Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Virol ; 98(1): e0159923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169281

RESUMO

African swine fever virus (ASFV) causes a highly contagious and deadly disease in domestic pigs and European wild boars, posing a severe threat to the global pig industry. ASFV CP204L, a highly immunogenic protein, is produced during the early stages of ASFV infection. However, the impact of CP204L protein-interacting partners on the outcome of ASFV infection is poorly understood. To accomplish this, coimmunoprecipitation and mass spectrometry analysis were conducted in ASFV-infected porcine alveolar macrophages (PAMs). We have demonstrated that sorting nexin 32 (SNX32) is a CP204L-binding protein and that CP204L interacted and colocalized with SNX32 in ASFV-infected PAMs. ASFV growth and replication were promoted by silencing SNX32 and suppressed by overexpressing SNX32. SNX32 degraded CP204L by recruiting the autophagy-related protein Ras-related protein Rab-1b (RAB1B). RAB1B overexpression inhibited ASFV replication, while knockdown of RAB1B had the opposite effect. Additionally, RAB1B, SNX32, and CP204L formed a complex upon ASFV infection. Taken together, this study demonstrates that SNX32 antagonizes ASFV growth and replication by recruiting the autophagy-related protein RAB1B. This finding extends our understanding of the interaction between ASFV CP204L and its host and provides new insights into exploring the relationship between ASFV infection and autophagy.IMPORTANCEAfrican swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality near 100% in domestic pigs. ASF virus (ASFV), which is the only member of the family Asfarviridae, is a dsDNA virus of great complexity and size, encoding more than 150 proteins. Currently, there are no available vaccines against ASFV. ASFV CP204L represents the most abundantly expressed viral protein early in infection and plays an important role in regulating ASFV replication. However, the mechanism by which the interaction between ASFV CP204L and host proteins affects ASFV replication remains unclear. In this study, we demonstrated that the cellular protein SNX32 interacted with CP204L and degraded CP204L by upregulating the autophagy-related protein RAB1B. In summary, this study will help us understand the interaction mechanism between CP204L and its host upon infection and provide new insights for the development of vaccines and antiviral drugs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Fatores de Restrição Antivirais , Autofagia , Nexinas de Classificação , Proteínas rab1 de Ligação ao GTP , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Sus scrofa/virologia , Suínos/virologia , Nexinas de Classificação/metabolismo , Fatores de Restrição Antivirais/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Macrófagos/virologia , Replicação Viral
2.
Magn Reson Med ; 92(3): 1064-1078, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38726772

RESUMO

PURPOSE: This study aims to develop and evaluate a novel cardiovascular MR sequence, MyoFold, designed for the simultaneous quantifications of myocardial tissue composition and wall motion. METHODS: MyoFold is designed as a 2D single breathing-holding sequence, integrating joint T1/T2 mapping and cine imaging. The sequence uses a 2-fold accelerated balanced SSFP (bSSFP) for data readout and incorporates electrocardiogram synchronization to align with the cardiac cycle. MyoFold initially acquires six single-shot inversion-recovery images, completed during the diastole of six successive heartbeats. T2 preparation (T2-prep) is applied to introduce T2 weightings for the last three images. Subsequently, over the following six heartbeats, segmented bSSFP is performed for the movie of the entire cardiac cycle, synchronized with an electrocardiogram. A neural network trained using numerical simulations of MyoFold is used for T1 and T2 calculations. MyoFold was validated through phantom and in vivo experiments, with comparisons made against MOLLI, SASHA, T2-prep bSSFP, and the conventional cine. RESULTS: In phantom studies, MyoFold exhibited a 10% overestimation in T1 measurements, whereas T2 measurements demonstrated high accuracy. In vivo experiments revealed that MyoFold T1 had comparable accuracy to SASHA and precision similar to MOLLI. MyoFold demonstrated good agreement with T2-prep bSSFP in myocardial T2 measurements. No significant differences were observed in the quantification of left-ventricle wall thickness and function between MyoFold and the conventional cine. CONCLUSION: MyoFold presents as a rapid, simple, and multitasking approach for quantitative cardiovascular MR examinations, offering simultaneous assessment of tissue composition and wall motion. The sequence's multitasking capabilities make it a promising tool for comprehensive cardiac evaluations in clinical settings.


Assuntos
Coração , Imagem Cinética por Ressonância Magnética , Imagens de Fantasmas , Adulto , Feminino , Humanos , Masculino , Algoritmos , Eletrocardiografia , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio , Reprodutibilidade dos Testes
3.
J Cardiovasc Magn Reson ; 26(2): 101065, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059610

RESUMO

BACKGROUND: Quantitative myocardial tissue characterization with T1 and T2 parametric mapping can provide an accurate and complete assessment of tissue abnormalities across a broad range of cardiomyopathies. However, current clinical T1 and T2 mapping tools rely predominantly on two-dimensional (2D) breath-hold sequences. Clinical adoption of three-dimensional (3D) techniques is limited by long scan duration. The aim of this study is to develop and validate a time-efficient 3D free-breathing simultaneous T1 and T2 mapping sequence using multi-parametric SAturation-recovery and Variable-flip-Angle (mSAVA). METHODS: mSAVA acquires four volumes for simultaneous whole-heart T1 and T2 mapping. We validated mSAVA using simulations, phantoms, and in-vivo experiments at 3T in 11 healthy subjects and 11 patients with diverse cardiomyopathies. T1 and T2 values by mSAVA were compared with modified Look-Locker inversion recovery (MOLLI) and gradient and spin echo (GraSE), respectively. The clinical performance of mSAVA was evaluated against late gadolinium enhancement (LGE) imaging in patients. RESULTS: Phantom T1 and T2 by mSAVA showed a strong correlation to reference sequences (R2 = 0.98 and 0.99). In-vivo imaging with an imaging resolution of 1.5 × 1.5 × 8 mm3 could be achieved. Myocardial T1 and T2 of healthy subjects by mSAVA were 1310 ± 46 and 44.6 ± 2.0 ms, respectively, with T1 standard deviation higher than MOLLI (105 ± 12 vs 60 ± 16 ms) and T2 standard deviation lower than GraSE (4.5 ± 0.8 vs 5.5 ± 1.0 ms). mSAVA T1 and T2 maps presented consistent findings in patients undergoing LGE. Myocardial T1 and T2 of all patients by mSAVA were 1421 ± 79 and 47.2 ± 3.3 ms, respectively. CONCLUSION: mSAVA is a fast 3D technique promising for clinical whole-heart T1 and T2 mapping.

4.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39085052

RESUMO

Thamnolia subuliformis (Ehrh.) W. Culb is a species of lichen with edible and medicinal applications in China. Our previous studies demonstrated that the methanol extract of Thamnolia subuliformis (METS) exhibits broad antibacterial activity and stability against foodborne pathogens. This study aimed to investigate the antibacterial mechanism of METS against Staphylococcus aureus using nontargeted metabolomics, focusing on cell wall and membrane damage. The results revealed that the minimum inhibitory concentration (MIC) was 0.625 mg ml-1 and that METS had good biosafety at this concentration. METS caused significant damage to the cell wall and membrane integrity, based on both morphological observation by electron microscopy and the leakage of alkaline phosphatase, protein, and nucleic acid in the cell cultures. Treatment with METS at the MIC disrupted the lipid metabolism of S. aureus, causing a decrease in the metabolism of various phospholipids and sphingolipids in the cell membrane and an increase in the ratio of saturated fatty acids to unsaturated fatty acids. Moreover, it influenced intracellular amino acid and energy metabolism. These results shed light on the antibacterial mechanism of METS against S. aureus while also serving as a reference for the further development of natural antibacterial compounds derived from Thamnolia subuliformis.


Assuntos
Antibacterianos , Membrana Celular , Testes de Sensibilidade Microbiana , Extratos Vegetais , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Metanol/química , Metabolismo dos Lipídeos/efeitos dos fármacos
5.
J Stroke Cerebrovasc Dis ; 33(6): 107689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527567

RESUMO

OBJECTIVES: Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS: This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS: The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-ß), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION: This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.


Assuntos
Anti-Inflamatórios , Infarto da Artéria Cerebral Média , NF-kappa B , Naftoquinonas , Fármacos Neuroprotetores , Proteína Adaptadora de Sinalização NOD2 , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Naftoquinonas/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Fenótipo , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
6.
BMC Oral Health ; 24(1): 416, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580975

RESUMO

OBJECTIVE: To investigate the status and related factors of sterilizers in dental health-care settings in Yunnan Province, with the aim of providing a theoretical basis for the health administrative department to formulate regional quality control programs and systems, proposing reasonable suggestions for optimizing the allocation of sterilizer resources in Yunnan's dental health-care settings, thereby improving resource utilization efficiency. METHODS: This cross-sectional survey was conducted in 2600 dental health-care settings in Yunnan Province in March 2020. Uni-variable linear regression, multi-variable linear regression, curve fitting and threshold effect analysis were used to understand the relationship between dental units and sterilizers. RESULTS: A total of 2600 dental health-care settings were included. The disinfection and sterilization work were mainly completed by the dental department in 1510(58.1%) institutions. 44(1.7%) institutions were not allocated sterilization equipment, and 1632 (62.8%) had only one sterilizer. The median allocation of sterilizers was 1.0. Uni-variable linear regression showed significant differences in covariates such as dental unit, dental handpiece, disinfection equipment, dentist, and dental assistant, which were more sensitive (p < 0.001) and statistically significant. The adjusted model was more stable in the multi-variable linear regression, and the differences in covariates between different settings were statistically significant. Curve fitting revealed an S-shaped curvilinear relationship between the number of dental units and sterilizers in oral healthcare settings. CONCLUSION: The disinfection and sterilization work was mainly completed by the dental department in dental health-care settings in Yunnan Province. Sterilizer allocation increases with the number of dental units, but some institutions have insufficient allocation of sterilizer and manpower resources, resulting in certain risks of infection control. Thus, it is necessary to strengthen supervision, inspection and regional quality control work in infection control of dentistry.


Assuntos
Desinfecção , Controle de Infecções , Humanos , Estudos Transversais , China , Instrumentos Odontológicos
7.
Radiology ; 307(5): e222032, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278633

RESUMO

Background Radiofrequency ablation (RFA) is a widely used treatment for atrial fibrillation, reducing the risk of cardiac arrhythmia. Detailed visualization and quantification of atrial scarring has the potential to improve preprocedural decision-making and postprocedural prognosis. Conventional bright-blood late gadolinium enhancement (LGE) MRI can help detect atrial scars; however, its suboptimal myocardium to blood contrast inhibits accurate scar estimation. Purpose To develop and test a free-breathing LGE cardiac MRI approach that simultaneously provides high-spatial-resolution dark-blood and bright-blood images for improved atrial scar detection and quantification. Materials and Methods A free-breathing, independent navigator-gated, dark-blood phase-sensitive inversion recovery (PSIR) sequence with whole-heart coverage was developed. Two coregistered high-spatial-resolution (1.25 × 1.25 × 3 mm3) three-dimensional (3D) volumes were acquired in an interleaved manner. The first volume combined inversion recovery and T2 preparation to achieve dark-blood imaging. The second volume functioned as the reference for phase-sensitive reconstruction with built-in T2 preparation for improved bright-blood contrast. The proposed sequence was tested in prospectively enrolled participants who had undergone RFA for atrial fibrillation (mean time since RFA, 89 days ± 26 [SD]) from October 2019 to October 2021. Image contrast was compared with conventional 3D bright-blood PSIR images using the relative signal intensity difference. Furthermore, native scar area quantification obtained from both imaging approaches was compared with measurements obtained with electroanatomic mapping (EAM) as the reference standard. Results A total of 20 participants (mean age, 62 years ± 9; 16 male) who underwent RFA for atrial fibrillation were included. The proposed PSIR sequence successfully acquired 3D high-spatial-resolution volumes in all participants, with a mean scan time of 8.3 minutes ± 2.4. The developed PSIR sequence improved scar to blood contrast compared with conventional PSIR sequence (mean contrast, 0.60 arbitrary units [au] ± 0.18 vs 0.20 au ± 0.19, respectively; P < .01) and correlated with EAM regarding scar area quantification (r = 0.66 [P < .01] vs r = 0.13 [P = .63]). Conclusion In participants who had undergone RFA for atrial fibrillation, an independent navigator-gated dark-blood PSIR sequence produced high-spatial-resolution dark-blood and bright-blood images with improved image contrast and native scar quantification compared with conventional bright-blood images. © RSNA, 2023 Supplemental material is available for this article.


Assuntos
Fibrilação Atrial , Cicatriz , Humanos , Masculino , Pessoa de Meia-Idade , Cicatriz/diagnóstico por imagem , Meios de Contraste , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Fibrilação Atrial/patologia , Gadolínio , Miocárdio/patologia , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos
8.
Magn Reson Med ; 90(5): 1979-1989, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37415445

RESUMO

PURPOSE: To develop and evaluate a deep neural network (DeepFittingNet) for T1 /T2 estimation of the most commonly used cardiovascular MR mapping sequences to simplify data processing and improve robustness. THEORY AND METHODS: DeepFittingNet is a 1D neural network composed of a recurrent neural network (RNN) and a fully connected (FCNN) neural network, in which RNN adapts to the different number of input signals from various sequences and FCNN subsequently predicts A, B, and Tx of a three-parameter model. DeepFittingNet was trained using Bloch-equation simulations of MOLLI and saturation-recovery single-shot acquisition (SASHA) T1 mapping sequences, and T2 -prepared balanced SSFP (T2 -prep bSSFP) T2 mapping sequence, with reference values from the curve-fitting method. Several imaging confounders were simulated to improve robustness. The trained DeepFittingNet was tested using phantom and in-vivo signals, and compared to the curve-fitting algorithm. RESULTS: In testing, DeepFittingNet performed T1 /T2 estimation of four sequences with improved robustness in inversion-recovery T1 estimation. The mean bias in phantom T1 and T2 between the curve-fitting and DeepFittingNet was smaller than 30 and 1 ms, respectively. Excellent agreements between both methods was found in the left ventricle and septum T1 /T2 with a mean bias <6 ms. There was no significant difference in the SD of both the left ventricle and septum T1 /T2 between the two methods. CONCLUSION: DeepFittingNet trained with simulations of MOLLI, SASHA, and T2 -prep bSSFP performed T1 /T2 estimation tasks for all these most used sequences. Compared with the curve-fitting algorithm, DeepFittingNet improved the robustness for inversion-recovery T1 estimation and had comparable performance in terms of accuracy and precision.


Assuntos
Coração , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Ventrículos do Coração , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
NMR Biomed ; 36(8): e4924, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912448

RESUMO

The purpose of the current study was to develop and evaluate a three-dimensional single Breath-hOLd cardiac T2 mapping sequence (3D BOLT) with low-rank plus sparse (L + S) reconstruction for rapid whole-heart T2 measurement. 3D BOLT collects three highly accelerated electrocardiogram-triggered volumes with whole-heart coverage, all within a single 12-heartbeat breath-hold. Saturation pulses are performed every heartbeat to prepare longitudinal magnetization before T2 preparation (T2 -prep) or readout, and the echo time of T2 -prep is varied per volume for variable T2 weighting. Accelerated volumes are reconstructed jointly by an L + S algorithm. 3D BOLT was optimized and validated against gradient spin echo (GraSE) and a previously published approach (three-dimensional free-breathing cardiac T2 mapping [3DFBT2]) in both phantoms and human subjects (11 healthy subjects and 10 patients). The repeatability of 3D BOLT was validated on healthy subjects. Retrospective experiments indicated that 3D BOLT with 4.2-fold acceleration achieved T2 measurements comparable with those obtained with fully sampled data. T2 measured in phantoms using 3D BOLT demonstrated good accuracy and precision compared with the reference (R2 > 0.99). All in vivo imaging was successful and the average left ventricle T2 s measured by GraSE, 3DFBT2, and 3D BOLT were comparable and consistent for all healthy subjects (47.0 ± 2.3 vs. 47.7 ± 2.7 vs. 48.4 ± 1.8 ms) and patients (50.8 ± 3.0 vs. 48.6 ± 3.9 vs. 49.1 ± 3.7 ms), respectively. Myocardial T2 measured by 3D BOLT had excellent agreement with 3DFBT2 and there was no significant difference in mean, standard deviation, and coefficient of variation. 3D BOLT showed excellent repeatability (intraclass correlation coefficient: 0.938). The proposed 3D BOLT achieved whole-heart T2 mapping in a single breath-hold with good accuracy, precision, and repeatability on T2 measurements.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Miocárdio , Suspensão da Respiração , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes
10.
Langmuir ; 39(46): 16315-16327, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37881899

RESUMO

The transportation of droplets on solid surfaces has received significant attention owing to its importance in biochemical analysis and microfluidics. In this study, we propose a novel strategy for controlling droplet motion by combining an asymmetric structure and infused lubricating oil on a vibrating substrate. The transportation of droplets with volumes ranging from 10 to 90 µL was realized, and the movement speed could be adjusted from 1.45 to 10.87 mm/s. Typical droplet manipulations, including droplet transportation along a long trajectory and selective movement of multiple droplets, were successfully demonstrated. Through experimental exploration and theoretical analysis, we showed that the adjustment of droplet transport velocity involves an intricate interaction among the Ohnesorge number, droplet volume, and input amplitude. It can potentially be used for the more complex manipulation of liquid droplets in microfluidic and biochemical analysis systems.

11.
J Digit Imaging ; 36(5): 2088-2099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340195

RESUMO

Segmentation is a crucial step in extracting the medical image features for clinical diagnosis. Though multiple metrics have been proposed to evaluate the segmentation performance, there is no clear study on how or to what extent the segmentation errors will affect the diagnostic related features used in clinical practice. Therefore, we proposed a segmentation robustness plot (SRP) to build the link between segmentation errors and clinical acceptance, where relative area under the curve (R-AUC) was designed to help clinicians to identify the robust diagnostic related image features. In experiments, we first selected representative radiological series from time series (cardiac first-pass perfusion) and spatial series (T2 weighted images on brain tumors) of magnetic resonance images, respectively. Then, dice similarity coefficient (DSC) and Hausdorff distance (HD), as the widely used evaluation metrics, were used to systematically control the degree of the segmentation errors. Finally, the differences between diagnostic related image features extracted from the ground truth and the derived segmentation were analyzed, using the statistical method large sample size T-test to calculate the corresponding p values. The results are denoted in the SRP, where the x-axis indicates the segmentation performance using the aforementioned evaluation metric, and the y-axis shows the severity of the corresponding feature changes, which are expressed in either the p values for a single case or the proportion of patients without significant change. The experimental results in SRP show that when DSC is above 0.95 and HD is below 3 mm, the segmentation errors will not change the features significantly in most cases. However, when segmentation gets worse, additional metrics are required for further analysis. In this way, the proposed SRP indicates the impact of the segmentation errors on the severity of the corresponding feature changes. By using SRP, one could easily define the acceptable segmentation errors in a challenge. Additionally, the R-AUC calculated from SRP provides an objective reference to help the selection of reliable features in image analysis.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Radiografia , Processamento de Imagem Assistida por Computador/métodos , Coração
12.
NMR Biomed ; 35(10): e4775, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35599351

RESUMO

In myocardial T1 mapping, undesirable motion poses significant challenges because uncorrected motion can affect T1 estimation accuracy and cause incorrect diagnosis. In this study, we propose and evaluate a motion correction method for myocardial T1 mapping using self-supervised deep learning based registration with contrast separation (SDRAP). A sparse coding based method was first proposed to separate the contrast component from T1 -weighted (T1w) images. Then, a self-supervised deep neural network with cross-correlation (SDRAP-CC) or mutual information as the registration similarity measurement was developed to register contrast separated images, after which signal fitting was performed on the motion corrected T1w images to generate motion corrected T1 maps. The registration network was trained and tested in 80 healthy volunteers with images acquired using the modified Look-Locker inversion recovery (MOLLI) sequence. The proposed SDRAP was compared with the free form deformation (FFD) registration method regarding (1) Dice similarity coefficient (DSC) and mean boundary error (MBE) of myocardium contours, (2) T1 value and standard deviation (SD) of T1 fitting, (3) subjective evaluation score for overall image quality and motion artifact level, and (4) computation time. Results showed that SDRAP-CC achieved the highest DSC of 85.0 ± 3.9% and the lowest MBE of 0.92 ± 0.25 mm among the methods compared. Additionally, SDRAP-CC performed the best by resulting in lower SD value (28.1 ± 17.6 ms) and higher subjective image quality scores (3.30 ± 0.79 for overall quality and 3.53 ± 0.68 for motion artifact) evaluated by a cardiologist. The proposed SDRAP took only 0.52 s to register one slice of MOLLI images, achieving about sevenfold acceleration over FFD (3.7 s/slice).


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Miocárdio , Reprodutibilidade dos Testes
13.
NMR Biomed ; 35(9): e4755, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485432

RESUMO

The purpose of the current study was to develop and validate a three-dimensional (3D) free-breathing cardiac T1 -mapping sequence using SAturation-recovery and Variable-flip-Angle (SAVA). SAVA sequentially acquires multiple electrocardiogram-triggered volumes using a multishot spoiled gradient-echo sequence. The first volume samples the equilibrium signal of the longitudinal magnetization, where a flip angle of 2° is used to reduce the time for the magnetization to return to equilibrium. The succeeding three volumes are saturation prepared with variable delays, and are acquired using a 15° flip angle to maintain the signal-to-noise ratio. A diaphragmatic navigator is used to compensate the respiratory motion. T1 is calculated using a saturation-recovery model that accounts for the flip angle. We validated SAVA by simulations, phantom, and human subject experiments at 3 T. SAVA was compared with modified Look-Locker inversion recovery (MOLLI) and saturation-recovery single-shot acquisition (SASHA) in vivo. In phantoms, T1 by SAVA had good agreement with the reference (R2 = 0.99). In vivo 3D T1 mapping by SAVA could achieve an imaging resolution of 1.25 × 1.25 × 8 mm3 . Both global and septal T1 values by SAVA (1347 ± 37 and 1332 ± 42 ms) were in between those by SASHA (1612 ± 63 and 1618 ± 51 ms) and MOLLI (1143 ± 59 and 1188 ± 65 ms). According to the standard deviation (SD) and coefficient of variation (CV), T1 precision measured by SAVA (SD: 99 ± 14 and 60 ± 8 ms; CV: 7.4% ± 0.9% and 4.5% ± 0.6%) was comparable with MOLLI (SD: 99 ± 25 and 46 ± 12 ms; CV: 8.8% ± 2.5% and 3.9% ± 1.1%) and superior to SASHA (SD: 222 ± 89 and 132 ± 33 ms; CV: 13.8% ± 5.5% and 8.1% ± 2.0%). It was concluded that the proposed free-breathing SAVA sequence enables more efficient 3D whole-heart T1 estimation with good accuracy and precision.


Assuntos
Coração , Interpretação de Imagem Assistida por Computador , Coração/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558042

RESUMO

In this work, a rapid method for the simultaneous determination of N and S in seafood was established based on a solid sampling absorption-desorption system coupled with a thermal conductivity detector. This setup mainly includes a solid sampling system, a gas line unit for controlling high-purity oxygen and helium, a combustion and reduction furnace, a purification column system for moisture, halogen, SO2, and CO2, and a thermal conductivity detector. After two stages of purging with 20 s of He sweeping (250 mL/min), N2 residue in the sample-containing chamber can be reduced to <0.01% to improve the device's analytical sensitivity and precision. Herein, 100 s of heating at 900 °C was chosen as the optimized decomposition condition. After the generated SO2, H2O, and CO2 were absorbed by the adsorption column in turn, the purification process executed the vaporization of the N-containing analyte, and then N2 was detected by the thermal conductivity cell for the quantification of N. Subsequently, the adsorbed SO2 was released after heating the SO2 adsorption column and then transported to the thermal conductivity cell for the detection and quantification of S. After the instrumental optimization, the linear range was 2.0−100 mg and the correlation coefficient (R) was more than 0.999. The limit of detection (LOD) for N was 0.66 µg and the R was less than 4.0%, while the recovery rate ranged from 95.33 to 102.8%. At the same time, the LOD for S was 2.29 µg and the R was less than 6.0%, while the recovery rate ranged from 92.26 to 105.5%. The method was validated using certified reference materials (CRMs) and the measured N and S concentrations agreed with the certified values. The method indicated good accuracy and precision for the simultaneous detection of N and S in seafood samples. The total time of analysis was less than 6 min without the sample preparation process, fulfilling the fast detection of N and S in seafood. The establishment of this method filled the blank space in the area of the simultaneous and rapid determination of N and S in aquatic product solids. Thus, it provided technical support effectively to the requirements of risk assessment and detection in cases where supervision inspection was time-dependent.


Assuntos
Pirólise , Alimentos Marinhos , Alimentos Marinhos/análise , Adsorção , Dióxido de Carbono , Condutividade Térmica
15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(6): 592-597, 2022 Nov 30.
Artigo em Chinês | MEDLINE | ID: mdl-36597381

RESUMO

Resistance Index (RI) is one of the indicators for ultrasound evaluation of hemodynamic changes. The purpose of this study is to evaluate the reliability of V Flow, which is a new ultrasound examination, when calculating this index. Data were collected from six positions of the bilateral common carotid artery (CCA) at the beginning, middle, and end of 10 healthy volunteers. The result shows that the RI error between V Flow and PW is about 12%. After angle correction for PW results both the relative error and its variance is reduced. Based on V Flow, users can directly obtain the actual flow velocity without manually correcting the angle. In addition to RI, blood flow velocity angle at different times can be compared to more intuitively to understand the hemodynamic details.


Assuntos
Artéria Carótida Primitiva , Hemodinâmica , Humanos , Reprodutibilidade dos Testes , Artéria Carótida Primitiva/diagnóstico por imagem , Ultrassonografia , Velocidade do Fluxo Sanguíneo/fisiologia
16.
BMC Med Imaging ; 21(1): 90, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034664

RESUMO

BACKGROUND: Dynamic PET with kinetic modeling was reported to be potentially helpful in the assessment of hepatic malignancy. In this study, a kinetic modeling analysis was performed on hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) from dynamic FDG positron emission tomography/computer tomography (PET/CT) scans. METHODS: A reversible two-tissue compartment model with dual blood input function, which takes into consideration the blood supply from both hepatic artery and portal vein, was used for accurate kinetic modeling of liver dynamic 18F-FDG PET imaging. The blood input functions were directly measured as the mean values over the VOIs on descending aorta and portal vein respectively. And the contribution of hepatic artery to the blood input function was optimization-derived in the process of model fitting. The kinetic model was evaluated using dynamic PET data acquired on 24 patients with identified hepatobiliary malignancy. 38 HCC or ICC identified lesions and 24 healthy liver regions were analyzed. RESULTS: Results showed significant differences in kinetic parameters [Formula: see text], blood supplying fraction [Formula: see text], and metabolic rate constant [Formula: see text] between malignant lesions and healthy liver tissue. And significant differences were also observed in [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] between HCC and ICC lesions. Further investigations of the effect of SUV measurements on the derived kinetic parameters were conducted. And results showed comparable effectiveness of the kinetic modeling using either SUVmean or SUVmax measurements. CONCLUSIONS: Dynamic 18F-FDG PET imaging with optimization-derived hepatic artery blood supply fraction dual-blood input function kinetic modeling can effectively distinguish malignant lesions from healthy liver tissue, as well as HCC and ICC lesions.


Assuntos
Neoplasias dos Ductos Biliares/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico por imagem , Colangiocarcinoma/diagnóstico por imagem , Fluordesoxiglucose F18 , Neoplasias Hepáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Adulto , Idoso , Aorta Torácica/diagnóstico por imagem , Neoplasias dos Ductos Biliares/irrigação sanguínea , Carcinoma Hepatocelular/irrigação sanguínea , Colangiocarcinoma/irrigação sanguínea , Feminino , Artéria Hepática/diagnóstico por imagem , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Veia Porta/diagnóstico por imagem
17.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445186

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living cells. The homeostasis of NAD is required for plant growth, development, and adaption to environmental stresses. Quinolinate phosphoribosyltransferase (QPRT) is a key enzyme in NAD de novo synthesis pathway. T-DNA-based disruption of QPRT gene is embryo lethal in Arabidopsis thaliana. Therefore, to investigate the function of QPRT in Arabidopsis, we generated transgenic plants with decreased QPRT using the RNA interference approach. While interference of QPRT gene led to an impairment of NAD biosynthesis, the QPRT RNAi plants did not display distinguishable phenotypes under the optimal condition in comparison with wild-type plants. Intriguingly, they exhibited enhanced sensitivity to an avirulent strain of Pseudomonas syringae pv. tomato (Pst-avrRpt2), which was accompanied by a reduction in salicylic acid (SA) accumulation and down-regulation of pathogenesis-related genes expression as compared with the wild type. Moreover, oxidative stress marker genes including GSTU24, OXI1, AOX1 and FER1 were markedly repressed in the QPRT RNAi plants. Taken together, these data emphasized the importance of QPRT in NAD biosynthesis and immunity defense, suggesting that decreased antibacterial immunity through the alteration of NAD status could be attributed to SA- and reactive oxygen species-dependent pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pentosiltransferases/genética , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Pentosiltransferases/metabolismo , Doenças das Plantas/microbiologia , Interferência de RNA
18.
J Exp Bot ; 71(12): 3405-3416, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32107543

RESUMO

Under natural conditions, plants are exposed to various abiotic and biotic stresses that trigger rapid changes in the production and removal of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). The ascorbate-glutathione pathway has been recognized to be a key player in H2O2 metabolism, in which reduced glutathione (GSH) regenerates ascorbate by reducing dehydroascorbate (DHA), either chemically or via DHA reductase (DHAR), an enzyme belonging to the glutathione S-transferase (GST) superfamily. Thus, DHAR has been considered to be important in maintaining the ascorbate pool and its redox state. Although some GSTs and peroxiredoxins may contribute to GSH oxidation, analysis of Arabidopsis dhar mutants has identified the key role of DHAR in coupling H2O2 to GSH oxidation. The reaction of DHAR has been proposed to proceed by a ping-pong mechanism, in which binding of DHA to the free reduced form of the enzyme is followed by binding of GSH. Information from crystal structures has shed light on the formation of sulfenic acid at the catalytic cysteine of DHAR that occurs with the reduction of DHA. In this review, we discuss the molecular properties of DHAR and its importance in coupling the ascorbate and glutathione pools with H2O2 metabolism, together with its functions in plant defense, growth, and development.


Assuntos
Glutationa , Peróxido de Hidrogênio , Ácido Ascórbico , Glutationa/metabolismo , Glutationa Redutase , Homeostase , Estresse Oxidativo , Oxirredutases
19.
J Cardiovasc Magn Reson ; 22(1): 23, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299425

RESUMO

BACKGROUND: Chronic alcohol consumption initially leads to asymptomatic left ventricular dysfunction, but can result in myocardial impairment and heart failure if ongoing. This study sought to characterize myocardial tissues and oxidative metabolism in asymptomatic subjects with chronic alcohol consumption by quantitative cardiovascular magnetic resonance (CMR) and 11C-acetate positron emission tomography (PET)/computed tomography (CT). METHODS: Thirty-four male subjects (48.8 ± 9.1 years) with alcohol consumption > 28 g/day for > 10 years and 35 age-matched healthy male subjects (49.5 ± 9.7 years) underwent CMR and 11C-acetate PET/CT. Native and post T1 values and extracellular volume (ECV) from CMR and Kmono and K1 from PET imaging were measured. Quantitative measurements by CMR and PET imaging were compared between subjects with moderate to heavy alcohol consumption and healthy controls, and their correlations were also analyzed. RESULTS: Compared to healthy controls, subjects with alcohol consumption showed significantly shorter native T1 (1133 ± 65 ms vs. 1186 ± 31 ms, p < 0.001) and post T1 (477 ± 42 ms vs. 501 ± 38 ms, p = 0.008) values, greater ECV (28.2 ± 2.2% vs. 26.9 ± 1.3%, p = 0.003), marginally lower Kmono (57.6 ± 12.1 min- 1 × 10- 3 vs. 63.0 ± 11.7 min- 1 × 10- 3, p = 0.055), and similar K1 (0.82 ± 0.13 min- 1 vs. 0.83 ± 0.15 min- 1, p = 0.548) after adjusting for confounding factors. There were no significant differences in CMR measurements and K1 between subjects with heavy and moderate alcohol consumption (all p > 0.05). In contrast, subjects with heavy alcohol consumption showed significantly lower Kmono values compared to those with moderate alcohol consumption (52.9 ± 12.1 min- 1 × 10- 3 vs. 63.7 ± 9.2 min- 1 × 10- 3, p = 0.012). Strong and moderate correlations were found between K1 and ECV in healthy controls (r = 0.689, p = 0.013) and subjects with moderate alcohol consumption (r = 0.518, p = 0.048), respectively. CONCLUSION: Asymptomatic men with heavy alcohol consumption have detectable structural and metabolic changes in myocardium on CMR and 11C-acetate PET/CT. Compared with quantitative CMR, 11C-acetate PET/CT imaging may be more sensitive for detecting differences in myocardial damage among subjects with moderate to heavy alcohol consumption.


Assuntos
Acetatos/administração & dosagem , Consumo de Bebidas Alcoólicas/efeitos adversos , Carbono/administração & dosagem , Cardiomiopatia Alcoólica/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/administração & dosagem , Adulto , Consumo de Bebidas Alcoólicas/metabolismo , Cardiomiopatia Alcoólica/metabolismo , Estudos de Casos e Controles , Meios de Contraste/administração & dosagem , Gadolínio DTPA/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Oxirredução , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
20.
Biometals ; 33(6): 397-413, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33011849

RESUMO

Cadmium (Cd) is a hazardous environmental contaminant, which has a serious effect on the ecosystem, food safety and human health. Scallop could accumulate high concentration of Cd from the environment and has been regarded as a Cd hyper-accumulator. In this work, we investigated the antioxidative defense, detoxification and transport of Cd in the kidneys of scallops by transcriptome analysis. A total of 598 differentially expressed genes including 387 up-regulated and 211 down-regulated ones were obtained during Cd exposure, and 46 up-regulated and 260 down-regulated ones were obtained during depuration. Cadmium exposure could cause oxidative stress in the kidneys, which was particularly shown in the pathways involved in proteasome and oxidative phosphorylation. The mRNA expression of 5 metallothionein (MT) genes were overexpressed under Cd exposure and significantly decreased during Cd depuration, which played a vital role in Cd chelation and detoxification. The expression of divalent metal transporter (DMT) genes were down-regulated insignificantly during accumulation and depuration of Cd, which suggested that the DMT played little roles in Cd transport in scallops. A positive relationship in the expression of the zinc transporter (ZIP6 and ZIP1) genes with Cd exposure and depuration was observed, which confirmed its important role for Cd uptake in the kidneys of scallops. 26S proteasome activities and MT expression were Cd-dependent. This study supplied the important reference on the hyperaccumulation of Cd by scallops and identified some effective bioindicators for the environmental risk assessment.


Assuntos
Cádmio/metabolismo , Metalotioneína/metabolismo , Pectinidae/metabolismo , RNA Mensageiro/metabolismo , Animais , Perfilação da Expressão Gênica , Metalotioneína/genética , Pectinidae/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA