Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540876

RESUMO

Chickpea (Cicer arietinum L.) seed proteins show a lot of functional properties leading this legume to be an interesting component for the development of protein-enriched foods. However, both the in-depth proteomic investigation and structural characterization of chickpea seed proteins are still lacking. In this paper a detailed characterization of chickpea seed protein fraction by means of SDS-PAGE, in-gel protein digestion, high-resolution mass spectrometry, and database searching is reported. Through this approach, twenty SDS gel bands were cut and analyzed. While the majority of the bands and the identified peptides were related to vicilin and legumin storage proteins, metabolic functional proteins were also detected. Legumins, as expected, were revealed at 45-65 kDa, as whole subunits with the α- and ß-chains linked together by a disulphide bond, but also at lower mass ranges (α- and ß-chains migrating alone). Similarly, but not expected, the vicilins were also spread along the mass region between 65 and 23 kDa, with some of them being identified in several bands. An MS structural characterization allowed to determine that, although chickpea vicilins were always described as proteins lacking cysteine residues, they contain this amino acid residue. Moreover, similar to legumins, these storage proteins are firstly synthesized as pre-propolypeptides (Mr 50-80 kDa) that may undergo proteolytic steps that not only cut the signal peptides but also produce different subunits with lower molecular masses. Overall, about 360 different proteins specific of the Cicer arietinum L. species were identified and characterized, a result that, up to the current date, represents the most detailed description of the seed proteome of this legume.

2.
Plants (Basel) ; 11(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009101

RESUMO

Durum wheat is one of the most commonly cultivated species in the world and represents a key commodity for many areas worldwide, as its grain is used for production of many foods, such as pasta, bread, couscous, and bourghul. Durum wheat grain has a relevant role in the human diet, providing carbohydrates, proteins, lipids, fibres, vitamins, and minerals, as well as highly valued bioactive compounds contributing to a healthy diet. Durum wheat is largely cultivated in the Mediterranean basin, where it is mainly grown under rain-fed conditions, thus currently undergoing drought stress, as well as soil salinity, which can hamper yield potential and influence the qualitative characteristics of grain. When plants suffer drought and/or salinity stress, a condition known as hyperosmotic stress is established at cellular level. This leads to the accumulation of ROS thus generating in turn an oxidative stress condition, which can ultimately result in the impairment of cellular integrity and functionality. To counteract oxidative damage due to excessive ROS production under stress, plants have evolved a complex array of both enzymatic and non-enzymatic antioxidant mechanisms, working jointly and synergically for maintenance of ROS homeostasis. Enhancement of antioxidant defence system has been demonstrated as an adaptive mechanism associated to an increased tolerance to hyperosmotic stress. In the light of these considerations, this review provides a concise overview on recent advancements regarding the role of the ascorbate-glutathione cycle and the main antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) in durum wheat response to drought and salt stresses that are expected to become more and more frequent due to the ongoing climate changes.

3.
Plants (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34961071

RESUMO

Durum wheat is a staple crop for the Mediterranean diet because of its adaptability to environmental pressure and for its large use in cereal-based food products, such as pasta and bread, as a source of calories and proteins. Durum wheat whole grains are also highly valued for their peculiar amount of dietary fiber and minerals, as well as bioactive compounds of particular interest for their putative health-beneficial properties, including polyphenols, carotenoids, tocopherols, tocotrienols, and phytosterols. In Mediterranean environments, durum wheat is mostly grown under rainfed conditions, where the crop often experiences environmental stresses, especially water deficit and soil salinity that may induce a hyperosmotic stress. In particular, changes in C and N accumulation due to these abiotic conditions, during grain filling, can influence starch and storage protein amount and composition in durum wheat caryopsis, thus influencing yield and quality traits. Recent advancements regarding the influence of water deficit and salinity stress on durum wheat are critically discussed. In particular, a focus on stress-induced changes in (a) grain protein content and composition in relation to technological and health quality; (b) starch and dietary fiber accumulation and composition; (c) phytochemical composition; (d) health-related grain micronutrient accumulation, such as Fe and Zn.

4.
Food Chem ; 244: 304-310, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29120786

RESUMO

It has been suggested that intensive breeding has led to decreased contents of health-promoting components in modern wheats. We therefore compared the contents and compositions of the major dietary fibre components, arabinoxylan and ß-glucan, in semolina and wholemeal flour of old and modern Italian durum wheats. No differences in total arabinoxylan content were observed but the modern varieties had higher proportions of soluble arabinoxylan in wholemeals and of ß-glucan in semolina. The study therefore provides no evidence that intensive breeding has had negative effects on the contents of dietary fibre components in durum wheat. However, comparison of material grown over two years indicated that the content and composition of arabinoxylan and ß-glucan were more stable in the older than in the modern genotypes. The identification of modern cultivars with high viscosity associated with a high content of ß-glucan suggests that they are good sources of fibre for human health.


Assuntos
Fibras na Dieta/análise , Genótipo , Triticum/química , Triticum/genética , Cruzamento , Farinha/análise , Humanos , Viscosidade , Xilanos/análise , beta-Glucanas/análise
5.
J Agric Food Chem ; 63(29): 6501-12, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26138860

RESUMO

Environmental stress during grain filling may affect wheat protein composition, thus influencing its final quality. A proteomic approach was used to evaluate changes in storage protein composition under water stress of two Italian durum wheat (Triticum turgidum ssp. durum) cultivars, Ciccio and Svevo. The high-molecular-weight glutenin region increased progressively in both cultivars and under two water regimens. The L48-35 region, corresponding to low-molecular-weight (LMW) glutenin subunits, increased slightly during grain development and decreased under water stress in both cultivars. In particular, an s-type LMW related to superior technological quality was down-expressed in the early-mid period in Svevo and in the mid-late period in Ciccio. Finally, the L<35 region, corresponding to gliadin-like proteins, decreased slightly during grain development and increased under stress in both cultivars. Several α-gliadins, associated with immunological potential, increased their expression under water stress, especially in Svevo in the early-mid stage of grain filling.


Assuntos
Glutens/análise , Proteínas de Plantas/análise , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia , Triticum/química , Água , Secas , Eletroforese em Gel Bidimensional , Itália , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA