground reaction forces recorded from five healthy adults. We then used forward integration to simulate the effect of exoskeleton torques applied to the ankle and subtalar joints while keeping muscle excitations fixed based on our previous tracking simulation results. Exoskeleton torque lasted for 15% of the gait cycle and was applied between foot-flat and toe-off during the stance phase, and changes in center of mass kinematics were recorded when the torque application ended. We found that changes in center of mass kinematics were dependent on both the type and timing of exoskeleton torques. Plantarflexion torques produced upward and backward changes in velocity of the center of mass in mid-stance and upward and smaller forward velocity changes near toe-off. Eversion and inversion torques primarily produced lateral and medial changes in velocity in mid-stance, respectively. Intrinsic muscle properties reduced kinematic changes from exoskeleton torques. Our results provide mappings between ankle plantarflexion and inversion-eversion torques and changes in center of mass kinematics which can inform designers building exoskeletons aimed at stabilizing balance during walking. Our simulations and software are freely available and allow researchers to explore the effects of applied torques on balance and gait.


Assuntos
Tornozelo , Exoesqueleto Energizado , Adulto , Humanos , Torque , Fenômenos Biomecânicos/fisiologia , Caminhada/fisiologia , Marcha/fisiologia
3.
J Neuroeng Rehabil ; 21(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167151

RESUMO

BACKGROUND: Walking speed and energy economy tend to decline with age. Lower-limb exoskeletons have demonstrated potential to improve either measure, but primarily in studies conducted on healthy younger adults. Promising techniques like optimization of exoskeleton assistance have yet to be tested with older populations, while speed and energy consumption have yet to be simultaneously optimized for any population. METHODS: We investigated the effectiveness of human-in-the-loop optimization of ankle exoskeletons with older adults. Ten healthy adults > 65 years of age (5 females; mean age: 72 ± 3 yrs) participated in approximately 240 min of training and optimization with tethered ankle exoskeletons on a self-paced treadmill. Multi-objective human-in-the-loop optimization was used to identify assistive ankle plantarflexion torque patterns that simultaneously improved self-selected walking speed and metabolic rate. The effects of optimized exoskeleton assistance were evaluated in separate trials. RESULTS: Optimized exoskeleton assistance improved walking performance for older adults. Both objectives were simultaneously improved; self-selected walking speed increased by 8% (0.10 m/s; p = 0.001) and metabolic rate decreased by 19% (p = 0.007), resulting in a 25% decrease in energetic cost of transport (p = 8e-4) compared to walking with exoskeletons applying zero torque. Compared to younger participants in studies optimizing a single objective, our participants required lower exoskeleton torques, experienced smaller improvements in energy use, and required more time for motor adaptation. CONCLUSIONS: Our results confirm that exoskeleton assistance can improve walking performance for older adults and show that multiple objectives can be simultaneously addressed through human-in-the-loop optimization.


Assuntos
Exoesqueleto Energizado , Feminino , Humanos , Idoso , Velocidade de Caminhada , Eletromiografia/métodos , Fenômenos Biomecânicos , Tornozelo , Articulação do Tornozelo , Caminhada , Marcha
4.
Acta Neuropsychiatr ; 36(1): 17-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37114460

RESUMO

OBJECTIVE: People with neuropsychiatric symptoms often experience delay in accurate diagnosis. Although cerebrospinal fluid neurofilament light (CSF NfL) shows promise in distinguishing neurodegenerative disorders (ND) from psychiatric disorders (PSY), its accuracy in a diagnostically challenging cohort longitudinally is unknown. METHODS: We collected longitudinal diagnostic information (mean = 36 months) from patients assessed at a neuropsychiatry service, categorising diagnoses as ND/mild cognitive impairment/other neurological disorders (ND/MCI/other) and PSY. We pre-specified NfL > 582 pg/mL as indicative of ND/MCI/other. RESULTS: Diagnostic category changed from initial to final diagnosis for 23% (49/212) of patients. NfL predicted the final diagnostic category for 92% (22/24) of these and predicted final diagnostic category overall (ND/MCI/other vs. PSY) in 88% (187/212), compared to 77% (163/212) with clinical assessment alone. CONCLUSIONS: CSF NfL improved diagnostic accuracy, with potential to have led to earlier, accurate diagnosis in a real-world setting using a pre-specified cut-off, adding weight to translation of NfL into clinical practice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Filamentos Intermediários , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquidiano
5.
Neurobiol Dis ; 180: 106075, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914075

RESUMO

Prion diseases are pathogenically linked to the normal cellular prion protein (PrPC) misfolding into abnormal conformers (PrPSc), with PrPSc accumulation underpinning both transmission and neurotoxicity. Despite achieving this canonical understanding, however fundamental questions remain incompletely resolved, including the level of pathophysiological overlap between neurotoxic and transmitting species of PrPSc and the temporal profiles of their propagation. To further investigate the likely time of occurrence of significant levels of neurotoxic species during prion disease development, the well characterised in vivo M1000 murine model was employed. Following intracerebral inoculation, detailed serial cognitive and ethological testing at specified time points suggested subtle transition to early symptomatic disease from ∼50% of the overall disease course. In addition to observing a chronological order for impaired behaviours, different behavioural tests also showed distinctive profiles of evolving cognitive impairments with the Barnes maze demonstrating a relatively simple linear worsening of spatial learning and memory over an extended period while in contrast a conditioned fear memory paradigm previously untested in murine prion disease demonstrated more complex alterations during disease progression. These observations support the likely production of neurotoxic PrPSc from at least just prior to the mid-point of murine M1000 prion disease and illustrate the likely need to tailor the types of behavioural testing across the time course of disease progression for optimal detection of cognitive deficits.


Assuntos
Disfunção Cognitiva , Doenças Priônicas , Animais , Camundongos , Escala de Avaliação Comportamental , Doenças Priônicas/metabolismo , Progressão da Doença , Cognição
6.
Brain ; 145(2): 700-712, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35288744

RESUMO

Genetic prion diseases are a rare and diverse group of fatal neurodegenerative disorders caused by pathogenic sequence variations in the prion protein gene, PRNP. Data on CSF biomarkers in patients with genetic prion diseases are limited and conflicting results have been reported for unclear reasons. Here, we aimed to analyse the diagnostic accuracy of CSF biomarkers currently used in prion clinical diagnosis in 302 symptomatic genetic prion disease cases from 11 prion diagnostic centres, encompassing a total of 36 different pathogenic sequence variations within the open reading frame of PRNP. CSF samples were assessed for the surrogate markers of neurodegeneration, 14-3-3 protein (14-3-3), total-tau protein (t-tau) and α-synuclein and for prion seeding activity through the real-time quaking-induced conversion assay. Biomarker results were compared with those obtained in healthy and neurological controls. For the most prevalent PRNP pathogenic sequence variations, biomarker accuracy and associations between biomarkers, demographic and genetic determinants were assessed. Additionally, the prognostic value of biomarkers for predicting total disease duration from symptom onset to death was investigated. High sensitivity of the four biomarkers was detected for genetic Creutzfeldt-Jakob disease associated with the E200K and V210I mutations, but low sensitivity was observed for mutations associated with Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. All biomarkers showed good to excellent specificity using the standard cut-offs often used for sporadic Creutzfeldt-Jakob disease. In genetic prion diseases related to octapeptide repeat insertions, the biomarker sensitivity correlated with the number of repeats. New genetic prion disease-specific cut-offs for 14-3-3, t-tau and α-synuclein were calculated. Disease duration in genetic Creutzfeldt-Jakob disease-E200K, Gerstmann-Sträussler-Scheinker-P102L and fatal familial insomnia was highly dependent on PRNP codon 129 MV polymorphism and was significantly associated with biomarker levels. In a large cohort of genetic prion diseases, the simultaneous analysis of CSF prion disease biomarkers allowed the determination of new mutation-specific cut-offs improving the discrimination of genetic prion disease cases and unveiled genetic prion disease-specific associations with disease duration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Insônia Familiar Fatal , Doenças Priônicas , Príons , Biomarcadores/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Humanos , Insônia Familiar Fatal/genética , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Proteínas Priônicas/genética , Príons/genética , alfa-Sinucleína
7.
Intern Med J ; 53(9): 1564-1569, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314730

RESUMO

BACKGROUND AND AIMS: Neurodegeneration underpins the pathological processes of younger-onset dementia (YOD) and has been implicated in primary psychiatric disorders (PSYs). Cerebrospinal fluid (CSF) neurofilament light (NfL) has been used to investigate neurodegeneration severity through correlation with structural brain changes in various conditions, but has seldom been evaluated in YOD and PSYs. METHODS: This retrospective study included patients with YOD or PSYs with magnetic resonance imaging (MRI) of the brain and CSF NfL analysis. Findings from brain MRI were analysed using automated volumetry (volBrain) to measure white matter (WM), grey matter (GM) and whole brain (WB) volumes expressed as percentages of total intracranial volume. Correlations between NfL and brain volume measurements were computed whilst adjusting for age. RESULTS: Seventy patients (47 with YOD and 23 with PSY) were identified. YOD types included Alzheimer disease and behavioural variant frontotemporal dementia. PSY included schizophrenia and major depressive disorder. MRI brain sequences were either fast spoiler gradient-echo (FSPGR) or magnetization-prepared rapid acquisition gradient-echo (MPRAGE). In the total cohort, higher NfL was associated with reduced WB in the FSPGR and MPRAGE sequences (r = -0.402 [95% confidence interval (CI), -0.593 to -0.147], P = 0.008 and r = -0.625 [95% CI, -0.828 to -0.395], P < 0.001, respectively). Higher NfL was related to reduced GM in FSPGR (r = 0.385 [95% CI, -0.649 to -0.014], P = 0.017) and reduced WM in MPRAGE (r = -0.650 [95% CI, -0.777 to -0.307], P < 0.001). Similar relationships were seen in YOD, but not in PSY. CONCLUSION: Higher CSF NfL is related to brain atrophy in YOD, further supporting its use as a nonspecific marker of neurodegeneration severity.


Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Humanos , Estudos Retrospectivos , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Transtorno Depressivo Maior/diagnóstico por imagem , Filamentos Intermediários , Doença de Alzheimer/diagnóstico por imagem , Atrofia , Biomarcadores
8.
Stroke ; 53(8): e369-e374, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35770667

RESUMO

BACKGROUND: Recent reports raise the possibility of cerebral amyloid angiopathy (CAA) leading to intracerebral hemorrhage in young adults following childhood neurosurgery, suggesting transmission of amyloid-ß (Aß) through neurosurgical procedures including dura mater grafting. Parenchymal Aß deposition, and to a lesser extent tau aggregation, similar to that seen in Alzheimer disease, have also been described. METHODS: We conducted a database review of 634 consecutive intracerebral hemorrhage patients aged <65 years at a tertiary stroke center over 20 years to identify such patients. RESULTS: We identified 3 patients aged in their thirties who presented with spontaneous lobar intracerebral hemorrhage, with imaging or neuropathology consistent with CAA, and a history of childhood neurosurgery. Two of these patients had undergone a dural repair using cadaveric dura mater (Lyodura). In addition to CAA, both patients had neuropathologically confirmed parenchymal Aß and tau deposits, characteristic of Alzheimer disease. CONCLUSIONS: Our findings support the concept of neurosurgical Aß transmission but suggest that such cases are rare in standard clinical practice.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Neurocirurgia , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/cirurgia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/cirurgia , Humanos , Procedimentos Neurocirúrgicos/efeitos adversos
9.
J Magn Reson Imaging ; 56(2): 490-507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34964531

RESUMO

BACKGROUND: Automated magnetic resonance imaging (MRI) volumetry is a promising tool to evaluate regional brain volumes in dementia and especially Alzheimer's disease (AD). PURPOSE: To compare automated methods and the gold standard manual segmentation in measuring regional brain volumes on MRI across healthy controls, patients with mild cognitive impairment, and patients with dementia due to AD. STUDY TYPE: Systematic review and meta-analysis. DATA SOURCES: MEDLINE, Embase, and PsycINFO were searched through October 2021. FIELD STRENGTH: 1.0 T, 1.5 T, or 3.0 T. ASSESSMENT: Two review authors independently identified studies for inclusion and extracted data. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). STATISTICAL TESTS: Standardized mean differences (SMD; Hedges' g) were pooled using random-effects meta-analysis with robust variance estimation. Subgroup analyses were undertaken to explore potential sources of heterogeneity. Sensitivity analyses were conducted to examine the impact of the within-study correlation between effect estimates on the meta-analysis results. RESULTS: Seventeen studies provided sufficient data to evaluate the hippocampus, lateral ventricles, and parahippocampal gyrus. The pooled SMD for the hippocampus, lateral ventricles, and parahippocampal gyrus were 0.22 (95% CI -0.50 to 0.93), 0.12 (95% CI -0.13 to 0.37), and -0.48 (95% CI -1.37 to 0.41), respectively. For the hippocampal data, subgroup analyses suggested that the pooled SMD was invariant across clinical diagnosis and field strength. Subgroup analyses could not be conducted on the lateral ventricles data and the parahippocampal gyrus data due to insufficient data. The results were robust to the selected within-study correlation value. DATA CONCLUSION: While automated methods are generally comparable to manual segmentation for measuring hippocampal, lateral ventricle, and parahippocampal gyrus volumes, wide 95% CIs and large heterogeneity suggest that there is substantial uncontrolled variance. Thus, automated methods may be used to measure these regions in patients with AD but should be used with caution. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Ventrículos Laterais , Imageamento por Ressonância Magnética/métodos
10.
J Neuroeng Rehabil ; 19(1): 46, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549977

RESUMO

BACKGROUND: Reducing the energy cost of running with exoskeletons could improve enjoyment, reduce fatigue, and encourage participation among novice and ageing runners. Previously, tethered ankle exoskeleton emulators with offboard motors were used to greatly reduce the energy cost of running with powered ankle plantarflexion assistance. Through a process known as "human-in-the-loop optimization", the timing and magnitude of assistance torque was optimized to maximally reduce metabolic cost. However, to achieve the maximum net benefit in energy cost outside of the laboratory environment, it is also necessary to consider the tradeoff between the magnitude of device assistance and the metabolic penalty of carrying a heavier, more powerful exoskeleton. METHODS: In this study, tethered ankle exoskeleton emulators were used to characterize the effect of peak assistance torque on metabolic cost during running. Three recreational runners participated in human-in-the-loop optimization at four fixed peak assistance torque levels to obtain their energetically optimal assistance timing parameters at each level. RESULTS: We found that the relationship between metabolic rate and peak assistance torque was nearly linear but with diminishing returns at higher torque magnitudes, which is well-approximated by an asymptotic exponential function. At the highest assistance torque magnitude of 0.8 Nm/kg, participants' net metabolic rate was 24.8 ± 2.3% (p = 4e-6) lower than running in the unpowered devices. Optimized timing of peak assistance torque was as late as allowed during stance (80% of stance) and optimized timing of torque removal was at toe-off (100% of stance); similar assistance timing was preferred across participants and torque magnitudes. CONCLUSIONS: These results allow exoskeleton designers to predict the energy cost savings for candidate devices with different assistance torque capabilities, thus informing the design of portable ankle exoskeletons that maximize net metabolic benefit.


Assuntos
Exoesqueleto Energizado , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos , Metabolismo Energético , Marcha , Humanos , Torque , Caminhada
11.
Alzheimers Dement ; 18(11): 2218-2233, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35102694

RESUMO

INTRODUCTION: Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS: Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS: A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION: We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.


Assuntos
Doença de Alzheimer , Síndrome de Creutzfeldt-Jakob , Transtornos Mentais , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Diagnóstico Tardio , Filamentos Intermediários , Proteínas tau/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano
12.
J Prosthet Orthot ; 34(4): 202-212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36157327

RESUMO

Introduction: The design and selection of lower-limb prosthetic devices is currently hampered by a shortage of evidence to drive the choice of prosthetic foot parameters. We propose a new approach wherein prostheses could be designed, specified, and provided based on individualized measurements of the benefits provided by candidate feet. In this manuscript, we present a pilot test of this evidence-based and personalized process. Methods: We previously developed a "prosthetic foot emulator," a wearable robotic system that provides users with the physical sensation of trying on different prosthetic feet before definitive fitting. Here we detail preliminary demonstrations of two possible approaches to personalizing foot design: 1) an emulation and test-drive strategy of representative commercial foot models, and 2) a prosthetist-driven tuning procedure to optimize foot parameters. Results: The first experiment demonstrated large and sometimes surprising differences in optimal prosthetic foot parameters across a variety of subjects, walking conditions, and outcome measures. The second experiment demonstrated a quick and effective simple manual tuning procedure for identifying preferred prosthetic foot parameters. Conclusions: Emulator-based approaches could improve individualization of prosthetic foot prescription. The present results motivate future clinical studies of the validity, efficacy, and economics of the approach across larger and more diverse subject populations. Clinical Relevance: Today, emulator technology is being used to accelerate research and development of novel prosthetic and orthotic devices. In the future, after further refinement and validation, this technology could benefit clinical practice by providing a means for rapid test-driving and optimal selection of clinically available prosthetic feet.

13.
PLoS Pathog ; 15(4): e1007712, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30970042

RESUMO

Although considerable evidence supports that misfolded prion protein (PrPSc) is the principal component of "prions", underpinning both transmissibility and neurotoxicity, clear consensus around a number of fundamental aspects of pathogenesis has not been achieved, including the time of appearance of neurotoxic species during disease evolution. Utilizing a recently reported electrophysiology paradigm, we assessed the acute synaptotoxicity of ex vivo PrPSc prepared as crude homogenates from brains of M1000 infected wild-type mice (cM1000) harvested at time-points representing 30%, 50%, 70% and 100% of the terminal stage of disease (TSD). Acute synaptotoxicity was assessed by measuring the capacity of cM1000 to impair hippocampal CA1 region long-term potentiation (LTP) and post-tetanic potentiation (PTP) in explant slices. Of particular note, cM1000 from 30% of the TSD was able to cause significant impairment of LTP and PTP, with the induced failure of LTP increasing over subsequent time-points while the capacity of cM1000 to induce PTP failure appeared maximal even at this early stage of disease progression. Evidence that the synaptotoxicity directly related to PrP species was demonstrated by the significant rescue of LTP dysfunction at each time-point through immuno-depletion of >50% of total PrP species from cM1000 preparations. Moreover, similar to our previous observations at the terminal stage of M1000 prion disease, size fractionation chromatography revealed that capacity for acute synpatotoxicity correlated with predominance of oligomeric PrP species in infected brains across all time points, with the profile appearing maximised by 50% of the TSD. Using enhanced sensitivity western blotting, modestly proteinase K (PK)-resistant PrPSc was detectable at very low levels in cM1000 at 30% of the TSD, becoming robustly detectable by 70% of the TSD at which time substantial levels of highly PK-resistant PrPSc was also evident. Further illustrating the biochemical evolution of acutely synaptotoxic species the synaptotoxicity of cM1000 from 30%, 50% and 70% of the TSD, but not at 100% TSD, was abolished by digestion of immuno-captured PrP species with mild PK treatment (5µg/ml for an hour at 37°C), demonstrating that the predominant synaptotoxic PrPSc species up to and including 70% of the TSD were proteinase-sensitive. Overall, these findings in combination with our previous assessments of transmitting prions support that synaptotoxic and infectious M1000 PrPSc species co-exist from at least 30% of the TSD, simultaneously increasing thereafter, albeit with eventual plateauing of transmitting conformers.


Assuntos
Evolução Biológica , Encefalopatias/patologia , Proteínas PrPSc/metabolismo , Doenças Priônicas/patologia , Príons/patogenicidade , Sinapses/patologia , Animais , Encefalopatias/etiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças Priônicas/etiologia , Proteólise , Sinapses/metabolismo
14.
Nature ; 522(7555): 212-5, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25830889

RESUMO

With efficiencies derived from evolution, growth and learning, humans are very well-tuned for locomotion. Metabolic energy used during walking can be partly replaced by power input from an exoskeleton, but is it possible to reduce metabolic rate without providing an additional energy source? This would require an improvement in the efficiency of the human-machine system as a whole, and would be remarkable given the apparent optimality of human gait. Here we show that the metabolic rate of human walking can be reduced by an unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with the user's calf muscles, off-loading muscle force and thereby reducing the metabolic energy consumed in contractions. The device uses a mechanical clutch to hold a spring as it is stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfil one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch sustains force passively. The exoskeleton consumes no chemical or electrical energy and delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 2.6% for healthy human users under natural conditions, comparable to savings with powered devices. Improving upon walking economy in this way is analogous to altering the structure of the body such that it is more energy-effective at walking. While strong natural pressures have already shaped human locomotion, improvements in efficiency are still possible. Much remains to be learned about this seemingly simple behaviour.


Assuntos
Membros Artificiais , Biônica/instrumentação , Biônica/métodos , Metabolismo Energético , Caminhada/fisiologia , Tornozelo/fisiologia , Feminino , Pé/fisiologia , Humanos , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
15.
Intern Med J ; 51(7): 1101-1105, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32237029

RESUMO

BACKGROUND: Indigenous Australians are at increased risk of developing dementia - Alzheimer disease and mixed dementia diagnoses are the most common. While prion diseases have been reported in Indigenous peoples of Papua New Guinea and the United States, the occurrence and phenotype of prion disease in Indigenous Australians is hitherto unreported. AIM: To report the incidence rate and clinical phenotype of Creutzfeldt-Jakob disease (CJD) in Indigenous Australians. METHOD: Crude sporadic CJD (sCJD) incidence rates and indirect age standardisation of all CJD were assessed to calculate the standardised mortality ratio (SMR) of the Indigenous Australian population in comparison to the all-resident Australian population, along with analysis of clinical phenotypes. RESULTS: We report an illustrative case of an Indigenous Australian from regionally remote Western Australia dying from typical 'probable' sCJD 2 months after disease onset, with Australian National CJD Registry (ANCJDR) surveillance overall demonstrating eight Indigenous Australians dying from sCJD (five post-mortem confirmed, three classified as 'probable') with a clinical phenotype similar to non-indigenous people, including median age at death of 61 years (interquartile range IQR = 16 years) and median duration of illness of 3 months (IQR = 1.6 months). Indigenous Australians with sCJD were geographically dispersed throughout Australia. The calculated overall crude annual rate of sCJD in Indigenous Australians compared to the remainder of the Australian population was not significantly different (0-3.87/million for Indigenous Australians; 0.94-1.83/million for non-indigenous). The overall indirect age-standardised CJD mortality ratio for the indigenous population for the years 2006-2018 was 1.49 (95% CI, 0.75-2.98), also not significantly different to the all-resident Australian population. CONCLUSION: CJD occurs in Indigenous Australians with clinical phenotype and occurrence rates similar to non-Indigenous Australians. These findings contrast with a previous report where the incidence rate of CJD in a non-Australian indigenous population was reported to be decreased.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Austrália/epidemiologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Incidência , Lactente , Sistema de Registros
16.
J Neuroeng Rehabil ; 18(1): 161, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743714

RESUMO

BACKGROUND: Load carriage is common in a wide range of professions, but prolonged load carriage is associated with increased fatigue and overuse injuries. Exoskeletons could improve the quality of life of these professionals by reducing metabolic cost to combat fatigue and reducing muscle activity to prevent injuries. Current exoskeletons have reduced the metabolic cost of loaded walking by up to 22% relative to walking in the device with no assistance when assisting one or two joints. Greater metabolic reductions may be possible with optimized assistance of the entire leg. METHODS: We used human-in the-loop optimization to optimize hip-knee-ankle exoskeleton assistance with no additional load, a light load (15% of body weight), and a heavy load (30% of body weight) for three participants. All loads were applied through a weight vest with an attached waist belt. We measured metabolic cost, exoskeleton assistance, kinematics, and muscle activity. We performed Friedman's tests to analyze trends across worn loads and paired t-tests to determine whether changes from the unassisted conditions to the assisted conditions were significant. RESULTS: Exoskeleton assistance reduced the metabolic cost of walking relative to walking in the device without assistance for all tested conditions. Exoskeleton assistance reduced the metabolic cost of walking by 48% with no load (p = 0.05), 41% with the light load (p = 0.01), and 43% with the heavy load (p = 0.04). The smaller metabolic reduction with the light load may be due to insufficient participant training or lack of optimizer convergence. The total applied positive power was similar for all tested conditions, and the positive knee power decreased slightly as load increased. Optimized torque timing parameters were consistent across participants and load conditions while optimized magnitude parameters varied. CONCLUSIONS: Whole-leg exoskeleton assistance can reduce the metabolic cost of walking while carrying a range of loads. The consistent optimized timing parameters across participants and conditions suggest that metabolic cost reductions are sensitive to torque timing. The variable torque magnitude parameters could imply that torque magnitude should be customized to the individual, or that there is a range of useful torque magnitudes. Future work should test whether applying the load to the exoskeleton rather than the person's torso results in larger benefits.


Assuntos
Exoesqueleto Energizado , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Metabolismo Energético/fisiologia , Humanos , Qualidade de Vida , Caminhada/fisiologia
17.
J Neuroeng Rehabil ; 18(1): 152, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663372

RESUMO

BACKGROUND: Autonomous exoskeletons will need to be useful at a variety of walking speeds, but it is unclear how optimal hip-knee-ankle exoskeleton assistance should change with speed. Biological joint moments tend to increase with speed, and in some cases, optimized ankle exoskeleton torques follow a similar trend. Ideal hip-knee-ankle exoskeleton torque may also increase with speed. The purpose of this study was to characterize the relationship between walking speed, optimal hip-knee-ankle exoskeleton assistance, and the benefits to metabolic energy cost. METHODS: We optimized hip-knee-ankle exoskeleton assistance to reduce metabolic cost for three able-bodied participants walking at 1.0 m/s, 1.25 m/s and 1.5 m/s. We measured metabolic cost, muscle activity, exoskeleton assistance and kinematics. We performed Friedman's tests to analyze trends across walking speeds and paired t-tests to determine if changes from the unassisted conditions to the assisted conditions were significant. RESULTS: Exoskeleton assistance reduced the metabolic cost of walking compared to wearing the exoskeleton with no torque applied by 26%, 47% and 50% at 1.0, 1.25 and 1.5 m/s, respectively. For all three participants, optimized exoskeleton ankle torque was the smallest for slow walking, while hip and knee torque changed slightly with speed in ways that varied across participants. Total applied positive power increased with speed for all three participants, largely due to increased joint velocities, which consistently increased with speed. CONCLUSIONS: Exoskeleton assistance is effective at a range of speeds and is most effective at medium and fast walking speeds. Exoskeleton assistance was less effective for slow walking, which may explain the limited success in reducing metabolic cost for patient populations through exoskeleton assistance. Exoskeleton designers may have more success when targeting activities and groups with faster walking speeds. Speed-related changes in optimized exoskeleton assistance varied by participant, indicating either the benefit of participant-specific tuning or that a wide variety of torque profiles are similarly effective.


Assuntos
Exoesqueleto Energizado , Velocidade de Caminhada , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Caminhada
18.
Biophys J ; 119(1): 128-141, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32562618

RESUMO

Prion diseases are neurodegenerative disorders pathogenically linked to cellular prion protein (PrPC) misfolding into abnormal conformers (PrPSc), with PrPSc underpinning both transmission and synaptotoxicity. Although the biophysical features of PrPSc required to induce acute synaptic dysfunction remain incompletely defined, we recently reported that acutely synaptotoxic PrPSc appeared to be oligomeric. We herein provide further insights into the kinetic and requisite biophysical characteristics of acutely synaptotoxic ex vivo PrPSc derived from the brains of mice dying from M1000 prion disease. Pooled fractions of M1000 PrPSc located within the molecular weight range approximating monomeric PrP (mM1000) generated through size exclusion chromatography were found to harbor acute synaptotoxicity equivalent to preformed oligomeric fractions (oM1000). Subsequent investigation showed mM1000 corresponded to PrPSc rapidly concatenating in physiological buffer to exist as predominantly, closely associated, small oligomers. The oligomerization of PrP in mM1000 could be substantially mitigated by treatment with the antiaggregation compound epigallocatechin gallate, thereby maintaining the PrPSc as primarily nonoligomeric with completely abrogated acute synaptotoxicity; moreover, despite epigallocatechin gallate treatment, pooled oM1000 remained oligomeric and acutely synaptotoxic. A similar tendency to rapid formation of oligomers was observed for PrPC when monomeric fractions derived from size exclusion chromatography of normal brain homogenates (mNBH) were pooled, but neither mNBH nor preformed higher-order NBH complexes (oNBH) were acutely synaptotoxic. Oligomers formed from mNBH could be reduced to mainly monomers (<100 kDa) after enzymatic digestion of nucleic acids, whereas higher-order PrP assemblies derived from pooled mM1000, oM1000, and oNBH resisted such treatment. Collectively, these findings support that oligomerization of PrPSc into small multimeric assemblies appears to be a critical biophysical feature for engendering inherent acute synaptotoxicity, with preformed oligomers found in oM1000 appearing to be stable, tightly self-associated ensembles that coexist in dynamic equilibrium with mM1000, with the latter appearing capable of rapid aggregation, albeit initially forming smaller, weakly self-associated, acutely synaptotoxic oligomers.


Assuntos
Proteínas PrPC , Doenças Priônicas , Príons , Animais , Encéfalo/metabolismo , Camundongos
19.
BMC Med ; 18(1): 140, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552681

RESUMO

BACKGROUND: Prion disease is neurodegenerative disease that is typically fatal within months of first symptoms. Clinical trials in this rapidly declining symptomatic patient population have proven challenging. Individuals at high lifetime risk for genetic prion disease can be identified decades before symptom onset and provide an opportunity for early therapeutic intervention. However, randomizing pre-symptomatic carriers to a clinical endpoint is not numerically feasible. We therefore launched a cohort study in pre-symptomatic genetic prion disease mutation carriers and controls with the goal of evaluating biomarker endpoints that may enable informative trials in this population. METHODS: We collected cerebrospinal fluid (CSF) and blood from pre-symptomatic individuals with prion protein gene (PRNP) mutations (N = 27) and matched controls (N = 16), in a cohort study at Massachusetts General Hospital. We quantified total prion protein (PrP) and real-time quaking-induced conversion (RT-QuIC) prion seeding activity in CSF and neuronal damage markers total tau (T-tau) and neurofilament light chain (NfL) in CSF and plasma. We compared these markers cross-sectionally, evaluated short-term test-retest reliability over 2-4 months, and conducted a pilot longitudinal study over 10-20 months. RESULTS: CSF PrP levels were stable on test-retest with a mean coefficient of variation of 7% for both over 2-4 months in N = 29 participants and over 10-20 months in N = 10 participants. RT-QuIC was negative in 22/23 mutation carriers. The sole individual with positive RT-QuIC seeding activity at two study visits had steady CSF PrP levels and slightly increased tau and NfL concentrations compared with the others, though still within the normal range, and remained asymptomatic 1 year later. T-tau and NfL showed no significant differences between mutation carriers and controls in either CSF or plasma. CONCLUSIONS: CSF PrP will be interpretable as a pharmacodynamic readout for PrP-lowering therapeutics in pre-symptomatic individuals and may serve as an informative surrogate biomarker in this population. In contrast, markers of prion seeding activity and neuronal damage do not reliably cross-sectionally distinguish mutation carriers from controls. Thus, as PrP-lowering therapeutics for prion disease advance, "secondary prevention" based on prodromal pathology may prove challenging; instead, "primary prevention" trials appear to offer a tractable paradigm for trials in pre-symptomatic individuals.


Assuntos
Biomarcadores/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Priônicas/diagnóstico , Adulto , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Priônicas/sangue , Doenças Priônicas/líquido cefalorraquidiano , Reprodutibilidade dos Testes , Fatores de Risco
20.
PLoS Pathog ; 14(8): e1007214, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089152

RESUMO

Although misfolding of normal prion protein (PrPC) into abnormal conformers (PrPSc) is critical for prion disease pathogenesis our current understanding of the underlying molecular pathophysiology is rudimentary. Exploiting an electrophysiology paradigm, herein we report that at least modestly proteinase K (PK)-resistant PrPSc (PrPres) species are acutely synaptotoxic. Brief exposure to ex vivo PrPSc from two mouse-adapted prion strains (M1000 and MU02) prepared as crude brain homogenates (cM1000 and cMU02) and cell lysates from chronically M1000-infected RK13 cells (MoRK13-Inf) caused significant impairment of hippocampal CA1 region long-term potentiation (LTP), with the LTP disruption approximating that reported during the evolution of murine prion disease. Proof of PrPSc (especially PrPres) species as the synaptotoxic agent was demonstrated by: significant rescue of LTP following selective immuno-depletion of total PrP from cM1000 (dM1000); modestly PK-treated cM1000 (PK+M1000) retaining full synaptotoxicity; and restoration of the LTP impairment when employing reconstituted, PK-eluted, immuno-precipitated M1000 preparations (PK+IP-M1000). Additional detailed electrophysiological analyses exemplified by impairment of post-tetanic potentiation (PTP) suggest possible heightened pre-synaptic vulnerability to the acute synaptotoxicity. This dysfunction correlated with cumulative insufficiency of replenishment of the readily releasable pool (RRP) of vesicles during repeated high-frequency stimulation utilised for induction of LTP. Broadly comparable results with LTP and PTP impairment were obtained utilizing hippocampal slices from PrPC knockout (PrPo/o) mice, with cM1000 serial dilution assessments revealing similar sensitivity of PrPo/o and wild type (WT) slices. Size fractionation chromatography demonstrated that synaptotoxic PrP correlated with PK-resistant species >100kDa, consistent with multimeric PrPSc, with levels of these species >6 ng/ml appearing sufficient to induce synaptic dysfunction. Biochemical analyses of hippocampal slices manifesting acute synaptotoxicity demonstrated reduced levels of multiple key synaptic proteins, albeit with noteworthy differences in PrPo/o slices, while such changes were absent in hippocampi demonstrating rescued LTP through treatment with dM1000. Our findings offer important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development of targeted effective therapies.


Assuntos
Endopeptidase K/metabolismo , Proteínas PrPC/patogenicidade , Doenças Priônicas/etiologia , Príons/patogenicidade , Sinapses/patologia , Doença Aguda , Animais , Encefalopatias/etiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas PrPC/metabolismo , Proteólise , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA