Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Pathol ; 194(6): 1047-1061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403161

RESUMO

Hyaluronan (HA), a negatively charged linear glycosaminoglycan, is a key macromolecular component of the articular cartilage extracellular matrix. The differential effects of HA are determined by a spatially/temporally regulated display of HA receptors, such as CD44 and receptor for hyaluronan-mediated motility (RHAMM). HA signaling through CD44 with RHAMM has been shown to stimulate inflammation and fibrotic processes. This study shows an increased expression of RHAMM in proinflammatory macrophages. Interfering with HA/RHAMM interactions using a 15-mer RHAMM-mimetic, HA-binding peptide, together with high-molecular-weight (HMW) HA reduced the expression and release of inflammatory markers and increased the expression of anti-inflammatory markers in proinflammatory macrophages. HA/RHAMM interactions were interfered in vivo during the regeneration of a full-thickness cartilage defect after microfracture surgery in rabbits using three intra-articular injections of 15-mer RHAMM-mimetic. HA-binding peptide together with HMWHA reduced the number of proinflammatory macrophages and increased the number of anti-inflammatory macrophages in the injured knee joint and greatly improved the repair of the cartilage defect compared with intra-articular injections of HMWHA alone. These findings suggest that HA/RHAMM interactions play a key role in cartilage repair/regeneration via stimulating inflammatory and fibrotic events, including increasing the ratio of proinflammatory/anti-inflammatory macrophages. Interfering with these interactions reduced inflammation and greatly improved cartilage repair.


Assuntos
Cartilagem Articular , Receptores de Hialuronatos , Ácido Hialurônico , Macrófagos , Animais , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Coelhos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Inflamação/metabolismo , Inflamação/patologia
2.
Am J Physiol Cell Physiol ; 322(4): C674-C687, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196167

RESUMO

The carbohydrate hyaluronan (or hyaluronic acid, HA) is found in all human tissues and biofluids where it has wide-ranging functions in health and disease that are dictated by both its abundance and size. Consequently, hyaluronan evaluation in physiological samples has significant translational potential. Although the analytical tools and techniques for probing other biomolecules such as proteins and nucleic acids have become standard approaches in biochemistry, those available for investigating hyaluronan are less well established. In this review, we survey methods related to the assessment of native hyaluronan in biological specimens, including protocols for separating it from biological matrices and technologies for determining its concentration and molecular weight.


Assuntos
Receptores de Hialuronatos , Ácido Hialurônico , Humanos , Receptores de Hialuronatos/metabolismo , Peso Molecular
3.
Anal Biochem ; 652: 114769, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660507

RESUMO

A solid phase adsorption method for selective isolation of hyaluronan (HA) from biological samples is presented. Following enzymatic degradation of protein, HA can be separated from sulfated glycosaminoglycans, other unsulfated glycosaminoglycans, nucleic acids, and proteolytic fragments by adsorption to amorphous silica at specific salt concentrations. The adsorbed HA can be released from silica using neutral and basic aqueous solutions. HA ranging in size from ∼9 kDa to MDa polymers has been purified by this method from human serum and conditioned medium of cultured cells.


Assuntos
Ácido Hialurônico , Dióxido de Silício , Adsorção , Células Cultivadas , Glicosaminoglicanos , Humanos
4.
J Autoimmun ; 124: 102713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390919

RESUMO

Despite the existence of potent anti-inflammatory biological drugs e.g., anti-TNF and anti IL-6 receptor antibodies, for treating chronic inflammatory and autoimmune diseases, these are costly and not specific. Cheaper oral available drugs remain an unmet need. Expression of the acute phase protein Serum Amyloid A (SAA) is dependent on release of pro-inflammatory cytokines IL-1, IL-6 and TNF-α during inflammation. Conversely, SAA induces pro-inflammatory cytokine secretion, including Th17, leading to a pathogenic vicious cycle and chronic inflammation. 5- MER peptide (5-MP) MTADV (methionine-threonine-alanine-aspartic acid-valine), also called Amilo-5MER, was originally derived from a sequence of a pro-inflammatory CD44 variant isolated from synovial fluid of a Rheumatoid Arthritis (RA) patient. This human peptide displays an efficient anti-inflammatory effects to ameliorate pathology and clinical symptoms in mouse models of RA, Inflammatory Bowel Disease (IBD) and Multiple Sclerosis (MS). Bioinformatics and qRT-PCR revealed that 5-MP, administrated to encephalomyelytic mice, up-regulates genes contributing to chronic inflammation resistance. Mass spectrometry of proteins that were pulled down from an RA synovial cell extract with biotinylated 5-MP, showed that it binds SAA. 5-MP disrupted SAA assembly, which is correlated with its pro-inflammatory activity. The peptide MTADV (but not scrambled TMVAD) significantly inhibited the release of pro-inflammatory cytokines IL-6 and IL-1ß from SAA-activated human fibroblasts, THP-1 monocytes and peripheral blood mononuclear cells. 5-MP suppresses the pro-inflammatory IL-6 release from SAA-activated cells, but not from non-activated cells. 5-MP could not display therapeutic activity in rats, which are SAA deficient, but does inhibit inflammations in animal models of IBD and MS, both are SAA-dependent, as shown by others in SAA knockout mice. In conclusion, 5-MP suppresses chronic inflammation in animal models of RA, IBD and MS, which are SAA-dependent, but not in animal models, which are SAA-independent.


Assuntos
Artrite Reumatoide/imunologia , Receptores de Hialuronatos/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Esclerose Múltipla/imunologia , Peptídeos/genética , Proteína Amiloide A Sérica/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Autoimunidade , Células Cultivadas , Biologia Computacional , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Peptídeos/uso terapêutico , Proteína Amiloide A Sérica/genética
5.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209086

RESUMO

Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1ß)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas da Matriz Extracelular/química , Receptores de Hialuronatos/química , Ácido Hialurônico/metabolismo , Interleucina-1beta/efeitos adversos , Células-Tronco Mesenquimais/citologia , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Condrogênese , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metaloproteases/genética , Camundongos , Peptídeos/química
6.
Glycobiology ; 28(3): 137-147, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300896

RESUMO

A method for specific quantification of hyaluronan (HA) concentration using AlphaScreen® (Amplified Luminescent Proximity Homogeneous Assay) technology is described. Two types of hydrogel-coated and chromophore-loaded latex nanobeads are employed. The proximity of the beads in solution is detected by excitation of the donor bead leading to the production of singlet oxygen, and chemiluminescence from the acceptor bead upon exposure to singlet oxygen. In the HA assay, the donor bead is modified with streptavidin, and binds biotin-labeled HA. The acceptor bead is modified with Ni(II), and is used to bind a specific recombinant HA-binding protein (such as HABP; aggrecan G1-IGD-G2) with a His-tag. Competitive inhibition of the HA-HABP interaction by free unlabeled HA in solution is used for quantification. The assay is specific for HA, and not dependent on HA molecular mass above the decasaccharide. HA can be quantified over a concentration range of approximately 30-1600 ng/mL using 2.5 µL of sample, for a detectable mass range of approximately 0.08-4 ng HA. This sensitivity of the AlphaScreen assay is greater than existing ELISA-like methods, due to the small volume requirements. HA can be detected in biological fluids using the AlphaScreen assay, after removal of bound proteins from HA and dilution or removal of other interfering proteins and lipids.


Assuntos
Ácido Hialurônico/análise , Medições Luminescentes , Condrócitos/química , Humanos
7.
Anal Biochem ; 474: 78-88, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25579786

RESUMO

Hyaluronan (HA) in human milk mediates host responses to microbial infection via TLR4- and CD44-dependent signaling. Signaling by HA is generally size specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low-M component. Here we report the size distribution of HA in human milk samples from 20 unique donors. A new method for HA analysis, employing ion exchange (IEX) chromatography to fractionate HA by size and specific quantification of each size fraction by competitive enzyme-linked sorbent assay (ELSA), was developed. When separated into four fractions, milk HA with M⩽20 kDa, M∼20 to 60 kDa, and M∼60 to 110 kDa comprised averages of 1.5, 1.4, and 2.0% of the total HA, respectively. The remaining 95% was HA with M⩾110 kDa. Electrophoretic analysis of the higher M HA from 13 samples showed nearly identical M distributions, with an average M of approximately 440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low-M HA components.


Assuntos
Ácido Hialurônico/química , Leite Humano/química , Calibragem , Fracionamento Químico , Densitometria , Eletroforese , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Ácido Hialurônico/isolamento & purificação , Troca Iônica , Peso Molecular
8.
J Biol Chem ; 288(40): 29090-104, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23950179

RESUMO

Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human ß-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human ß-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hß D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.


Assuntos
Ácido Hialurônico/farmacologia , Imunidade Inata/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Leite Humano/química , Administração Oral , Animais , Anticorpos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Contagem de Colônia Microbiana , Resistência à Doença/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HT29 , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/administração & dosagem , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Lactação/efeitos dos fármacos , Camundongos , Microscopia de Fluorescência , Fosforilação/efeitos dos fármacos , Período Pós-Parto , Transporte Proteico/efeitos dos fármacos , Salmonelose Animal/imunologia , Salmonelose Animal/patologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Homologia de Sequência de Aminoácidos , Receptor 4 Toll-Like/metabolismo , beta-Defensinas/metabolismo
9.
J Biol Chem ; 287(36): 30610-24, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22761444

RESUMO

Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human ß-defensin 2 (HßD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HßD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HßD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HßD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HßD2 protein.


Assuntos
Colo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Mucosa Intestinal/metabolismo , beta-Defensinas/biossíntese , Animais , Linhagem Celular Tumoral , Colo/imunologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/imunologia , Ácido Hialurônico/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Mutantes , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , beta-Defensinas/genética , beta-Defensinas/imunologia
10.
Glycobiology ; 23(11): 1270-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23964097

RESUMO

Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ~150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20-150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ~150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases.


Assuntos
Receptores de Hialuronatos/química , Ácido Hialurônico/química , Biotinilação , Densitometria , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Peso Molecular
11.
Am J Pathol ; 181(4): 1250-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22889846

RESUMO

Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor ß-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling.


Assuntos
Proteínas da Matriz Extracelular/química , Receptores de Hialuronatos/química , Ácido Hialurônico/metabolismo , Inflamação/patologia , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos , Animais , Ligação Competitiva/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno/biossíntese , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Receptores de Hialuronatos/metabolismo , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Peso Molecular , Neovascularização Patológica/patologia , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Pele/efeitos dos fármacos , Tenascina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Front Mol Biosci ; 9: 990861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275631

RESUMO

The size, conformation, and organization of the glycosaminoglycan hyaluronan (HA) affect its interactions with soluble and cell surface-bound proteins. HA that is induced to form stable networks has unique biological properties relative to unmodified soluble HA. AlphaLISA assay technology offers a facile and general experimental approach to assay protein-mediated networking of HA in solution. Connections formed between two end-biotinylated 50 kDa HA (bHA) chains can be detected by signal arising from streptavidin-coated donor and acceptor beads being brought into close proximity when the bHA chains are bridged by proteins. We observed that incubation of bHA with the protein TSG-6 (tumor necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to dimerization or higher order multimerization of HA chains in solution. We compared two different heparin (HP) samples and two heparan sulfate (HS) samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples had approximately three sulfates per disaccharide, and both were effective in inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation (1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS with a lower degree of sulfation (0.75 per disaccharide) was less effective. We further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also tested other HA-binding proteins for ability to create HA networks. The G1 domain of versican (VG1) effectively networked bHA in solution but required a higher concentration than TSG-6. Cartilage link protein (HAPLN1) and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed only low and variable magnitude HA networking effects. This study unambiguously demonstrates HA crosslinking in solution by TSG-6 and VG1 proteins, and establishes PRG4, HP and highly sulfated HS as modulators of TSG-6 mediated HA crosslinking.

13.
Anal Biochem ; 417(1): 50-6, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21683677

RESUMO

The molecular mass of the polysaccharide hyaluronan (HA) is an important determinant of its biological activity and physicochemical properties. One method currently used for the analysis of the molecular mass distribution of an HA sample is gel electrophoresis. In the current work, an improved agarose gel electrophoresis method for analysis of high molecular mass HA is presented and validated. HA mobility in 0.5% agarose minigels was found to be linearly related to the logarithm of molecular mass in the range from approximately 200 to 6000 kDa. A sample load of 2.5 µg for polydisperse HA samples was employed. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in the sample as well as calculation of weight-average and number-average values. The method was validated for a polydisperse HA sample with a weight-average molecular mass of approximately 2000 kDa. Excellent agreement was found between the weight-average molecular mass determined by electrophoresis and that determined by rheological measurement of the solution viscosity. The revised method was then used to show that heating solutions of HA at 100°C, followed by various cooling procedures, had no effect on the HA molecular mass distribution.


Assuntos
Eletroforese em Gel de Ágar/métodos , Ácido Hialurônico/análise , Ácido Hialurônico/química , Calibragem , Densitometria , Peso Molecular , Padrões de Referência , Reprodutibilidade dos Testes , Temperatura , Viscosidade
14.
Anal Biochem ; 417(1): 41-9, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21684248

RESUMO

Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.


Assuntos
Eletroforese em Gel de Ágar/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Ácido Hialurônico/análise , Ácido Hialurônico/química , Soluções Tampão , Calibragem , Densitometria , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ácido Hialurônico/isolamento & purificação , Peso Molecular , Padrões de Referência , Reprodutibilidade dos Testes , Sefarose/química
15.
J Orthop Res ; 38(4): 731-739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31736104

RESUMO

The purpose of this investigation was to determine the role of extracellular vesicles (EVs), released from articular chondrocytes in a physiological or pathological state, in cell-cell communication with other articular chondrocytes or chondrocyte precursor cells. The conditioned medium from interleukin-1ß (IL-1ß)-treated human articular chondrocytes stimulated catabolic events and inhibited type II collagen expression in articular chondrocytes to a much greater degree than medium from IL-1ß-treated chondrocytes after complete removal of EVs. The vehicle-treated and IL-1ß-treated human articular chondrocytes released EVs of similar size; however, the number of EVs released by IL-1ß-treated chondrocytes was markedly higher than the number of EVs released from the vehicle-treated cells. Furthermore, our findings demonstrate that similar to medium from IL-1ß-treated chondrocytes containing EVs, EVs isolated from medium of IL-1ß-treated chondrocytes stimulated catabolic events in articular chondrocytes, whereas EVs isolated from the medium of vehicle-treated chondrocytes inhibited catabolic events and increased messenger RNA levels of aggrecan and type II collagen in IL-1ß-treated chondrocytes. Furthermore, the medium containing EVs from vehicle-treated articular chondrocytes or EVs isolated from this medium stimulated chondrogenesis of C3H10T1/2 cells, whereas medium containing EVs from IL-1ß-treated chondrocytes or EVs isolated from this medium inhibited chondrogenesis. Our findings suggest that EVs released by articular chondrocytes play a key role in the communication between joint cells and ultimately in joint homeostasis, maintenance, pathology, and repair. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:731-739, 2020.


Assuntos
Comunicação Celular , Condrócitos/fisiologia , Vesículas Extracelulares/fisiologia , Idoso , Animais , Cartilagem Articular/citologia , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células
16.
Sci Rep ; 10(1): 1441, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996703

RESUMO

Inflammation plays a critical role in osteoarthritis (OA). It stimulates catabolic events in articular chondrocytes and prevents chondrogenic precursor cells from repairing cartilage lesions, leading to accelerated cartilage degradation. Therefore, the identification of novel factors that reduce catabolic events in chondrocytes and enhances chondrogenic differentiation of precursor cells in an inflammatory environment may provide novel therapeutic strategies for the treatment of OA. The goal of this study was to determine whether a hyaluronan (HA)-binding peptide (P15-1), via interacting with high molecular weight (HMW)HA can enhance the anti-inflammatory properties of HMWHA and decrease catabolic events in interleukin-1beta (IL-1ß)-treated human articular chondrocytes. Treatment with P15-1 decreased catabolic events and stimulated anabolic events in articular chondrocytes cultured in an inflammatory environment. P15-1 pre-mixed with HMWHA was more effective in inhibiting catabolic events and stimulating anabolic events than P15-1 or HMWHA alone. Our findings suggest that P15-1 together with HMWHA inhibits catabolic events in articular chondrocytes via the inhibition of p38 mitogen-activated protein kinases (MAPK) and increasing the thickness of the pericellular matrix (PCM) around chondrocytes thereby decreasing catabolic signaling. Finally, conditioned medium from IL-1ß and P15-1-treated human articular chondrocytes was less inhibitory for chondrogenic differentiation of precursor cells than conditioned medium from chondrocytes treated with IL-1ß alone. In conclusion, P15-1 is proposed to function synergistically with HMWHA to enhance the protective microenvironment for chondrocytes and mesenchymal stem cells during inflammation and regeneration.


Assuntos
Cartilagem/patologia , Condrócitos/metabolismo , Receptores de Hialuronatos/metabolismo , Inflamação/metabolismo , Osteoartrite/metabolismo , Adulto , Diferenciação Celular , Células Cultivadas , Condrócitos/patologia , Condrogênese , Meios de Cultivo Condicionados/farmacologia , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Methods Mol Biol ; 1952: 91-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825168

RESUMO

The average molecular mass of hyaluronan (HA) in most healthy biological fluids and tissues is usually about 6000-8000 kDa, but the biosynthetic mechanism results in a polydisperse mixture of sizes. Subsequent enzymatic degradation, or the action of reactive oxygen and nitrogen species, can further increase polydispersity and decrease the average size. Fragmented HA can be a biomarker of inflammation. In addition, reductions in HA size are associated with tissue remodeling and repair processes. Some cell-surface receptor proteins have been reported to have HA-binding affinities that are size specific, and participate in activation of signaling cascades controlling multiple aspects of cell behavior. Here we describe simple agarose gel electrophoresis protocols for the determination of the molecular mass distribution of HA isolated from tissues and fluids.


Assuntos
Eletroforese em Gel de Ágar/métodos , Ácido Hialurônico/química , Acetatos/química , Ácidos Bóricos/química , Densitometria/métodos , Ácido Edético/química , Etilenodiaminas/química , Humanos , Ácido Hialurônico/isolamento & purificação , Peso Molecular , Coloração e Rotulagem/métodos , Trometamina/química
18.
Inflammation ; 42(5): 1808-1820, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31243649

RESUMO

Hyaluronan (HA) fragments have been proposed to elicit defensive or pro-inflammatory responses in many cell types. For articular chondrocytes in an inflammatory environment, studies have failed to reach consensus on the endogenous production or effects of added HA fragments. The present study was undertaken to resolve this discrepancy. Cultured primary human articular chondrocytes were exposed to the inflammatory cytokine IL-1ß, and then tested for changes in HA content/size in conditioned medium, and for the expression of genes important in HA binding/signaling or metabolism, and in other catabolic/anabolic responses. Changes in gene expression caused by enzymatic degradation of endogenous HA, or addition of exogenous HA fragments, were examined. IL-1ß increased the mRNA levels for HA synthases HAS2/HAS3 and for the HA-binding proteins CD44 and TSG-6. mRNA levels for TLR4 and RHAMM were very low and were little affected by IL-1ß. mRNA levels for catabolic markers were increased, while type II collagen (α1(II)) and aggrecan were decreased. HA concentration in the conditioned medium was increased, but the HA was not degraded. Treatment with recombinant hyaluronidase or addition of low endotoxin HA fragments did not elicit pro-inflammatory responses. Our findings showed that HA fragments were not produced by IL-1ß-stimulated human articular chondrocytes in the absence of other sources of reactive oxygen or nitrogen species, and that exogenous HA fragments from oligosaccharides up to about 40 kDa in molecular mass were not pro-inflammatory agents for human articular chondrocytes, probably due to low expression of TLR4 and RHAMM in these cells.


Assuntos
Cartilagem Articular/citologia , Condrócitos/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Inflamação/etiologia , Células Cultivadas , Condrócitos/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Fragmentos de Peptídeos/farmacologia
19.
J Thorac Cardiovasc Surg ; 156(4): 1598-1608.e1, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859675

RESUMO

OBJECTIVE: Intrapericardial fibrous adhesions increase the risk of sternal reentry. Proteoglycan 4/lubricin (PRG4) is a mucin-like glycoprotein that lubricates tissue compartments and prevents inflammation. We characterized PRG4 expression in human pericardium and examined its effects in vitro on human cardiac myofibroblast fibrotic activity and in vivo as a measure of its therapeutic potential to prevent adhesions. METHODS: Full-length PRG4 expression was determined using Western blot analysis and amplified luminescent proximity homogeneous assay in human pericardial tissues obtained at cardiotomy. The in vitro effects of PRG4 were investigated on human cardiac myofibroblasts for cell adhesion, collagen gel contraction, and cell-mediated extracellular matrix remodeling. The influence of PRG4 on pericardial homeostasis was determined in a chronic porcine animal model. RESULTS: PRG4 is expressed in human pericardial fluid and colocalized with pericardial mesothelial cells. Recombinant human PRG4 prevented human cardiac myofibroblast attachment and reduced myofibroblast activity assessed using collagen gel contraction assay (64.6% ± 8.1% vs 47.1% ± 6.8%; P = .02). Using a microgel assay, human cardiac myofibroblast mediated collagen fiber remodeling was attenuated by PRG4 (1.17 ± 0.03 vs 0.90 ± 0.05; P = .002). In vivo, removal of pericardial fluid alone induced severe intrapericardial adhesion formation, tissue thickening, and inflammatory fluid collections. Restoration of intrapericardial PRG4 was protective against fibrous adhesions and preserved the pericardial space. CONCLUSIONS: For the first time, we show that PRG4 is expressed in human pericardial fluid and regulates local fibrotic myofibroblast activity. Loss of PRG4-enriched pericardial fluid after cardiotomy might induce adhesion formation. Therapeutic restoration of intrapericardial PRG4 might prevent fibrous/inflammatory adhesions and reduce the risk of sternal reentry.


Assuntos
Miofibroblastos/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Proteoglicanas/farmacologia , Doenças Torácicas/prevenção & controle , Animais , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Pericárdio/patologia , Proteoglicanas/metabolismo , Sus scrofa , Doenças Torácicas/metabolismo , Doenças Torácicas/patologia , Aderências Teciduais
20.
Artigo em Inglês | MEDLINE | ID: mdl-29173725

RESUMO

The glycosaminoglycan hyaluronan (HA) is a key component of the microenvironment surrounding cells. In healthy tissues, HA molecules have extremely high molecular mass and consequently large hydrodynamic volumes. Tethered to the cell surface by clustered receptor proteins, HA molecules crowd each other, as well as other macromolecular species. This leads to severe nonideality in physical properties of the biomatrix, because steric exclusion leads to an increase in effective concentration of the macromolecules. The excluded volume depends on both polymer concentration and hydrodynamic volume/molecular mass. The biomechanical properties of the extracellular matrix, tissue hydration, receptor clustering, and receptor-ligand interactions are strongly affected by the presence of HA and by its molecular mass. In inflammation, reactive oxygen and nitrogen species fragment the HA chains. Depending on the rate of chain degradation relative to the rates of new synthesis and removal of damaged chains, short fragments of the HA molecules can be present at significant levels. Not only are the physical properties of the extracellular matrix affected, but the HA fragments decluster their primary receptors and act as endogenous danger signals. Bioanalytical methods to isolate and quantify HA fragments have been developed to determine profiles of HA content and size in healthy and diseased biological fluids and tissues. These methods have potential use in medical diagnostic tests. Therapeutic agents that modulate signaling by HA fragments show promise in wound healing and tissue repair without fibrosis.


Assuntos
Ácido Hialurônico , Animais , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA