Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Epilepsia ; 65(7): 2152-2164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804501

RESUMO

OBJECTIVES: Pathological forms of neural activity, such as epileptic seizures, modify the expression pattern of multiple proteins, leading to persistent changes in brain function. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which is critically involved in protein-synthesis-dependent synaptic plasticity underlying learning and memory. In the present study, we have investigated how the expression of ArcKR, a form of Arc in which the ubiquitination sites have been mutated, resulting in slowed Arc degradation, modifies group I metabotropic glutamate receptor-mediated long-term depression (G1-mGluR-LTD) following seizures. METHODS: We used a knock-in mice line that express ArcKR and two hyperexcitation models: an in vitro model, where hippocampal slices were exposed to zero Mg2+, 6 mM K+; and an in vivo model, where kainic acid was injected unilaterally into the hippocampus. In both models, field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 region of hippocampal slices in response to Schaffer collateral stimulation and G1-mGluR-LTD was induced chemically with the group 1 mGluR agonist DHPG. RESULTS: In the in vitro model, ArcKR expression enhanced the effects of seizure activity and increased the magnitude of G1-mGluR LTD, an effect that could be blocked with the mGluR5 antagonist MTEP. In the in vivo model, fEPSPs were significantly smaller in slices from ArcKR mice and were less contaminated by population spikes. In this model, the amount of G1-mGluR-LTD was significantly less in epileptic slices from ArcKR mice as compared to wildtype (WT) mice. SIGNIFICANCE: We have shown that expression of ArcKR, a form of Arc in which degradation is reduced, significantly modulates the magnitude of G1-mGluR-LTD following epileptic seizures. However, the effect of ArcKR on LTD depends on the epileptic model used, with enhancement of LTD in an in vitro model and a reduction in the kainate mouse model.


Assuntos
Hipocampo , Ácido Caínico , Camundongos Transgênicos , Plasticidade Neuronal , Animais , Camundongos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Convulsões/fisiopatologia , Convulsões/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Epilepsia/fisiopatologia , Epilepsia/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia
2.
J Biol Chem ; 298(8): 102172, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753347

RESUMO

One of the hallmarks of Alzheimer's disease is the accumulation of toxic amyloid-ß (Aß) peptides in extracellular plaques. The direct precursor of Aß is the carboxyl-terminal fragment ß (or C99) of the amyloid precursor protein (APP). C99 is detected at elevated levels in Alzheimer's disease brains, and its intracellular accumulation has been linked to early neurotoxicity independently of Aß. Despite this, the causes of increased C99 levels are poorly understood. Here, we demonstrate that APP interacts with the clathrin vesicle adaptor AP-1 (adaptor protein 1), and we map the interaction sites on both proteins. Using quantitative kinetic trafficking assays, established cell lines and primary neurons, we also show that this interaction is required for the transport of APP from the trans-Golgi network to endosomes. In addition, disrupting AP-1-mediated transport of APP alters APP processing and degradation, ultimately leading to increased C99 production and Aß release. Our results indicate that AP-1 regulates the subcellular distribution of APP, altering its processing into neurotoxic fragments.


Assuntos
Doença de Alzheimer , Amiloidose , Complexo de Golgi , Síndromes Neurotóxicas , Proteínas Adaptadoras de Transporte Vesicular , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Complexo de Golgi/metabolismo , Humanos , Fator de Transcrição AP-1/genética
3.
Eur J Neurosci ; 58(10): 4166-4180, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821126

RESUMO

Expression of the immediate early gene Arc/Arg3.1 (Arc), a key mediator of synaptic plasticity, is enhanced by neural activity and then reduced by proteasome-dependent degradation. We have previously shown that the disruption of Arc degradation, in an Arc knock-in mouse (ArcKR), where the predominant Arc ubiquitination sites were mutated, reduced the threshold to induce, and also enhanced, the strength of Group I metabotropic glutamate receptor-mediated long-term depression (DHPG-LTD). Here, we have investigated if ArcKR expression changes long-term potentiation (LTP) in CA1 area of the hippocampus. As previously reported, there was no change in basal synaptic transmission at Schaffer collateral/commissural-CA1 (SC-CA1) synapses in ArcKR versus wild-type (WT) mice. There was, however, a significant increase in the amplitude of synaptically induced (with low frequency paired-pulse stimulation) LTD in ArcKR mice. Theta burst stimulation (TBS)-evoked LTP at SC-CA1 synapses was significantly reduced in ArcKR versus WT mice (after 2 h). Group 1 mGluR priming of LTP was abolished in ArcKR mice, which could also potentially contribute to a depression of LTP. Although high frequency stimulation (HFS)-induced LTP was not significantly different in ArcKR compared with WT mice (after 1 h), there was a phenotype in environmentally enriched mice, with the ratio of LTP to short-term potentiation (STP) significantly reduced in ArcKR mice. These findings support the hypothesis that Arc ubiquitination supports the induction and expression of LTP, likely via limiting Arc-dependent removal of AMPA receptors at synapses.


Assuntos
Potenciação de Longa Duração , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Estimulação Elétrica
4.
BMC Neurol ; 23(1): 417, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993780

RESUMO

BACKGROUND: Recent evidence suggests that the failure of the glymphatic system - the brain's waste clearance system, which is active during sleep - plays a key role in the pathophysiology of Alzheimer's Disease (AD). Glymphatic function can be investigated using serial MRIs after intrathecal gadobutrol injection. This technique can reveal the health of the glymphatic system, but has not yet been used in participants with cognitive impairment due to AD. CASE REPORT: This report describes the sleep and gadobutrol tracer clearance patterns of four participants diagnosed with mild to moderate cognitive impairment with evidence of AD pathology (pathological levels of Ab and p-tau in cerebrospinal fluid). We performed polysomnography and MRI studies before tracer injection and MRI scans at 1.5-2 h, 5-6 h, and 48 h after injection. Despite participants reporting no sleep problems, polysomnography revealed that all participants had moderate to severe sleep disturbances, including reduced sleep efficiency during the study and obstructive sleep apnea. Severe side-effects related to tracer administration were observed, impeding the completion of the protocol in two participants. Participants who finished the protocol displayed delayed and persistent tracer enrichment in the cortex and white matter, even 48 h after injection. These outcomes have not been observed in previous studies in participants without AD. CONCLUSION: The findings suggest that brains with sleep impairment and AD pathology have poor glymphatic function, and therefore cannot clear the contrast tracer efficiently. This is likely to have caused the severe side effects in our participants, that have not been reported in healthy individuals. Our results may therefore represent the only available data acquired with this technique in participants with AD pathology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/complicações , Encéfalo/diagnóstico por imagem , Sono , Cognição
5.
Semin Cell Dev Biol ; 77: 17-24, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28890421

RESUMO

The activity-regulated cytoskeleton associated protein (Arc/Arg3.1) plays a key role in determining synaptic strength through facilitation of AMPA receptor (AMPAR) endocytosis. Although there is considerable data on the mechanism by which Arc induction controls synaptic plasticity and learning behaviours, several key mechanistic questions remain. Here we review data on the link between Arc expression and the clathrin-mediated endocytic pathway which internalises AMPARs and discuss the significance of Arc binding to the clathrin adaptor protein 2 (AP-2) and to endophilin/dynamin. We consider which AMPAR subunits are selected for Arc-mediated internalisation, implications for synaptic function and consider Arc as a therapeutic target.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Clatrina/metabolismo , Proteínas do Citoesqueleto/biossíntese , Dinaminas/metabolismo , Humanos , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
6.
Cell Mol Life Sci ; 73(23): 4397-4413, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27342992

RESUMO

The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Sistema de Sinalização das MAP Quinases , Animais , Progressão da Doença , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
7.
J Neurochem ; 139 Suppl 2: 200-214, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26923875

RESUMO

Group I metabotropic glutamate receptor (mGluR) dependent long-term depression (LTD) is a major form of synaptic plasticity underlying learning and memory. The molecular mechanisms involved in mGluR-LTD have been investigated intensively for the last two decades. In this 60th anniversary special issue article, we review the recent advances in determining the mechanisms that regulate the induction, transduction and expression of mGluR-LTD in the hippocampus, with a focus on the mitogen-activated protein kinase (MAPK) pathways. In particular we discuss the requirement of p38 MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. The recent advances in understanding the signaling cascades regulating mGluR-LTD are then related to the cognitive impairments observed in neurological disorders, such as fragile X syndrome and Alzheimer's disease. mGluR-LTD is a form of synaptic plasticity that impacts on memory formation. In the hippocampus mitogen-activated protein kinases (MAPKs) have been found to be important in mGluR-LTD. In this 60th anniversary special issue article, we review the independent and complementary roles of two classes of MAPK, p38 and ERK1/2 and link this to the aberrant mGluR-LTD that has an important role in diseases. This article is part of the 60th Anniversary special issue.


Assuntos
Hipocampo/enzimologia , Depressão Sináptica de Longo Prazo/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Doenças do Sistema Nervoso/enzimologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Nível de Saúde , Hipocampo/patologia , Humanos , Doenças do Sistema Nervoso/patologia
9.
Eur J Neurosci ; 41(3): 305-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421315

RESUMO

The activation of small conductance calcium-dependent (SK) channels regulates membrane excitability by causing membrane hyperpolarization. Three subtypes (SK1-3) have been cloned, with each subtype expressed within the nervous system. The locations of channel subunits overlap, with SK1 and SK2 subunits often expressed in the same brain region. We showed that expressed homomeric rat SK1 subunits did not form functional channels, because subunits accumulated in the Golgi. This raised the question of whether heteromeric channels could form with SK1 subunits. The co-expression of SK1 and SK2 subunits in HEK293 cells preferentially co-assembled to produce heteromeric channels with a fixed stoichiometry of alternating subunits. The expression in hippocampal CA1 neurons of mutant rat SK1 subunits [rat SK1(LV213/4YA)] that produced an apamin-sensitive current changed the amplitude and pharmacology of the medium afterhyperpolarization. The overexpression of rat SK1(LV213/4YA) subunits reduced the sensitivity of the medium afterhyperpolarization to apamin, substantiating the preferential co-assembly of SK1 and SK2 subunits to form heteromeric channels. Species-specific channel assembly occurred as the co-expression of human SK1 with rat SK2 did not form functional heteromeric channels. The replacement of two amino acids within the C-terminus of rat SK2 with those from human SK2 permitted the assembly of heteromeric channels when co-expressed with human SK1. These data showed that species-specific co-assembly was mediated by interaction between the C-termini of SK channel subunits. The finding that SK channels preferentially co-assembled to form heteromeric channels suggested that native heteromeric channels will predominate in cells expressing multiple SK channel subunits.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Apamina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Fármacos do Sistema Nervoso Central/farmacologia , Células HEK293 , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Multimerização Proteica , Ratos , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Especificidade da Espécie
10.
Sleep Med ; 119: 399-405, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772221

RESUMO

BACKGROUND: The recently discovered glymphatic system may support the removal of neurotoxic proteins, mainly during sleep, that are associated with neurodegenerative diseases such as Alzheimer's and Parkinson's Disease. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) has been suggested as a method to index the health of glymphatic system (with higher values indicating a more intact glymphatic system). Indeed, in small-scale studies the DTI-ALPS index has been shown to correlate with age, cognitive health, and sleep, and is higher in females than males. OBJECTIVE: To determine whether these relationships are stable we replicated previous findings associating the DTI-ALPS index with demographic, sleep-related, and cognitive markers in a large sample of participants from the UK Biobank. METHODS: We calculated the DTI-ALPS index in UK Biobank participants (n = 17723). Using Bayesian and Frequentist analysis approaches, we replicate previously reported relationships between the DTI-ALPS index. RESULTS: We found the predicted associations between the DTI-ALPS index and age, longest uninterrupted sleep window (LUSWT) on a typical night, cognitive performance, and sex. However, these effects were substantially smaller than those found in previous studies. Parameter estimates from this study may be used as priors in subsequent studies using a Bayesian approach. These results suggest that the DTI-ALPS index is consistently, and therefore predictably, associated with demographics, LUWST, and cognition. CONCLUSION: We propose that the metric, calculated for the first time in a large-scale, population-based cohort, is a stable measure, but one for which stronger links to glymphatic system function are needed before it can be used to understand the relationships between glymphatic system function and health outcomes reported in the UK Biobank.


Assuntos
Bancos de Espécimes Biológicos , Imagem de Tensor de Difusão , Sistema Glinfático , Humanos , Imagem de Tensor de Difusão/métodos , Masculino , Feminino , Reino Unido , Sistema Glinfático/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Sono/fisiologia , Cognição/fisiologia , Teorema de Bayes , Biobanco do Reino Unido
11.
J Neurosci ; 32(38): 13039-51, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993422

RESUMO

The ability of neurons to modulate synaptic strength underpins synaptic plasticity, learning and memory, and adaptation to sensory experience. Despite the importance of synaptic adaptation in directing, reinforcing, and revising the behavioral response to environmental influences, the cellular and molecular mechanisms underlying synaptic adaptation are far from clear. Brain-derived neurotrophic factor (BDNF) is a prime initiator of structural and functional synaptic adaptation. However, the signaling cascade activated by BDNF to initiate these adaptive changes has not been elucidated. We have previously shown that BDNF activates mitogen- and stress-activated kinase 1 (MSK1), which regulates gene transcription via the phosphorylation of both CREB and histone H3. Using mice with a kinase-dead knock-in mutation of MSK1, we now show that MSK1 is necessary for the upregulation of synaptic strength in response to environmental enrichment in vivo. Furthermore, neurons from MSK1 kinase-dead mice failed to show scaling of synaptic transmission in response to activity deprivation in vitro, a deficit that could be rescued by reintroduction of wild-type MSK1. We also show that MSK1 forms part of a BDNF- and MAPK-dependent signaling cascade required for homeostatic synaptic scaling, which likely resides in the ability of MSK1 to regulate cell surface GluA1 expression via the induction of Arc/Arg3.1. These results demonstrate that MSK1 is an integral part of a signaling pathway that underlies the adaptive response to synaptic and environmental experience. MSK1 may thus act as a key homeostat in the activity- and experience-dependent regulation of synaptic strength.


Assuntos
Homeostase/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sinapses/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/fisiologia , Meio Ambiente , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Mutação Puntual/genética , Receptores de AMPA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/genética , Tetrodotoxina/farmacologia , Fatores de Tempo
12.
FASEB J ; 25(7): 2362-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21471251

RESUMO

ERK1/2 is required for certain forms of synaptic plasticity, including the long-term potentiation of synaptic strength. However, the molecular mechanisms regulating synaptically localized ERK1/2 signaling are poorly understood. Here, we show that the MAPK scaffold protein kinase suppressor of Ras 1 (KSR1) is directly phosphorylated by the downstream kinase ERK1/2. Quantitative Western blot analysis further demonstrates that expression of mutated, feedback-deficient KSR1 promotes sustained ERK1/2 activation in HEK293 cells in response to EGF stimulation, compared to a more transient activation in control cells expressing wild-type KSR1. Immunocytochemistry and confocal imaging of primary hippocampal neurons from newborn C57BL6 mice further show that feedback phosphorylation of KSR1 significantly reduces its localization to dendritic spines. This effect can be reversed by tetrodotoxin (1 µM) or PD184352 (2 µM) treatment, further suggesting that neuronal activity and phosphorylation by ERK1/2 lead to KSR1 removal from the postsynaptic compartment. Consequently, electrophysiological recordings in hippocampal neurons expressing wild-type or feedback-deficient KSR1 demonstrate that KSR1 feedback phosphorylation restricts the potentiation of excitatory postsynaptic currents. Our findings, therefore, suggest that feedback phosphorylation of the scaffold protein KSR1 prevents excessive ERK1/2 signaling in the postsynaptic compartment and thus contributes to maintaining physiological levels of synaptic excitability.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Proteínas Quinases/metabolismo , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Benzamidas/farmacologia , Sítios de Ligação/genética , Western Blotting , Células Cultivadas , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases/genética , Homologia de Sequência de Aminoácidos
13.
Aging Cell ; 21(10): e13717, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36135933

RESUMO

A key aim of Alzheimer disease research is to develop efficient therapies to prevent and/or delay the irreversible progression of cognitive impairments. Early deficits in long-term potentiation (LTP) are associated with the accumulation of amyloid beta in rodent models of the disease; however, less is known about how mGluR-mediated long-term depression (mGluR-LTD) is affected. In this study, we have found that mGluR-LTD is enhanced in the APPswe /PS1dE9 mouse at 7 but returns to wild-type levels at 13 months of age. This transient over-activation of mGluR signalling is coupled with impaired LTP and shifts the dynamic range of synapses towards depression. These alterations in synaptic plasticity are associated with an inability to utilize cues in a spatial learning task. The transient dysregulation of plasticity can be prevented by genetic deletion of the MAP kinase-activated protein kinase 2 (MK2), a substrate of p38 MAPK, demonstrating that manipulating the mGluR-p38 MAPK-MK2 cascade at 7 months can prevent the shift in synapse dynamic range. Our work reveals the MK2 cascade as a potential pharmacological target to correct the over-activation of mGluR signalling.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Aprendizagem Espacial , Sinapses/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
14.
J Neurochem ; 116(4): 530-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21143596

RESUMO

The use of hippocampal dissociated neuronal cultures has enabled the study of molecular changes in endogenous native proteins associated with long-term potentiation. Using immunofluorescence labelling of the active (Thr286-phosphorylated) alpha-Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) we found that CaMKII activity was increased by transient (3 × 1 s) depolarisation in 18- to 21-day-old cultures but not in 9- to 11-day-old cultures. The increase in Thr286 phosphorylation of CaMKII required the activation of NMDA receptors and was greatly attenuated by the CaMKII inhibitor KN-62. We compared the effects of transient depolarisation on the surface expression of GluA1 and GluA2 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor and found a preferential recruitment of the GluA1 subunit. CaMKII inhibition prevented this NMDA receptor-dependent delivery of GluA1 to the cell surface. CaMKII activation is therefore an important factor in the activity-dependent recruitment of native GluA1 subunit-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors to the cell surface of hippocampal neurons.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Regulação Enzimológica da Expressão Gênica , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/metabolismo , Receptores de AMPA/biossíntese , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Potenciação de Longa Duração/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
15.
J Cell Sci ; 122(Pt 22): 4186-94, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19861491

RESUMO

Trafficking motifs present in the intracellular regions of ion channels affect their subcellular location within neurons. The mechanisms that control trafficking to dendrites of central neurons have been identified, but it is not fully understood how channels are localized to the soma. We have now identified a motif within the calcium-activated potassium channel K(Ca)2.1 (SK1) that results in somatic localization. Transfection of hippocampal neurons with K(Ca)2.1 subunits causes expression of functional channels in only the soma and proximal processes. By contrast, expressed K(Ca)2.3 subunits are located throughout the processes of transfected neurons. Point mutation of K(Ca)2.1 within this novel motif to mimic a sequence present in the C-terminus of K(Ca)2.3 causes expression of K(Ca)2.1 subunits throughout the processes. We also demonstrate that blocking of clathrin-mediated endocytosis causes K(Ca)2.1 subunit expression to mimic that of the mutated subunit. The role of this novel motif is therefore not to directly target trafficking of the channel to subcellular compartments, but to regulate channel location by subjecting it to rapid clathrin-mediated endocytosis.


Assuntos
Clatrina/metabolismo , Endocitose/fisiologia , Neurônios/metabolismo , Transporte Proteico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/ultraestrutura , Mutação Puntual , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
16.
Front Cell Dev Biol ; 9: 635636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585492

RESUMO

p38 is a mitogen-activated protein kinase (MAPK), that responds primarily to stress stimuli. p38 has a number of targets for phosphorylation, including MAPK-activated protein kinase 2 (MK2). MK2 primarily functions as a master regulator of RNA-binding proteins, indirectly controlling gene expression at the level of translation. The role of MK2 in regulating the synthesis of pro-inflammatory cytokines downstream of inflammation and cellular stress is well-described. A significant amount of evidence, however, now points to a role for the p38MAPK-MK2 signaling axis in mediating synaptic plasticity through control of AMPA receptor trafficking and the morphology of dendritic spines. These processes are mediated through control of cytoskeletal dynamics via the activation of cofilin-1 and possibly control of the expression of Arc/Arg3.1. There is evidence that MK2 is necessary for group I metabotropic glutamate receptors long-term depression (mGluR-LTD). Disruption of this signaling may play an important role in mediating cognitive dysfunction in neurological disorders such as fragile X syndrome and Alzheimer's disease. To date, the role of neuronal MK2 mediating synaptic plasticity in response to inflammatory stimuli has not yet been investigated. In immune cells, it is clear that MK2 is phosphorylated following activation of a broad range of cell surface receptors for cytokines and other inflammatory mediators. We propose that neuronal MK2 may be an important player in the link between inflammatory states and dysregulation of synaptic plasticity underlying cognitive functions. Finally, we discuss the potential of the p38MAPK-MK2 signaling axis as target for therapeutic intervention in a number of neurological disorders.

17.
J Neurochem ; 112(3): 677-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19895665

RESUMO

Myosin VI is an actin-based motor protein that is enriched at the postsynaptic density and appears to interact with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptors (AMPARs) via synapse associated protein 97 (SAP97). Here, we find that a Flag epitope-tagged dominant negative construct that inhibits the interaction between SAP97 and myosin VI (Flag-myoVI-DN) causes a dramatic reduction in the number of synapses and the surface expression of AMPARs in cultured hippocampal neurons. Furthermore, we find that Flag-myoVI-DN also prevents the rapid delivery of AMPARs to synapses that can be induced by the transient activation of N-methyl-d-aspartate receptors. The Flag-myoVI-DN induced decrease in surface AMPARs is not because of reduced AMPAR subunit protein synthesis. Using whole-cell recording, we show that Flag-myoVI-DN also prevents the activity-induced increase in miniature excitatory postsynaptic current frequency that is normally associated with recruitment of AMPARs to the cell surface at synaptic sites that lack these receptors (i.e. 'silent' synapses). Together, these results indicate that myosin VI/SAP97 plays an important role in trafficking and activity-dependent recruitment of AMPARs to synapses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipocampo/citologia , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoquinolinas/farmacologia , Animais , Animais Recém-Nascidos , Carcinoma/patologia , Células Cultivadas , Proteína 1 Homóloga a Discs-Large , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/genética , Cadeias Pesadas de Miosina/genética , Neurônios/citologia , Técnicas de Patch-Clamp/métodos , Cloreto de Potássio/farmacologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Ratos , Sinapses/efeitos dos fármacos , Transfecção/métodos
18.
Brain Res ; 1722: 146357, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369731

RESUMO

The antidiuretic hormone arginine vasopressin (AVP) regulates water homeostasis, blood pressure and a range of stress responses. It is synthesized in the hypothalamus and released from the posterior pituitary into the general circulation upon a range of stimuli. While the mechanisms leading to AVP secretion have been widely investigated, the molecular mechanisms regulating AVP gene expression are mostly unclear. Here we investigated the neurotransmitters and signal transduction pathways that activate AVP gene expression in the paraventricular nucleus (PVN) of the rat using acute brain slices and quantitative real-time PCR. We show that stimulation with l-glutamate robustly induced AVP gene expression in acute hypothalamic brain slices containing the PVN. More specifically, we show that AVP transcription was stimulated by NMDA. Using pharmacological treatments, our data further reveal that the activation of ERK1/2 (PD184352), CaMKII (KN-62) and PI3K (LY294002; 740 Y-P) is involved in the NMDA-induced AVP gene expression in the PVN. Together, this study identifies NMDA-mediated cell signalling pathways that regulate AVP gene expression in the rat PVN.


Assuntos
Arginina Vasopressina/metabolismo , Regulação da Expressão Gênica , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley
19.
Neuropharmacology ; 155: 121-130, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31129151

RESUMO

The ability to either erase or update the memories of a previously learned spatial task is an essential process that is required to modify behaviour in a changing environment. Current evidence suggests that the neural representation of such cognitive flexibility involves the balancing of synaptic potentiation (acquisition of memories) with synaptic depression (modulation and updating previously acquired memories). Here we demonstrate that the p38 MAPK/MAPK-activated protein kinase 2 (MK2) cascade is required to maintain the precise tuning of long-term potentiation and long-term depression at CA1 synapses of the hippocampus which is correlated with efficient reversal learning. Using the MK2 knockout (KO) mouse, we show that mGluR-LTD, but not NMDAR-LTD, is markedly impaired in mice aged between 4 and 5 weeks (juvenile) to 7 months (mature adult). Although the amplitude of LTP was the same as in wildtype mice, priming of LTP by the activation of group I metabotropic receptors was impaired in MK2 KO mice. Consistent with unaltered LTP amplitude and compromised mGluR-LTD, MK2 KO mice had intact spatial learning when performing the Barnes maze task, but showed specific deficits in selecting the most efficient combination of search strategies to perform the task reversal. Findings from this study suggest that the mGluR-p38-MK2 cascade is important for cognitive flexibility by regulating LTD amplitude and the priming of LTP.


Assuntos
Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Plasticidade Neuronal/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Receptores de Glutamato Metabotrópico/metabolismo , Reversão de Aprendizagem/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Depressão Sináptica de Longo Prazo/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Proteínas Serina-Treonina Quinases/genética
20.
J Physiol ; 586(10): 2499-510, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18356198

RESUMO

Long-term potentiation (LTP) and long-term depression (LTD) are forms of synaptic plasticity thought to contribute to learning and memory. Much is known about the mechanisms of NMDA receptor-dependent LTD in the CA1 region of rat hippocampus but there is still considerable uncertainty about the mechanisms of LTD induced by mGluR activation (mGluR-LTD). Furthermore, data on mGluR-LTD derives largely from studies using pharmacologically induced LTD. To investigate mGluR-LTD that is more physiologically relevant we have examined, in CA1 of adult rat hippocampus, mechanisms of synaptically induced mGluR-LTD. We provide the first demonstration that activation of protein tyrosine phosphatase (PTP) is essential for the induction of synaptically induced mGluR-LTD. In addition, we show that activation of p38 MAPK is also required for this form of LTD. Furthermore, LTD can be mimicked and occluded by activation of p38 MAPK, provided that protein tyrosine kinases (PTKs) are inhibited. These data therefore demonstrate that a novel combination of signalling cascades, requiring both activation of p38 MAPK and tyrosine de-phosphorylation, underlies the induction of synaptically induced mGluR-LTD.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ativação Enzimática/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA