Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(7): 2723-2730, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34704255

RESUMO

BACKGROUND: Environmental conditions affect the quality of the fruits and their organoleptic properties. In low-tech greenhouses, these environmental conditions are frequently not optimal for crops. Therefore, the present study demonstrates the effects of the use of an integrated passive heating and cooling system in a greenhouse located in the Mediterranean area on the quality of pepper fruits. RESULTS: The results indicate that the passive system utilized (i) improved many parameters, such as average weight of fruits, °Brix, glucose and fructose content, and P and K content; (ii) increased the values of b* and hab *; and (iii) reduced total phenolic compounds, total amino acids content, and Fe and Zn content. However, the degree of the effect of the climatic factors on these parameters was also affected by harvest time. CONCLUSION: This novel study highlights the possibility of improving the nutritional quality of pepper fruits by modifying the environmental conditions through the use of passive heating and cooling systems at the same time as reducing the carbon footprint. © 2021 Society of Chemical Industry.


Assuntos
Capsicum , Clima Extremo , Piper nigrum , Capsicum/química , Frutas/química , Valor Nutritivo , Fenóis/análise
2.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804877

RESUMO

Salinity provokes an imbalance of vegetative to generative growth, thus impairing crop productivity. Unlike breeding strategies, grafting is a direct and quick alternative to improve salinity tolerance in horticultural crops, through rebalancing plant development. Providing that hormones play a key role in plant growth and development and stress responses, we hypothesized that rootstock-mediated reallocation of vegetative growth and yield under salinity was associated with changes in the hormonal balance. To test this hypothesis, the hybrid pepper variety (Capsicum annuum L. "Gacela F1") was either non-grafted or grafted onto three commercial rootstocks (Creonte, Atlante, and Terrano) and plants were grown in a greenhouse under control (0 mM NaCl) and moderate salinity (35 mM NaCl) conditions. Differential vegetative growth versus fruit yield responses were induced by rootstock and salinity. Atlante strongly increased shoot and root fresh weight with respect to the non-grafted Gacela plants associated with improved photosynthetic rate and K+ homeostasis under salinity. The invigorating effect of Atlante can be explained by an efficient balance between cytokinins (CKs) and abscisic acid (ABA). Creonte improved fruit yield and maintained the reproductive to vegetative ratio under salinity as a consequence of its capacity to induce biomass reallocation and to avoid Na+ accumulation in the shoot. The physiological responses associated with yield stability in Creonte were mediated by the inverse regulation of CKs and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Finally, Terrano limited the accumulation of gibberellins in the shoot thus reducing plant height. Despite scion compactness induced by Terrano, both vegetative and reproductive biomass were maintained under salinity through ABA-mediated control of water relations and K+ homeostasis. Our data demonstrate that the contrasting developmental and physiological responses induced by the rootstock genotype in salinized pepper plants were critically mediated by hormones. This will be particularly important for rootstock breeding programs to improve salinity tolerance by focusing on hormonal traits.


Assuntos
Ácido Abscísico/metabolismo , Capsicum/metabolismo , Citocininas/metabolismo , Estresse Salino , Capsicum/crescimento & desenvolvimento
3.
J Sci Food Agric ; 101(4): 1428-1435, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32833253

RESUMO

BACKGROUND: Climate change has caused an increase in the frequency and intensity of heatwaves, worldwide, which subject plants to thermal stress for short periods; this can affect the quality of melon fruits, both negatively and positively. Since the application of putrescine has been shown to help increase tolerance of abiotic stresses, the objective of this work is to determine the effects of the foliar application of putrescine (1.5 and 5 mmol L-1 ) before a short heat stress (HS) on the quality of melon fruits. RESULTS: The results indicate that HS had a positive effect on the quality of melon fruits, since it increased the total sugars and polyamines contents and the antioxidant capacity, and reduced the presence of substances undesirable in foods such as nitrate. However, the fruit quality was further increased by the combination of HS and putrescine (5 mmol L-1 ). In this case, the melon fruits showed increases in their antioxidant capacity and contents of polyamines, amino acids and minerals beneficial to health. The nitrate concentration was even lower than in the control fruits. CONCLUSION: This novel study highlights the possibility of improving the nutritional quality of melon pulp by applying foliar putrescine in combination with a short period of high temperature. © 2020 Society of Chemical Industry.


Assuntos
Cucumis melo/efeitos dos fármacos , Putrescina/farmacologia , Aminoácidos/análise , Aminoácidos/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Cucumis melo/química , Cucumis melo/fisiologia , Frutas/química , Frutas/efeitos dos fármacos , Frutas/fisiologia , Resposta ao Choque Térmico , Minerais/análise , Minerais/metabolismo , Valor Nutritivo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
4.
Plant Cell Environ ; 41(5): 908-918, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28107563

RESUMO

High CO2 is able to ameliorate some negative effects due to climate change and intensify others. This study involves the sweet cherry (Prunus avium) cultivar 'Burlat' grafted on the 'Mariana 2624', 'Adara' and 'LC 52' rootstocks. In a climate chamber at two CO2 concentrations, ambient (400 µmol mol-1 ) and elevated (800 µmol mol-1 ), the plants were submitted to waterlogging for 7 d, followed by 7 d of recovery after drainage. Waterlogging drastically decreased the rate of photosynthesis, significantly endangering plant survival, particularly for the 'LC 52' and 'Adara' rootstocks. 'Mariana 2624' was also clearly affected by waterlogging that increased lipid peroxidation and the Cl- and SO42- concentrations in all the studied plants. Nevertheless, CO2 was able to overcome this reduction in photosynthesis, augmenting growth, increasing soluble sugars and starch, raising turgor and regulating the concentrations of Cl- and SO42- , while lowering the NO3- concentration in leaves of all the studied rootstocks. In concordance with these results, the proline levels indicated a more intense stress at control CO2 than at high CO2 for waterlogged plants. 'Mariana 2624' was more resistant to waterlogging than 'Adara', and both were more resistant than 'LC 52' in control CO2 conditions; this clearly enhanced the chance of survival under hypoxia.


Assuntos
Dióxido de Carbono/fisiologia , Oxigênio/metabolismo , Prunus avium/fisiologia , Água/fisiologia , Adaptação Fisiológica , Mudança Climática , Inundações , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Estresse Fisiológico , Fatores de Tempo
5.
J Sci Food Agric ; 98(3): 1071-1078, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28722753

RESUMO

BACKGROUND: Sweet pepper fruit quality disorders have been related mainly to an unbalanced nutrient supply and non-optimal growth conditions. Increases in the atmospheric CO2 concentration ([CO2 ]) have been associated with a reduction of transpiration, which can affect calcium (Ca) uptake as it is linked closely to water uptake. We investigated whether foliar application of Ca can counterbalance the effects of saline water and elevated [CO2 ]. RESULTS: High CO2 favoured generative growth instead of vegetative growth. Foliar Ca supply did not affect the marketable yield, but reduced the total yield when combined with salinity and 400 µmol mol-1 CO2 . Salinity affected negatively the total yield but this was overcome when CO2 was applied. The B and K concentrations were reduced by foliar Ca application, while Ca and Mn were increased at 400 µmol mol-1 CO2 . Salinity increased the Mn, Cl, and Na concentrations, regardless of the [CO2 ], and decreased K at 800 µmol mol-1 CO2 . The total protein was affected negatively only by elevated [CO2 ], and the total free amino acid concentration was reduced by all treatments. CONCLUSION: The effect of Ca application differed according to the other treatments applied. This procedure should be optimised to overcome future climate impacts on fruit quality. © 2017 Society of Chemical Industry.


Assuntos
Cálcio/metabolismo , Capsicum/metabolismo , Frutas/química , Águas Salinas/metabolismo , Cálcio/análise , Capsicum/química , Capsicum/crescimento & desenvolvimento , Dióxido de Carbono , Clorofila/metabolismo , Mudança Climática , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fotossíntese , Águas Salinas/análise
6.
Physiol Plant ; 161(2): 257-272, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28568609

RESUMO

The increase in the ambient concentration of CO2 and other greenhouse gases is producing climate events that can compromise crop survival. However, high CO2 concentrations are sometimes able to mitigate certain stresses such as salinity or drought. In this experiment, the effects of waterlogging and CO2 are studied in combination to elucidate the eventual response in sweet cherry trees. For this purpose, four sweet cherry cultivars ('Burlat', 'Cashmere', 'Lapins and 'New Star') were grafted on a typically hypoxia-tolerant rootstock (Mariana 2624) and submitted to waterlogging for 7 days at either ambient CO2 concentration (400 µmol mol-1 ) or at elevated CO2 (800 µmol mol-1 ). Waterlogging affected plants drastically, by decreasing photosynthesis, stomatal conductance, transpiration, chlorophyll fluorescence and growth. It also brought about the accumulation of proline, chloride and sulfate. Nonetheless, raising the CO2 supply not only mitigated all these effects but also induced the accumulation of soluble sugars and starch in the leaf. Therefore, sweet cherry plants submitted to waterlogging were able to overcome this stress when grown in a CO2 -enriched environment.


Assuntos
Dióxido de Carbono/fisiologia , Mudança Climática , Inundações , Prunus avium/fisiologia
7.
Physiol Plant ; 151(4): 375-89, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24152078

RESUMO

This study examines the extent to which the predicted CO2 -protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol(-1)) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt-stressed plants, elevated [CO2 ] increased leaf NO3(-) concentration and reduced Cl(-) concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non-stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt-stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels.


Assuntos
Capsicum/fisiologia , Dióxido de Carbono/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Salinidade , Ácido Abscísico/metabolismo , Capsicum/efeitos dos fármacos , Capsicum/crescimento & desenvolvimento , Respiração Celular/efeitos dos fármacos , Cloretos/metabolismo , Clorofila/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos
8.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475442

RESUMO

The use of nitrogen as a fertilizer can be highly risky when used excessively, and it is therefore necessary to find novel techniques to reduce its use. Aquaponics reduces the use of synthetic fertilizers and water, and the leaching of nitrate into the environment. One way to avoid problems due to a reduction in nitrogen availability could be the use of plant growth promoting rhizobacteria (PGPR). This study examines the effect of PGPR on kohlrabi plants grown with a traditional nutrient solution (100S), in combination with "fish water" (50F/50D), or with a supplement of synthetic fertilizers (50F/50D + S). Two formulations were used: T1 (Azospirillum brasilense and Pantoea dispersa) and T2 (Azotobacter salinestris). Irrigation with 50F/50D caused a reduction in several of the measured parameters. The combined application of 50F/50D with T1 attenuated the negative effects. T2 did not present significant effects on the parameters measured. The results obtained with 50F/50D + S hardly showed differences with the 100S. Thus, by irrigating with 50F/50D + S, we were able to maintain the yields while reducing fertilizer use and water. The combined use of T1 and 50F/50D was also positive; however, it would be necessary to continue adjusting the amount of nitrate supplied to maintain production.

9.
Foods ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790737

RESUMO

Due to climate change and exacerbated population growth, the search for new sustainable strategies that allow for greater food productivity and that provide greater nutritional quality has become imperative. One strategy for addressing this problem is the combined use of fertilization with a reduced dose of nitrogen and biostimulants. Celery processing produces a large amount of waste with its concomitant pollution. Therefore, it is necessary to address the valorization of its byproducts. Our results revealed reductions in the biomass, Na, P, Mn, B, sugars, and proteins in the byproducts and increased lipid peroxidation, Fe (all celery parts), and K (byproducts) when the N supplied was reduced. Plants inoculated with Azotobacter salinestris obtained a greater biomass, a higher accumulation of K (byproducts), a build-up of sugars and proteins, reduced concentrations of P, Cu, Mn, B, Fe (petioles), and Zn (byproducts), and reduced lipid peroxidation. The application of Se at 8 µM reinforced the beneficial effect obtained after inoculation with Azotobacter salinestris. In accordance with our results, edible celery parts are recommended as an essential ingredient in the daily diet. Furthermore, the valorization of celery byproducts with health-promoting purposes should be considered.

10.
J Sci Food Agric ; 93(5): 1062-9, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22952167

RESUMO

BACKGROUND: The use of organic cultivation with manures does not avoid the risk of high nitrate concentrations if nutrient management is inefficient. So we studied the influence of three organic manures combined or not with additional chemical fertilisers on growth and yield of sweet pepper (Capsicum annuum L.), and on the soil and plant N concentrations. RESULTS: After 3 years of organic cultivation, poultry manure caused the highest soil pollution. The evolution of nitrate and organic matter in soil showed a pattern close to that of plant growth. The addition of mineral fertiliser increased vegetative growth and yield, and a cumulative season effect was observed. In treatments with no additional mineral fertiliser N translocation from leaves to fruits happened. A cumulative effect of seasons on fruit quality and a reduction near to 30% was observed in the first fruit quality category after 3 years. The fruit vitamin C content was reduced by increasing N fertilisation. CONCLUSION: The effects of organic fertiliser on soil and plant growth and yield depended on the type of manure used, its rate, and consecutive crop seasons. Horse manure gave the best combination of agricultural and environmental characteristics and could be used without additional fertigation.


Assuntos
Capsicum/crescimento & desenvolvimento , Fertilizantes/efeitos adversos , Frutas/crescimento & desenvolvimento , Esterco/análise , Nitratos/análise , Nitrogênio/metabolismo , Poluentes do Solo/análise , Animais , Ácido Ascórbico/metabolismo , Capsicum/metabolismo , Poluição Ambiental/prevenção & controle , Qualidade dos Alimentos , Frutas/metabolismo , Cavalos , Substâncias Húmicas/análise , Agricultura Orgânica/métodos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Aves Domésticas , Carneiro Doméstico , Solo/química , Espanha , Fatores de Tempo
11.
Food Chem ; 426: 136559, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348394

RESUMO

Heat and nutritional stresses have a significantly effect on the accumulation of bioactive and other compounds harmful to human health, like nitrates, in green leafy vegetables like lamb's lettuce. Plant growth-promoting bacteria (PGPB) have shown to confer beneficial biochemical changes to various crops under different stresses. The hypothesis proposed here is that the combination of optimal N level (2.5 Mm, 12 mM or 20 mM of N) with the inoculation of PGPB in plants exposed to heat shock (43 °C) may be a good strategy to obtain healthier lamb's lettuce with a higher yield. Results showed that a dose of 20 mM N can be considered as overfertilization. Moreover, the inoculation of plants fed with fertilizers with reduced N and under heat stress, resulted in higher productivity and content of sugars (60 %), amino acids (94 %), nitrogen (21 %), and total phenolic compounds (30 %), and a reduced content of nitrates (27 %).


Assuntos
Nitratos , Valerianella , Humanos , Nitratos/metabolismo , Aquecimento Global , Resposta ao Choque Térmico , Bactérias/genética , Bactérias/metabolismo
12.
Antioxidants (Basel) ; 11(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35624822

RESUMO

In order to mitigate the detrimental impact that climate change is having on plants, the study of new practices that allow for the reduction of such effects has become imperative. In addition, the revaluation of the promotion of healthy plant by-products has also markedly increased in importance in recent years. In this work, the modifications in biomass and some antioxidant compounds of cauliflower by-products treated with putrescine under extreme temperatures in two different CO2 scenarios (the control (400 ppm) and a high concentration of CO2 (1000 ppm)) were studied. Additionally, the compositions of inner and outer leaves were also compared. According to results found in this work, cauliflower grown under elevated CO2 and treated with putrescine (2.5 mM) prior to heat stress showed the highest biomass accumulation (20%) compared to the control. Moreover, in the outer leaves from cauliflower grown under elevated CO2 and treated with putrescine prior to high temperature exposure, the highest biosynthesis of sugars (20%) was recorded. Although cauliflower by-products turned out to be rich in polyamines (208.6 nmoles g-1 fresh weight (FW) and 124.3 nmoles g-1 FW for outer and inner leaves, respectively) and phenolic compounds (1070.2 mg gallic acid equivalents ( (GAE) 100 g-1 FW in outer leaves and 772.0 mg GAE 100 g-1 FW in inner leaves), it was the outer leaves that after applying the new strategy showed the greatest increase in polyamines (68%) and phenolic compounds (39%), obtaining here the highest increase in antioxidant activity (3%). Thus, they should no longer be regarded as mere by-products and should be used for pharmaceutical or nutraceutical purposes. The novel strategy presented in this work may allow us to take advantage of both the continued increase in CO2 and heat waves that are becoming more frequent.

13.
Food Chem ; 384: 132506, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231710

RESUMO

The isolated effects of heat stress, fertilization and elevated CO2 on the content of several health-promoting compounds in plants have been quite studied. However, few studies have focused on two of these three factors together. This work provides information on how two different levels of CO2, four different NO3-/NH4+ ratios in the nutrient solution, and a short-term heat stress affect the biomass and nutritional quality of baby-leaf lettuce cv Derbi. Furthermore, the nutritional quality of the inner and outer leaves was also studied and compared. Results indicated that the strategy used led to a bigger and healthier baby-leaf lettuces. So, this lettuces contained a higher content of sugars, minerals and phenolic compounds and showed an enhanced antioxidant activity. On the other hand, results exhibited that whilst in inner leaves the biosynthesis of antioxidant compounds were favored, in outer leaves was favored the biosynthesis of sugars and mineral content.


Assuntos
Dióxido de Carbono , Lactuca , Antioxidantes/farmacologia , Dióxido de Carbono/farmacologia , Minerais/farmacologia , Fenóis/farmacologia , Folhas de Planta , Açúcares
14.
Plant Physiol Biochem ; 180: 1-8, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364374

RESUMO

Se has beneficial effects on plants, through the stimulation of plant productivity, the reduction of abiotic stresses, and the improvement in N metabolism. Therefore, we investigated the effect of the foliar application of different concentrations of Se (0, 4, 8 and 16 µmol L-1) on lettuce plants grown in an aquaponics system (fish water) compared with a control (conventional soilless fertigation). The NO3- concentration supplied by the fish water was 47% of the control solution. The results showed a reduction in the fresh weight of lettuce plants irrigated with the fish water mixture treatment, along with an increase in sugar concentration. However, the application of Se at 4 and 16 µmol L-1, prompted a relief of this stress, reducing both lipid peroxidation and the sugar content, and increasing the nitrate concentration. In addition, in the case of the highest concentration of Se (16 µmol L-1), the values of nitrate were comparable those control plants. We show the importance of sprayed Se in increasing the efficiency of N utilization, in addition to lessening environmental issues for aquaponics culture.

15.
PLoS One ; 17(11): e0278309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36449498

RESUMO

In recent years, the interest on baby-leaf lettuce has grown steadily, because it is richer in bioactive compounds than other traditional vegetables. However, the quality of lettuce is being increasingly affected by climate change. It is very rare for a climatic effect to occur in isolation. Even then, a large body of work has only focused on the effect of isolated heat stress, fertilization, and elevated CO2, on morphological, physiological and biochemical parameters. Thus, very few works have focused on how the combination of several of these factors can affect these parameters. For first time, the present work studied the combined effect derived from the application of two different levels of CO2 (400 and 1000 ppm of CO2), four different NO3-/ NH4+ ratios (100/0 (T-I), 100/0 before the short-term heat stress and finally without NO3- (T-II), 80/20 (T-III) and 50/50 (T-IV)), and a short-term heat stress (25 and 43°C), on some physiological and quality parameters (dry biomass, photosynthetic parameters, pigments content, lipid peroxidation and total soluble proteins content) of baby-leaf lettuce cv Derbi. Additionally, a comparison of that combined effect of all these parameters between inner and outer leaves was also performed. The results obtained indicated that the interaction between the nutrient solution containing a 50/50 NO3-/ NH4+ ratio and a high concentration of CO2 (1000 ppm) improved the biomass, photosynthesis, intercellular/external CO2 concentration ratio (ci/ca), stomatal conductance (gs), evapotranspiration (E) and lipid peroxidation, and protein content in this baby-leaf lettuce. The results obtained in this work lead us to conclude that this existing interaction between the NO3-/ NH4+ ratio and the elevated CO2 concentration may be considered as a new strategy for making baby-leaf lettuce more resistant to heat stress, in other words, stronger against the ever more frequent heat waves.


Assuntos
Compostos de Amônio , Transtornos de Estresse por Calor , Termotolerância , Nitratos , Lactuca , Dióxido de Carbono , Óxidos de Nitrogênio
16.
Front Plant Sci ; 13: 1014230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212275

RESUMO

Frequency, intensity and duration heat-related events have profound implications for future food supply through effects on plant growth and development. This concern needs effective and urgent mitigation tools. However, the effectiveness of potential solutions may decrease according to the specific cultivar response rather consider at specie level. The metyl-jasmonates are essential cellular regulators which are involved in pivotal plant development processes and related to confer protection to heat shock. Thus, our aim was to study the response of three pepper cultivars, Agio (Hungarian type), Basque (Chilli type), and Loreto (Lamuyo type), subjected to heat shock (40°C/72 h) and foliarly-sprayed with methyl-jasmonate (MeJA; 100 µmol), and the effects on several physiological traits. Our results show that despite the important differential impact of heat shock caused on each cultivar, MeJA application did not affect gas exchange, chlorophyll A concentration or efficiency of the photosystem in these cultivars. However, P concentration was reduced when MeJA was applied to Basque chilli, and a significant effect on leaf carbohydrates concentration was observed for Agio and Loreto. Moreover, Agio was the only cultivar in which the amino-acid profile was affected by MeJA under heat shock. Under that condition, putrescine increased for all cultivars, whist the effect of MeJA was only observed for spermine and histamine for Agio and Loreto. Thus, the results indicated that the ameliorative impact of MeJA on this stressor was clearly influenced by cultivar, revealing specific traits. Thus, these results could be used as valuable tools for the characterization of this intraspecific tolerance to heat shock during the vegetative growth stage of pepper.

17.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297821

RESUMO

To improve water and nutrient use efficiencies some strategies have been proposed, such as the use of mulching techniques or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights into the interaction between the use of hydromulch and AMF inoculation on plant growth and productivity, escarole plants (Cichorium endivia, L.) were inoculated with the AMF Rhizophagus irregularis and grown with non-inoculated plants under different soil cover treatments: ecological hydromulching based on the substrate of mushroom cultivation (MS), low-density black polyethylene (PE), and non-covered soil (BS). AMF inoculation or the use of mulching alone, but especially their interaction, increased the plant growth. The growth improvement observed in AMF-inoculated escarole plants grown under hydromulching conditions was mainly associated with the upgrading of nitrogen and phosphorous use efficiency through the regulation of the hormonal balance. Both hydromulching and AMF inoculation were found to increase the active gibberellins (GAs) and cytokinins (CKs), resulting in a positive correlation between these hormones and the growth-related parameters. In contrast, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA) decreased in AMF-inoculated plants and especially in those grown with the MS treatment. This study demonstrates that there exists a positive interaction between AMF and hydromulching which enhances the growth of escarole plants by improving nutrient use efficiency and hormonal balance.

18.
Sci Rep ; 11(1): 22318, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785756

RESUMO

In the last years, the atmospheric CO2 concentration has increased significantly, and this increase can cause changes in various physiological and biochemical processes of plants. However, the response of plants to elevated CO2 concentration (e[CO2]) will be different depending on the nitrogen form available and the plant species. Therefore, hydroponic trials on cucumber plants, with two CO2 concentrations (400 and 1000 ppm) and two nitrogen sources (NO3-/NH4+; 100/0 and 90/10), were conducted. Physiological parameters-such as gas exchange, GS, GOGAT and GDH activities, cation composition, soluble sugar and starch content- were measured. The results showed that when plants were grown with NH4+ and e[CO2], parameters such as photosynthesis rate (ACO2), instantaneous water use efficiency (WUEi), the content of NH4+, Ca2+ and Mg2+, and the concentration of starch, were higher than in control plants (irrigated with nitrate as sole nitrogen source and ambient CO2 concentration (a[CO2])). Furthermore, an improvement in N assimilation was observed when the GS/GOGAT pathway was enhanced under these conditions (NH4+ and e[CO2]). Thus, our results contribute to the reduction of the negative environmental impacts of the use of nitrogen fertilizers on this crop, both by reducing nitrogen leakage (eutrophication) and greenhouse gas emissions.

19.
Plants (Basel) ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466579

RESUMO

This study examines the effect of the exogenous application of polyamine putrescine together with the application of different ratios of nitrate/ammonium (NO3 -/NH4 +), on the physiology of cauliflower subjected to heat stress. The 50:50 NO3 -/NH4 + ratio was the best ratio against heat stress. As a result of the joint application of these compounds, a higher photosynthetic rate, a higher accumulation of both photosynthesis-related compounds and pigments, total proteins, and a change in the status of nutrients were obtained. Particularly, the decrease in content of calcium, chloride and sulphate in plants under heat stress is ameliorated by the ammonium effect. Additionally, it is important to highlight that cauliflower waste contains a higher content of mineral nutrients than floret cauliflower. These effects were more marked in young leaves. Furthermore, a synergistic effect for coping with heat stress between the polyamine and the nutritional treatment was observed. For this, both the application of putrescine and the feeding of plants with a 50:50 NO3 -/NH4 + ratio before heat stress is proposed for the first time as an agricultural practice for increasing the thermotolerance of cauliflower cv Moonshine. On the other hand, due to the lower lipid peroxidation rate obtained in cauliflower leaves, these plants could be used for health purposes as ointments or other nutraceutical products, making the cultivation of this kind of cruciferous more sustainable.

20.
J Sci Food Agric ; 90(15): 2716-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20812372

RESUMO

BACKGROUND: Postharvest storage of sweet pepper fruits (Capsicum annuum L.) at low temperatures could impair their physical and chemical composition. Therefore, maintenance of essential nutrition support or altered gas exchange could preserve fruit quality, minimizing chilling injury. Thus our aim was to determine the response to postharvest application of a low concentration of nitrogen (urea) or antitranspirant (pinolene) during a period of 21 days at 5 °C. RESULTS: The results indicate that storage at 5 °C was effective with respect to maintaining firmness of sweet pepper fruits for 21 days, while application of antitranspirant increased firmness compared with non-sprayed fruits. Additionally, urea maintained color while increasing total phenolics and the activity of catalase and ascorbate peroxidase, lowering lipid peroxidation. Composition of free amino acids was affected to a minor extent. CONCLUSION: Maintaining quality is of paramount importance in the postharvest period. This study shows the effect of both temperature and spraying treatments with regard to maintaining fruit quality during this period, and provides new insights into the physiological role of enzymes of the antioxidant system during pepper storage at low temperature.


Assuntos
Capsicum/efeitos dos fármacos , Conservação de Alimentos/métodos , Frutas/efeitos dos fármacos , Ácidos Linolênicos/farmacologia , Ureia/farmacologia , Aminoácidos/metabolismo , Ascorbato Peroxidases , Capsicum/metabolismo , Catalase/metabolismo , Temperatura Baixa , Cor , Manipulação de Alimentos/métodos , Tecnologia de Alimentos , Frutas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidases/metabolismo , Fenóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA