Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Cell ; 185(5): 794-814.e30, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182466

RESUMO

Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.


Assuntos
Fator de Transcrição GATA4/metabolismo , Cardiopatias Congênitas , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Fatores de Transcrição , Animais , Cardiopatias Congênitas/genética , Camundongos , Mutação , Proteômica , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
2.
Nat Methods ; 21(7): 1257-1274, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38890427

RESUMO

The dry mass and the orientation of biomolecules can be imaged without a label by measuring their permittivity tensor (PT), which describes how biomolecules affect the phase and polarization of light. Three-dimensional (3D) imaging of PT has been challenging. We present a label-free computational microscopy technique, PT imaging (PTI), for the 3D measurement of PT. PTI encodes the invisible PT into images using oblique illumination, polarization-sensitive detection and volumetric sampling. PT is decoded from the data with a vectorial imaging model and a multi-channel inverse algorithm, assuming uniaxial symmetry in each voxel. We demonstrate high-resolution imaging of PT of isotropic beads, anisotropic glass targets, mouse brain tissue, infected cells and histology slides. PTI outperforms previous label-free imaging techniques such as vector tomography, ptychography and light-field imaging in resolving the 3D orientation and symmetry of organelles, cells and tissue. We provide open-source software and modular hardware to enable the adoption of the method.


Assuntos
Algoritmos , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Microscopia/métodos , Software , Humanos , Processamento de Imagem Assistida por Computador/métodos
3.
Proc Natl Acad Sci U S A ; 121(17): e2307814121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621131

RESUMO

Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Alelos , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismo , Neurônios Motores/metabolismo , Mutação , Expansão das Repetições de DNA/genética , Dipeptídeos/metabolismo
4.
Circulation ; 146(10): 770-787, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35938400

RESUMO

BACKGROUND: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS: We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS: We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS: This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.


Assuntos
Fator de Transcrição GATA4 , Células-Tronco Pluripotentes Induzidas , Processamento Alternativo , Animais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , RNA/genética , RNA/metabolismo
5.
J Gene Med ; 25(2): e3464, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36413603

RESUMO

BACKGROUND: Exon-skipping is a powerful genetic tool, especially when delivering genes using an AAV-mediated full-length gene supplementation strategy is difficult owing to large length of genes. Here, we used engineered human induced pluripotent stem cells and artificial intelligence to evaluate clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9-based exon-skipping vectors targeting genes of the retinal pigment epithelium (RPE). The model system was choroideremia; this is an X-linked inherited retinal disease caused by mutation of the CHM gene. METHODS: We explored whether artificial intelligence detected differentiation of human OTX2, PAX6 and MITF (hOPM) cells, in which OTX2, PAX6 and MITF expression was induced by doxycycline treatment, into RPE. Plasmid encoding CHM exon-skipping modules targeting the splice donor sites of exons 6 were constructed. A clonal hOPM cell line with a frameshift mutation in exon 6 was generated and differentiated into RPE. CHM exon 6-skipping was induced, and the effects of skipping on phagocytic activity, cell death and prenylation of Rab small GTPase (RAB) were evaluated using flow cytometry, an in vitro prenylation assay and western blotting. RESULTS: Artificial intelligence-based evaluation of RPE differentiation was successful. Retinal pigment epithelium cells with a frameshift mutation in exon 6 showed increased cell death, reduced phagocytic activity and increased cytosolic unprenylated RABs only when oxidative stress was in play. The latter two phenotypes were partially rescued by exon 6-skipping of CHM. CONCLUSIONS: CHM exon 6-skipping contributed to RPE phagocytosis probably by increasing RAB38 prenylation under oxidative stress.


Assuntos
Coroideremia , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Humanos , Inteligência Artificial , Coroideremia/genética , Coroideremia/terapia , Coroideremia/metabolismo , Sistemas CRISPR-Cas/genética , Éxons/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
6.
Dev Biol ; 445(1): 1-7, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389344

RESUMO

MESP1 is a key transcription factor in development of early cardiovascular tissue and it is required for induction of the cardiomyocyte (CM) gene expression program, but its role in vascular development is unclear. Here, we used inducible CRISPRi knock-down of MESP1 to analyze the molecular processes of the early differentiation stages of human induced pluripotent stem cells into mesoderm and subsequently vascular progenitor cells. We found that expression of the mesodermal marker, BRACHYURY (encoded by T) was unaffected in MESP1 knock-down cells as compared to wild type cells suggesting timely movement through the primitive streak whereas another mesodermal marker MIXL1 was slightly, but significantly decreased. In contrast, the expression of the vascular cell surface marker KDR was decreased and CD31 and CD34 expression were substantially reduced in MESP1 knock-down cells supporting inhibition or delay of vascular specification. In addition, mRNA microarray data revealed several other altered gene expressions including the EMT regulating transcription factors SNAI1 and TWIST1, which were both significantly decreased indicating that MESP1 knock-down cells are less likely to undergo EMT during vascular progenitor differentiation. Our study demonstrates that while leaving primitive streak markers unaffected, MESP1 expression is required for timely vascular progenitor specification. Thus, MESP1 expression is essential for the molecular features of early CM, EC and VSMC lineage specification.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linha Primitiva/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequências Hélice-Alça-Hélice/fisiologia , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mesoderma/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Linha Primitiva/citologia , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
8.
Circ Res ; 120(10): 1572-1583, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28400398

RESUMO

RATIONALE: During each beat, cardiac myocytes (CMs) generate the mechanical output necessary for heart function through contractile mechanisms that involve shortening of sarcomeres along myofibrils. Human-induced pluripotent stem cells (hiPSCs) can be differentiated into CMs (hiPSC-CMs) that model cardiac contractile mechanical output more robustly when micropatterned into physiological shapes. Quantifying the mechanical output of these cells enables us to assay cardiac activity in a dish. OBJECTIVE: We sought to develop a computational platform that integrates analytic approaches to quantify the mechanical output of single micropatterned hiPSC-CMs from microscopy videos. METHODS AND RESULTS: We micropatterned single hiPSC-CMs on deformable polyacrylamide substrates containing fluorescent microbeads. We acquired videos of single beating cells, of microbead displacement during contractions, and of fluorescently labeled myofibrils. These videos were independently analyzed to obtain parameters that capture the mechanical output of the imaged single cells. We also developed novel methods to quantify sarcomere length from videos of moving myofibrils and to analyze loss of synchronicity of beating in cells with contractile defects. We tested this computational platform by detecting variations in mechanical output induced by drugs and in cells expressing low levels of myosin-binding protein C. CONCLUSIONS: Our method can measure the cardiac function of single micropatterned hiPSC-CMs and determine contractile parameters that can be used to elucidate mechanisms that underlie variations in CM function. This platform will be amenable to future studies of the effects of mutations and drugs on cardiac function.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Imagem Multimodal/métodos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Células Cultivadas , Humanos
9.
Proc Natl Acad Sci U S A ; 113(46): 13057-13062, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794120

RESUMO

Fibrodysplasia ossificans progressiva (FOP) patients carry a missense mutation in ACVR1 [617G > A (R206H)] that leads to hyperactivation of BMP-SMAD signaling. Contrary to a previous study, here we show that FOP fibroblasts showed an increased efficiency of induced pluripotent stem cell (iPSC) generation. This positive effect was attenuated by inhibitors of BMP-SMAD signaling (Dorsomorphin or LDN1931890) or transducing inhibitory SMADs (SMAD6 or SMAD7). In normal fibroblasts, the efficiency of iPSC generation was enhanced by transducing mutant ACVR1 (617G > A) or SMAD1 or adding BMP4 protein at early times during the reprogramming. In contrast, adding BMP4 at later times decreased iPSC generation. ID genes, transcriptional targets of BMP-SMAD signaling, were critical for iPSC generation. The BMP-SMAD-ID signaling axis suppressed p16/INK4A-mediated cell senescence, a major barrier to reprogramming. These results using patient cells carrying the ACVR1 R206H mutation reveal how cellular signaling and gene expression change during the reprogramming processes.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miosite Ossificante , Proteínas Smad/metabolismo , Receptores de Ativinas Tipo I/genética , Adolescente , Adulto , Animais , Linhagem Celular , Reprogramação Celular , Senescência Celular , Criança , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Miosite Ossificante/genética , Transdução de Sinais
10.
Biotechnol Bioeng ; 115(8): 1958-1970, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29663322

RESUMO

Quantification of abnormal contractile motions of cardiac tissue has been a noteworthy challenge and significant limitation in assessing and classifying the drug-induced arrhythmias (i.e., Torsades de pointes). To overcome these challenges, researchers have taken advantage of computational image processing tools to measure contractile motion from cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). However, the amplitude and frequency analysis of contractile motion waveforms does not produce sufficient information to objectively classify the degree of variations between two or more sets of cardiac contractile motions. In this paper, we generated contractile motion data from beating hiPSC-CMs using motion tracking software based on optical flow analysis, and then implemented a computational algorithm, phase space reconstruction (PSR), to derive parameters (embedding, regularity, and fractal dimensions) to further characterize the dynamic nature of the cardiac contractile motions. Application of drugs known to cause cardiac arrhythmia induced significant changes to these resultant dimensional parameters calculated from PSR analysis. Integrating this new computational algorithm with the existing analytical toolbox of cardiac contractile motions will allow us to expand current assessments of cardiac tissue physiology into an automated, high-throughput, and quantifiable manner which will allow more objective assessments of drug-induced proarrhythmias.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Técnicas Citológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Imagem Óptica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Movimento (Física) , Miócitos Cardíacos/fisiologia , Software
11.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25695968

RESUMO

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Assuntos
Proliferação de Células , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Glucose/genética , Glucose/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Receptores Adrenérgicos alfa 2/genética
12.
Proc Natl Acad Sci U S A ; 112(15): 4666-71, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825768

RESUMO

NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein-DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.


Assuntos
Proliferação de Células/genética , Reprogramação Celular/genética , Proteínas de Homeodomínio/genética , Mutação , Células-Tronco Pluripotentes/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Proteína Homeobox Nanog , Conformação de Ácido Nucleico , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção
13.
Nat Methods ; 11(3): 291-3, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509632

RESUMO

Precise editing of human genomes in pluripotent stem cells by homology-driven repair of targeted nuclease-induced cleavage has been hindered by the difficulty of isolating rare clones. We developed an efficient method to capture rare mutational events, enabling isolation of mutant lines with single-base substitutions without antibiotic selection. This method facilitates efficient induction or reversion of mutations associated with human disease in isogenic human induced pluripotent stem cells.


Assuntos
Técnicas Citológicas/métodos , Genoma Humano , Células-Tronco Pluripotentes Induzidas/citologia , Antibacterianos/farmacologia , Composição de Bases/genética , Linhagem Celular , Clonagem Molecular , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mutação
14.
Proc Natl Acad Sci U S A ; 111(16): 5896-901, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711398

RESUMO

Directed migration of diverse cell types plays a critical role in biological processes ranging from development and morphogenesis to immune response, wound healing, and regeneration. However, techniques to direct, manipulate, and study cell migration in vitro and in vivo in a specific and facile manner are currently limited. We conceived of a strategy to achieve direct control over cell migration to arbitrary user-defined locations, independent of native chemotaxis receptors. Here, we show that genetic modification of cells with an engineered G protein-coupled receptor allows us to redirect their migration to a bioinert drug-like small molecule, clozapine-N-oxide (CNO). The engineered receptor and small-molecule ligand form an orthogonal pair: The receptor does not respond to native ligands, and the inert drug does not bind to native cells. CNO-responsive migration can be engineered into a variety of cell types, including neutrophils, T lymphocytes, keratinocytes, and endothelial cells. The engineered cells migrate up a gradient of the drug CNO and transmigrate through endothelial monolayers. Finally, we demonstrate that T lymphocytes modified with the engineered receptor can specifically migrate in vivo to CNO-releasing beads implanted in a live mouse. This technology provides a generalizable genetic tool to systematically perturb and control cell migration both in vitro and in vivo. In the future, this type of migration control could be a valuable module for engineering therapeutic cellular devices.


Assuntos
Quimiotaxia , Engenharia Genética , Mamíferos/metabolismo , Transdução de Sinais , Administração Intravenosa , Animais , Polaridade Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HL-60 , Humanos , Camundongos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
15.
Exp Cell Res ; 333(2): 289-302, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25704759

RESUMO

G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active Gs-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced Gs signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated Gs G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of Gs-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of Gs signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to Gs signaling in mature OBs.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Osteoblastos/metabolismo , Transcriptoma , Animais , Regeneração Óssea , Células Cultivadas , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Crânio/patologia , Crânio/fisiopatologia , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Acta Neuropathol ; 130(2): 171-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25975378

RESUMO

Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (

Assuntos
Hipoventilação/congênito , Locus Cerúleo/crescimento & desenvolvimento , Locus Cerúleo/patologia , Apneia do Sono Tipo Central/patologia , Apneia do Sono Tipo Central/fisiopatologia , Idade de Início , Animais , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoventilação/genética , Hipoventilação/patologia , Hipoventilação/fisiopatologia , Recém-Nascido , Recém-Nascido Prematuro , Locus Cerúleo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neurogênese/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Respiração , Apneia do Sono Tipo Central/genética , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Mol Cell Cardiol ; 66: 27-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161911

RESUMO

The objective of this study was to determine the role of A-Kinase Anchoring Protein (AKAP)-Lbc in the development of heart failure, by investigating AKAP-Lbc-protein kinase D1 (PKD1) signaling in vivo in cardiac hypertrophy. Using a gene-trap mouse expressing a truncated version of AKAP-Lbc (due to disruption of the endogenous AKAP-Lbc gene), that abolishes PKD1 interaction with AKAP-Lbc (AKAP-Lbc-ΔPKD), we studied two mouse models of pathological hypertrophy: i) angiotensin (AT-II) and phenylephrine (PE) infusion and ii) transverse aortic constriction (TAC)-induced pressure overload. Our results indicate that AKAP-Lbc-ΔPKD mice exhibit an accelerated progression to cardiac dysfunction in response to AT-II/PE treatment and TAC. AKAP-Lbc-ΔPKD mice display attenuated compensatory cardiac hypertrophy, increased collagen deposition and apoptosis, compared to wild-type (WT) control littermates. Mechanistically, reduced levels of PKD1 activation are observed in AKAP-Lbc-ΔPKD mice compared to WT mice, resulting in diminished phosphorylation of histone deacetylase 5 (HDAC5) and decreased hypertrophic gene expression. This is consistent with a reduced compensatory hypertrophy phenotype leading to progression of heart failure in AKAP-Lbc-ΔPKD mice. Overall, our data demonstrates a critical in vivo role for AKAP-Lbc-PKD1 signaling in the development of compensatory hypertrophy to enhance cardiac performance in response to TAC-induced pressure overload and neurohumoral stimulation by AT-II/PE treatment.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Cardiomegalia/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/genética , Angiotensina II/efeitos adversos , Animais , Aorta/patologia , Apoptose , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Colágeno/genética , Colágeno/metabolismo , Feminino , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Miocárdio/patologia , Fenilefrina/efeitos adversos , Proteína Quinase C/genética , Estrutura Terciária de Proteína , Transdução de Sinais
18.
Nucleic Acids Res ; 40(Database issue): D1301-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22096230

RESUMO

Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further.


Assuntos
Bases de Dados Factuais , Redes e Vias Metabólicas , Biologia Computacional , Genes , Internet , Redes e Vias Metabólicas/genética , Proteínas/metabolismo
19.
Stem Cell Reports ; 19(3): 426-433, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38335963

RESUMO

Science museums play an important role in science education, engaging the public with science concepts and building support for scientific research. Here, we describe Give Heart Cells a Beat, an interactive exhibit that lets museum visitors synchronize the beating of live stem cell-derived cardiomyocytes to their own heart rate in real time. The beat rate of cells accurately matched the beat rate of visitors and responded dynamically to changes such as exercise. Visitor evaluation revealed that engagement with the specimen prompted curiosity in heart biology and stem cells. Give Heart Cells a Beat is the product of a close collaboration between a museum and an academic research laboratory, and to our knowledge, it is the first interactive exhibit to use live human heart cells. We hope this exhibit serves as an example for the implementation of stem cell technology in informal science education and inspires future relationships between academia and public science venues.


Assuntos
Museus , Miócitos Cardíacos , Humanos , Frequência Cardíaca , Células-Tronco
20.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766216

RESUMO

Alpha-thalassemia is an autosomal recessive disease with increasing worldwide prevalence. The molecular basis is due to mutation or deletion of one or more duplicated α-globin genes, and disease severity is directly related to the number of allelic copies compromised. The most severe form, α-thalassemia major (αTM), results from loss of all four copies of α-globin and has historically resulted in fatality in utero. However, in utero transfusions now enable survival to birth. Postnatally, patients face challenges similar to ß-thalassemia, including severe anemia and erythrotoxicity due to imbalance of ß-globin and α-globin chains. While curative, hematopoietic stem cell transplantation (HSCT) is limited by donor availability and potential transplant-related complications. Despite progress in genome editing treatments for ß-thalassemia, there is no analogous curative option for patients suffering from α-thalassemia. To address this, we designed a novel Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the ß-globin locus in αTM patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette dramatically increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently normal hemoglobin. By directing edited HSPCs toward increased production of clinically relevant RBCs instead of other divergent cell types, this approach has the potential to mitigate the limitations of traditional HSCT for the hemoglobinopathies, including low genome editing and low engraftment rates. These findings support development of a definitive ex vivo autologous genome editing strategy that may be curative for α-thalassemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA