Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 501(7468): 539-42, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24067714

RESUMO

Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values.


Assuntos
Biodiversidade , Peixes/classificação , Geografia , Animais , Recifes de Corais , Oceano Pacífico , Densidade Demográfica , Especificidade da Espécie , Temperatura , Clima Tropical
2.
J Environ Manage ; 231: 940-952, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602255

RESUMO

Tropical countries lie at the nexus of three pressing issues for global sustainability: agricultural production, climate change mitigation and biodiversity conservation. The forces that drive forest protection do not necessarily oppose those that drive forest clearance for development. This decoupling, enhanced by the stronger economic forces compared to conservation, is detrimental for the social-ecological sustainability of forested tropical landscapes. This paper presents an integrated, and spatially-explicit, Agent-Based Model that examines the future impacts of land-use change scenarios on the sustainability of the Wet Tropics region of tropical Queensland, Australia. In particular, the model integrates Bayesian Belief Networks, Geographical Information Systems, empirical data and expert knowledge, under a land-sharing/land-sparing analysis, to study the impact of different landscape configurations on trade-offs and synergies among biodiversity and two ecosystem services (sugarcane production and carbon sequestration). Contrary to most tropical regions, model simulations show that Business As Usual is helping to reconcile these contrasting goals in the forested landscape of the Wet Tropics. The paper analyses which combination of governance and socio-economic factors is causing these positive results. This is an outstanding achievement for a tropical region, considering that most tropical areas are characterized for having stronger economic-land clearing forces compared to conservation forces, which reduce important ecosystem services for human wellbeing and the health of ecosystems.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Austrália , Teorema de Bayes , Florestas , Humanos , Queensland
3.
Glob Chang Biol ; 24(12): 5895-5908, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30267559

RESUMO

Cropland expansion threatens biodiversity by driving habitat loss and impacts carbon storage through loss of biomass and soil carbon (C). There is a growing concern land-use change (LUC) to cropland will result in a loss of ecosystem function and various ecosystem services essential for human health and well-being. This paper examines projections of future cropland expansion from an integrated assessment model IMAGE 3.0 under a "business as usual" scenario and the direct impact on both biodiversity and C storage. By focusing on biodiversity hotspots and Alliance for Zero Extinction (AZE) sites, loss of habitat as well as potential impacts on endangered and critically endangered species are explored. With regards to C storage, the impact on both soil and vegetation standing C stocks are examined. We show that if projected trends are realized, there are likely to be severe consequences for these resources. Substantial loss of habitat in biodiversity hotspots such as Indo-Burma, and the Philippians is expected as well as 50% of species in AZE sites losing part of their last remaining habitat. An estimated 13.7% of vegetation standing C stocks and 4.6% of soil C stocks are also projected to be lost in areas affected with Brazil and Mexico being identified as priorities in terms of both biodiversity and C losses from cropland expansion. Changes in policy to regulate projected cropland expansion, and increased measures to protect natural resources, are highly likely to be required to prevent these biodiversity and C losses in the future.


Assuntos
Agricultura/tendências , Biodiversidade , Sequestro de Carbono , Produtos Agrícolas , Brasil , Carbono , Conservação dos Recursos Naturais/métodos , Ecossistema , Previsões , Humanos , México , Modelos Teóricos
4.
Glob Chang Biol ; 21(9): 3267-77, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25605302

RESUMO

Forest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long-lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.


Assuntos
Mudança Climática , Árvores/fisiologia , Vertebrados/fisiologia , Animais , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Reprodução , Estações do Ano , Árvores/crescimento & desenvolvimento , Clima Tropical
5.
Proc Natl Acad Sci U S A ; 109(18): E1111-20, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22499786

RESUMO

In China, and elsewhere, long-term economic development and poverty alleviation need to be balanced against the likelihood of ecological failure. Here, we show how paleoenvironmental records can provide important multidecadal perspectives on ecosystem services (ES). More than 50 different paleoenvironmental proxy records can be mapped to a wide range of ES categories and subcategories. Lake sediments are particularly suitable for reconstructing records of regulating services, such as soil stability, sediment regulation, and water purification, which are often less well monitored. We demonstrate the approach using proxy records from two sets of lake sediment sequences in the lower Yangtze basin covering the period 1800-2006, combined with recent socioeconomic and climate records. We aggregate the proxy records into a regional regulating services index to show that rapid economic growth and population increases since the 1950s are strongly coupled to environmental degradation. Agricultural intensification from the 1980s onward has been the main driver for reducing rural poverty but has led to an accelerated loss of regulating services. In the case of water purification, there is strong evidence that a threshold has been transgressed within the last two decades. The current steep trajectory of the regulating services index implies that regional land management practices across a large agricultural tract of eastern China are critically unsustainable.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Animais , Biodiversidade , China , Sedimentos Geológicos , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Lagos , Biologia Marinha/história , Biologia Marinha/métodos , Fatores de Tempo
6.
Ecol Evol ; 14(2): e11015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343580

RESUMO

In the degraded and modified environment of the Scottish Highlands, novel ungulate communities have arisen following local extinctions, reintroductions, and the introduction of non-native species. An understanding of the dynamics and interactions within these unique mammal communities is important as many of these mammals represent keystone species with disproportionate impacts on the environment. Using a camera trap survey, we investigated land cover preferences and spatiotemporal interactions within a Scottish ungulate community: the sika deer (Cervus nippon), the roe deer (Capreolus capreolus), the red deer (Cervus elaphus), and the wild boar (Sus scrofa). We used generalised linear models to assess land cover preferences and the effect of human disturbance; spatiotemporal interactions were characterised using time interval modelling. We found that sika deer and roe deer preferred coniferous plantations and grasslands, with sika deer additionally preferring woodland. For red deer, we found a slight preference for wetland over woodland; however, the explained variance was low. Finally, wild boar preferred grassland and woodland and avoided coniferous plantations, heathland, and shrubland. Contrary to our expectations, we found no evidence that human disturbance negatively impacted ungulates' distributions, potentially because ungulates temporally avoid humans or because dense vegetation cover mitigates the impacts of humans on their distributions. Furthermore, we detected a spatiotemporal association between sika deer and roe deer. Although the underlying cause of this is unknown, we hypothesise that interactions such as grazing facilitation or an anti-predator response to culling could be driving this pattern. Our work provides a preliminary analysis of the dynamics occurring within a novel ungulate community and also highlights current knowledge gaps in our understanding of the underlying mechanisms dictating the observed spatiotemporal associations.

7.
Ambio ; 53(2): 309-323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828254

RESUMO

While the importance of interdisciplinary approaches is increasingly recognised in conservation, bridging knowledge systems across scales remains a fundamental challenge. Focusing on the Important Plant Areas (IPA) approach, we evaluate how complementing scientific and local knowledge can better inform the conservation of useful plants in Colombia. We worked in three municipalities to investigate knowledge on useful plant richness, species composition and use types, as well as perceptions on area-based plant conservation approaches. Participatory focus groups and ethnobotanical walks-in-the-woods were undertaken with local communities, while scientific data were represented by occurrence records from global data aggregators and digitised collections. A total of 1190 species with human uses were reported. Combining knowledge systems provided the richest understanding of useful plants but the relative contribution of each system varied between study areas, influenced by the history of scientific studies, socio-ecological context and study design. Meanwhile, local perceptions of how conservation areas should be selected differed from global IPA criteria. These results show that working with local communities can improve biological understanding for spatial conservation planning. Additionally, participatory approaches must move beyond community-based conservation and data collection, to inform the design of global conservation programmes.


RESUMEN: Si bien la importancia de los enfoques interdisciplinarios se reconoce cada vez más en la conservación, articular los sistemas de conocimiento a través de sus escalas sigue siendo un desafío fundamental. Centrándonos en el enfoque de Áreas Importantes para Plantas (AIP), evaluamos cómo la integración entre conocimiento científico y local puede mejorar la información para la conservación de las plantas útiles en Colombia. Trabajamos en tres municipios para investigar el conocimiento sobre la riqueza de plantas útiles, la composición de especies y los tipos de uso, así como las percepciones sobre los enfoques de conservación de plantas basados en áreas. Se llevaron a cabo grupos de enfoque participativos y caminatas etnobotánicas en el bosque con las comunidades, mientras que los datos científicos se representaron mediante registros de ocurrencia de agregadores de datos globales y colecciones digitalizadas. En total se reportaron 1.190 especies con usos humanos. La combinación de sistemas de conocimiento proporcionó la comprensión más rica de las plantas útiles, pero la contribución relativa de cada sistema varió entre las áreas de estudio, influenciada por la historia de los estudios científicos, el contexto socioecológico y el diseño del estudio. Por otra parte, las percepciones locales sobre cómo se deben seleccionar las áreas de conservación difirieron de los criterios globales de las AIP. Estos resultados muestran que trabajar con las comunidades locales puede mejorar la comprensión biológica para la planificación de la conservación espacial. Además, los enfoques participativos deben ir más allá de la recopilación de datos y la conservación basada en la comunidad, para instruir el diseño de programas de conservación global.


Assuntos
Plantas Medicinais , Humanos , Colômbia , Conservação dos Recursos Naturais/métodos , Etnobotânica/métodos , Conhecimento
8.
Ambio ; 50(9): 1681-1697, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33861399

RESUMO

Overexploitation is the second biggest driver of global plant extinction. Meanwhile, useful plant species are vital to livelihoods across the world, with global conservation efforts increasingly applying the concept of 'conservation-through-use.' However, successfully balancing conservation and biodiversity use remains challenging. We reviewed literature on the sustainability of wild-collected plant use across the countries of Colombia, Ecuador, Peru, and Bolivia-a region of global importance for its biological and cultural richness. After applying defined search terms and a two-stage screening process, 68 articles were reviewed. The numbers which reported sustainable, unsustainable, or context-dependent outcomes were relatively even, but national differences emerged. Through narrative synthesis, we identified five key, reoccurring themes: plant biology; land tenure; knowledge, resource, and capacity; economics and market pressures; and institutional structures, policy, and legislation. Our results show the need for flexible, context-specific approaches and the importance of collaboration, with bottom-up management and conservation methods involving local communities and traditional ecological knowledge often proving most effective.


Assuntos
Conservação dos Recursos Naturais , Etnobotânica , Bolívia , Equador , Peru , América do Sul
9.
Ecol Evol ; 11(6): 2717-2730, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767831

RESUMO

A wide array of technologies are available for gaining insight into the movement of wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial resolution of some satellite tracking technologies, the substantially longer battery life can yield important long-term data on individual behavior and movement for low per-unit cost. Typically, however, receiver arrays are designed to maximize spatial coverage at the cost of positional accuracy leading to potentially longer detection gaps as individuals move out of range between monitored locations. This is particularly true when these technologies are deployed to monitor species in hard-to-access locations.Here, we develop a novel approach to analyzing acoustic telemetry data, using the timing and duration of gaps between animal detections to infer different behaviors. Using the durations between detections at the same and different receiver locations (i.e., detection gaps), we classify behaviors into "restricted" or potential wider "out-of-range" movements synonymous with longer distance dispersal. We apply this method to investigate spatial and temporal segregation of inferred movement patterns in two sympatric species of reef shark within a large, remote, marine protected area (MPA). Response variables were generated using network analysis, and drivers of these movements were identified using generalized linear mixed models and multimodel inference.Species, diel period, and season were significant predictors of "out-of-range" movements. Silvertip sharks were overall more likely to undertake "out-of-range" movements, compared with gray reef sharks, indicating spatial segregation, and corroborating previous stable isotope work between these two species. High individual variability in "out-of-range" movements in both species was also identified.We present a novel gap analysis of telemetry data to help infer differential movement and space use patterns where acoustic coverage is imperfect and other tracking methods are impractical at scale. In remote locations, inference may be the best available tool and this approach shows that acoustic telemetry gap analysis can be used for comparative studies in fish ecology, or combined with other research techniques to better understand functional mechanisms driving behavior.

10.
Ambio ; 49(9): 1530-1548, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31808107

RESUMO

A debt-based economy requires the accumulation of more and more debt to finance economic growth, while future economic growth is needed to repay the debt, and so the cycle continues. Despite global debt reaching unprecedented levels, little research has been done to understand the impacts of debt dynamics on environmental sustainability. Here, we explore the environmental impacts of the debt-growth cycle in Indonesia, the world's largest debt-based producer of palm oil. Our empirical Agent-Based Model analyses the future effects (2018-2050) of power (im)balance scenarios between debt-driven economic forces (i.e. banks, firms), and conservation forces, on two ecosystem services (food production, climate regulation) and biodiversity. The model shows the trade-offs and synergies among these indicators for Business As Usual as compared to alternative scenarios. Results show that debt-driven economic forces can partially support environmental conservation, provided the state's role in protecting the environment is reinforced. Our analysis provides a lesson for developing countries that are highly dependent on debt-based production systems: sustainable development pathways can be achievable in the short and medium terms; however, reaching long-term sustainability requires reduced dependency on external financial powers, as well as further government intervention to protect the environment from the rough edges of the market economy.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Indonésia , Óleo de Palmeira
11.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190189, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31983336

RESUMO

Land-use change is a direct driver of biodiversity and carbon storage loss. Projections of future land use often include notable expansion of cropland areas in response to changes in climate and food demand, although there are large uncertainties in results between models and scenarios. This study examines these uncertainties by comparing three different socio-economic scenarios (SSP1-3) across three models (IMAGE, GLOBIOM and PLUMv2). It assesses the impacts on biodiversity metrics and direct carbon loss from biomass and soil as a direct consequence of cropland expansion. Results show substantial variation between models and scenarios, with little overlap across all nine projections. Although SSP1 projects the least impact, there are still significant impacts projected. IMAGE and GLOBIOM project the greatest impact across carbon storage and biodiversity metrics due to both extent and location of cropland expansion. Furthermore, for all the biodiversity and carbon metrics used, there is a greater proportion of variance explained by the model used. This demonstrates the importance of improving the accuracy of land-based models. Incorporating effects of land-use change in biodiversity impact assessments would also help better prioritize future protection of biodiverse and carbon-rich areas. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Assuntos
Agricultura/tendências , Biodiversidade , Sequestro de Carbono , Conservação dos Recursos Naturais/métodos , Modelos Teóricos
12.
Sci Total Environ ; 747: 141006, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768767

RESUMO

Many ecosystem services (ES) models exist to support sustainable development decisions. However, most ES studies use only a single modelling framework and, because of a lack of validation data, rarely assess model accuracy for the study area. In line with other research themes which have high model uncertainty, such as climate change, ensembles of ES models may better serve decision-makers by providing more robust and accurate estimates, as well as provide indications of uncertainty when validation data are not available. To illustrate the benefits of an ensemble approach, we highlight the variation between alternative models, demonstrating that there are large geographic regions where decisions based on individual models are not robust. We test if ensembles are more accurate by comparing the ensemble accuracy of multiple models for six ES against validation data across sub-Saharan Africa with the accuracy of individual models. We find that ensembles are better predictors of ES, being 5.0-6.1% more accurate than individual models. We also find that the uncertainty (i.e. variation among constituent models) of the model ensemble is negatively correlated with accuracy and so can be used as a proxy for accuracy when validation is not possible (e.g. in data-deficient areas or when developing scenarios). Since ensembles are more robust, accurate and convey uncertainty, we recommend that ensemble modelling should be more widely implemented within ES science to better support policy choices and implementation.


Assuntos
Mudança Climática , Ecossistema , Incerteza
13.
Environ Health ; 8 Suppl 1: S18, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20102585

RESUMO

This Environment and Human Health project aims to develop a health-based summary measure of multiple physical environmental deprivation for the UK, akin to the measures of multiple socioeconomic deprivation that are widely used in epidemiology. Here we describe the first stage of the project, in which we aimed to identify health-relevant dimensions of physical environmental deprivation and acquire suitable environmental datasets to represent population exposure to these dimensions at the small-area level. We present the results of this process: an evidence-based list of environmental dimensions with population health relevance for the UK, and the spatial datasets we obtained and processed to represent these dimensions. This stage laid the foundations for the rest of the project, which will be reported elsewhere.


Assuntos
Poluição Ambiental/análise , Medidas em Epidemiologia , Coleta de Dados , Meio Ambiente , Poluição Ambiental/estatística & dados numéricos , Prática Clínica Baseada em Evidências , Humanos , Desenvolvimento de Programas , Reino Unido
15.
PLoS One ; 13(8): e0202509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30102738

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0201141.].

16.
PLoS One ; 13(7): e0201141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30028881

RESUMO

A debt-based economy cannot survive without economic growth. However, if private debt consistently grows faster than GDP, the consequences are financial crises and the current unprecedented level of global debt. This policy dilemma is aggravated by the lack of analyses factoring the impact of debt-growth cycles on the environment. What is really the relationship between debt and natural resource sustainability, and what is the role of debt in decoupling economic growth from natural resource availability? Here we present a conceptual Agent-Based Model (ABM) that integrates an environmental system into an ABM representation of Steve Keen's debt-based economic models. Our model explores the extent to which debt-driven processes, within debt-based economies, enhance the decoupling between economic growth and the availability of natural resources. Interestingly, environmental and economic collapse in our model are not caused by debt growth, or the debt-based nature of the economic system itself (i.e. the 'what'), but rather, these are due to the inappropriate use of debt by private actors (i.e. the 'how'). Firms inappropriately use bank credits for speculative goals-rather than production-oriented ones-and for exponentially increasing rates of technological development. This context creates temporal mismatches between natural resource growth and firms' resource extraction rates, as well as between economic growth and the capacity of the government to effectively implement natural resource conservation policies. This paper discusses the extent to which economic growth and the availability of natural resources can be re-coupled through a more sustainable use of debt, for instance by shifting mainstream banking forces to partially support environmental conservation as well as economic growth.


Assuntos
Conservação dos Recursos Naturais/economia , Modelos Econômicos , Algoritmos , Simulação por Computador , Regulamentação Governamental , Humanos , Desenvolvimento Sustentável/economia
17.
Nat Ecol Evol ; 1(7): 176, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28812589

RESUMO

Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.

18.
Sci Total Environ ; 506-507: 164-81, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460950

RESUMO

Poverty alleviation linked to agricultural intensification has been achieved in many regions but there is often only limited understanding of the impacts on ecological dynamics. A central need is to observe long term changes in regulating and supporting services as the basis for assessing the likelihood of sustainable agriculture or ecological collapse. We show how the analyses of 55 time-series of social, economic and ecological conditions can provide an evolutionary perspective for the modern Lower Yangtze River Basin region since the 1950s with powerful insights about the sustainability of modern ecosystem services. Increasing trends in provisioning ecosystem services within the region over the past 60 years reflect economic growth and successful poverty alleviation but are paralleled by steep losses in a range of regulating ecosystem services mainly since the 1980s. Increasing connectedness across the social and ecological domains after 1985 points to a greater uniformity in the drivers of the rural economy. Regime shifts and heightened levels of variability since the 1970s in local ecosystem services indicate progressive loss of resilience across the region. Of special concern are water quality services that have already passed critical transitions in several areas. Viewed collectively, our results suggest that the regional social-ecological system passed a tipping point in the late 1970s and is now in a transient phase heading towards a new steady state. However, the long-term relationship between economic growth and ecological degradation shows no sign of decoupling as demanded by the need to reverse an unsustainable trajectory.


Assuntos
Conservação dos Recursos Naturais/métodos , Economia , Pobreza/prevenção & controle , Agricultura/métodos , Agricultura/estatística & dados numéricos , Biodiversidade , China , Ecologia , Ecossistema , Monitoramento Ambiental , Humanos , Pobreza/tendências , Qualidade da Água
19.
PLoS One ; 10(10): e0140270, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26461104

RESUMO

Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Peixes/fisiologia , Animais , Biomassa , Intervalos de Confiança , Geografia , Clima Tropical
20.
Trends Ecol Evol ; 28(3): 135-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23146578

RESUMO

Species ranges are seldom at equilibrium with climate, because several interacting factors determine distribution, including demographic processes, dispersal, land use, disturbance (e.g., fire), and biotic interactions. Conservation strategies in a changing climate therefore cannot be based only on predicted climate-driven range shifts. Here, we explore conservation and management options in a framework for prioritizing landscapes based on two 'axes of concern': landscape conservation capacity attributes (percentage of protected area, connectivity, and condition of the matrix) and vulnerability to climate change (climate change velocity and topographic variation). Nine other conservation actions are also presented, from understanding and predicting to planning and managing for climate change. We emphasize the need for adaptation and resilience in populations, ecosystems, and the conservation environment itself.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Adaptação Fisiológica , Biodiversidade , Modelos Teóricos , Fenômenos Fisiológicos Vegetais , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA