Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Appl Environ Microbiol ; : e0077924, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315794

RESUMO

6-Gingerol is a major phenolic compound within ginger (Zingiber officinale), often used in healthcare; however, its lower bioavailability is partly due to its poor solubility. Four bacterial glycosyltransferases (GTs) were tested to glycosylate 6-gingerol into soluble gingerol glucosides. BsUGT489 was a suitable GT to biotransform 6-gingerol into five significant products, which could be identified via nucleic magnetic resonance and mass spectrometry as 6-gingerol-4',5-O-ß-diglucoside (1), 6-gingerol-4'-O-ß-glucoside (2), 6-gingerol-5-O-ß-glucoside (3), 6-shogaol-4'-O-ß-glucoside (4), and 6-shogaol (5). The enzyme kinetics of BsUGT489 showed substrate inhibition toward 6-gingerol for producing two glucosides. The kinetic parameters were determined as KM (110 µM), kcat (862 min-1), and KI (571 µM) for the production of 6-gingerol-4'-O-ß-glucoside (2) and KM (104 µM), kcat (889 min-1), and KI (545 µM) for the production of 6-gingerol-5-O-ß-glucoside (3). The aqueous solubility of the three 6-gingerol glucosides, compound (1) to (3), was greatly improved. However, 6-shogaol-4'-O-ß-glucoside (4) was found to be a product biotransformed from 6-shogaol (5). This study first confirmed that the glucose moiety at the C-5 position of both 6-gingerol-4',5-O-ß-diglucoside (1) and 6-gingerol-5-O-ß-glucoside (3) caused spontaneous deglucosylation through ß-elimination to form 6-shogaol-4'-O-ß-glucoside (4) and 6-shogaol (5), respectively. Moreover, the GTs could glycosylate 6-shogaol to form 6-shogaol-4'-O-ß-glucoside (4). The assays showed 6-shogaol-4'-O-ß-glucoside (4) had higher anti-inflammatory activity (IC50 value of 10.3 ± 0.2 µM) than 6-gingerol. The 6-gingerol-5-O-ß-glucoside (3) possessed 346-fold higher solubility than 6-shogaol, in which the highly soluble glucoside is a potential prodrug of 6-shogaol via spontaneous deglucosylation. This unusual deglucosylation plays a vital role in influencing the anti-inflammatory activity. IMPORTANCE: Both 6-gingerols and 6-shogaol possess multiple bioactivities. However, their poor solubility limits their application. The present study used bacterial GTs to catalyze the glycosylation of 6-gingerol, and the resulting gingerol glycosides were found to be new compounds with improved solubility and anti-inflammatory activity. In addition, two of the 6-gingerol glucosides were found to undergo spontaneous deglucosylation to form 6-shogaol or 6-shogaol glucosides. The unique spontaneous deglucosylation property of the new 6-gingerol glucosides makes them a good candidate for the prodrug of 6-shogaol.

2.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807322

RESUMO

Puerarin (daidzein-8-C-glucoside) is an isoflavone isolated from several leguminous plants of the genus Pueraria. Puerarin possesses several pharmacological properties; however, the poor solubility of puerarin limits its applications. To resolve this poor solubility, Deinococcus geothermalis amylosucrase (DgAS) was used to modify puerarin into more soluble derivatives. The results showed that DgAS could biotransform puerarin into a novel compound: puerarin-4'-O-α-glucoside. The biotransformation reaction was manipulated at different temperatures, pH values, sucrose concentrations, reaction times, and enzyme concentrations. The results showed that the optimal reaction condition was biotransformed by 200 µg/mL DgAS with 20% (w/v) sucrose at pH 6 and incubated at 40 °C for 48 h, and the optimal production yield was 35.1%. Puerarin-4'-O-α-glucoside showed 129-fold higher solubility than that of puerarin and, thus, could be further applied for pharmacological use in the future.


Assuntos
Glucosídeos , Isoflavonas , Proteínas de Bactérias/metabolismo , Deinococcus , Glucosídeos/química , Glucosiltransferases , Isoflavonas/química , Sacarose/metabolismo
3.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575908

RESUMO

Ganoderma lucidum is a medicinal fungus abundant in triterpenoids, its primary bioactive components. Although numerous Ganoderma triterpenoids have already been identified, rare Ganoderma triterpenoid saponins were recently discovered. To create novel Ganoderma saponins, ganoderic acid G (GAG) was selected for biotransformation using four Bacillus glycosyltransferases (GTs) including BtGT_16345 from the Bacillus thuringiensis GA A07 strain and three GTs (BsGT110, BsUGT398, and BsUGT489) from the Bacillus subtilis ATCC 6633 strain. The results showed that BsUGT489 catalyzed the glycosylation of GAG to GAG-3-o-ß-glucoside, while BsGT110 catalyzed the glycosylation of GAG to GAG-26-o-ß-glucoside, which showed 54-fold and 97-fold greater aqueous solubility than that of GAG, respectively. To our knowledge, these two GAG saponins are new compounds. The glycosylation specificity of the four Bacillus GTs highlights the possibility of novel Ganoderma triterpenoid saponin production in the future.


Assuntos
Bacillus/metabolismo , Glicosiltransferases/metabolismo , Triterpenos/metabolismo , Proteínas de Bactérias , Biotransformação , Catálise , Cromatografia Líquida de Alta Pressão , Glicosilação , Estrutura Molecular , Solubilidade , Triterpenos/química
4.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684855

RESUMO

Vitexin is a C-glucoside flavone that exhibits a wide range of pharmaceutical activities. However, the poor solubility of vitexin limits its applications. To resolve this limitation, two glycoside hydrolases (GHs) and four glycosyltransferases (GTs) were assayed for glycosylation activity toward vitexin. The results showed that BtGT_16345 from the Bacillus thuringiensis GA A07 strain possessed the highest glycosylation activity, catalyzing the conversion of vitexin into new compounds, vitexin-4'-O-ß-glucoside (1) and vitexin-5-O-ß-glucoside (2), which showed greater aqueous solubility than vitexin. To our knowledge, this is the first report of vitexin glycosylation. Based on the multiple bioactivities of vitexin, the two highly soluble vitexin derivatives might have high potential for pharmacological usage in the future.


Assuntos
Apigenina/metabolismo , Glucosídeos/metabolismo , Bacillus thuringiensis/metabolismo , Catálise , Flavonas/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Isoflavonas/metabolismo , Solubilidade
5.
Int J Mol Sci ; 17(9)2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-27618898

RESUMO

Cleome rutidosperma DC. and Euphorbia thymifolia L. are herbal medicines used in traditional Indian and Chinese medicine to treat various illnesses. Reports document that they have antioxidant and anti-inflammatory activities; nonetheless, the molecular mechanisms involved in their anti-inflammatory actions have not yet been elucidated. The anti-neuroinflammatory activities and underlying mechanisms of ethanol extracts of Cleome rutidosperma (CR) and Euphorbia thymifolia (ET) were studied using lipopolysaccharide (LPS)-stimulated microglial cell line BV2. The morphology changes and production of pro-inflammatory mediators were assayed. Gene expression of inflammatory genes such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1ß, and CC chemokine ligand (CCL)-2, as well as phase II enzymes such as heme oxygenase (HO)-1, the modifier subunit of glutamate cysteine ligase (GCLM) and NAD(P)H quinone dehydrogenase 1 (NQO1), were further investigated using reverse transcription quantitative-PCR (RT-Q-PCR) and Western blotting. The effects of CR and ET on mitogen activated protein kinases (MAPKs) and nuclear factor (NF)-κB signaling pathways were examined using Western blotting and specific inhibitors. CR and ET suppressed BV2 activation, down-regulated iNOS and COX-2 expression and inhibited nitric oxide (NO) overproduction without affecting cell viability. They reduced LPS-mediated tumor necrosis factor (TNF) and IL-6 production, attenuated IL-1ß and CCL2 expression, but upregulated HO-1, GCLM and NQO1 expression. They also inhibited p65 NF-κB phosphorylation and modulated Jun-N terminal kinase (JNK) activation in BV2 cells. SP600125, the JNK inhibitor, significantly augmented the anti-IL-6 activity of ET. NF-κB inhibitor, Bay 11-7082, enhanced the anti-IL-6 effects of both CR and ET. Znpp, a competitive inhibitor of HO-1, attenuated the anti-NO effects of CR and ET. Our results show that CR and ET exhibit anti-neuroinflammatory activities by inhibiting pro-inflammatory mediator expression and production, upregulating HO-1, GCLM and NQO1, blocking NF-κB and modulating JNK signaling pathways. They may offer therapeutic potential for suppressing overactivated microglia and alleviating neurodegeneration.


Assuntos
Anti-Inflamatórios/farmacologia , Cleome/química , Euphorbia/química , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Nitritos/metabolismo , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/metabolismo
6.
Molecules ; 21(2): 136, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26805809

RESUMO

The whole plant of Anisomeles ovata has been widely used in Taiwan for treating inflammation-related skin and liver diseases, however, the detailed pharmacology mechanisms have yet to be elucidated. In the present study, one of the major components, 5,6,4'-trihydroxy-7,3'-dimethoxyflavone (5-TDMF), was purified from a methanol extract of Anisomeles ovata. A pharmacological study of this compound suggests that 5-TDMF possesses potent free radical scavenging activity both in vitro and ex vivo. Furthermore, 5-TDMF reduces nitric oxide and pro-inflammatory cytokine production in LPC-treated RAW 264.7 cells through the attenuation of nitric oxide synthase and cyclooxygenase-2. Additional experiments suggest that of 5-TDMF interferes with nuclear factor-κB translocation and mitogen-activated protein kinase pathways. These results identify 5-TDMF as an anti-oxidant and anti-inflammatory compound, explain the pharmacologic function of Anisomeles ovata and suggest its great potential as a new anti-inflammatory remedy.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonas/farmacologia , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Animais , Ciclo-Oxigenase 2/metabolismo , Flavonas/isolamento & purificação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lamiaceae/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Células RAW 264.7
7.
Int J Mol Sci ; 16(11): 27816-23, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26610478

RESUMO

Biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase (OMT) SpOMT2884 from Streptomyces peucetius was investigated. Two metabolites were isolated and identified as 7,4'-dihydroxy-8-methoxy-isoflavone (1) and 8,4'-dihydroxy-7-methoxy-isoflavone (2), based on mass, 1H-nuclear magnetic resonance (NMR) and 13C-NMR spectrophotometric analysis. The maximum production yields of compound (1) and (2) in a 5-L fermenter were 9.3 mg/L and 6.0 mg/L, respectively. The two methoxy-isoflavones showed dose-dependent inhibitory effects on melanogenesis in cultured B16 melanoma cells under non-toxic conditions. Among the effects, compound (1) decreased melanogenesis to 63.5% of the control at 25 µM. This is the first report on the 8-O-methylation activity of OMT toward isoflavones. In addition, the present study also first identified compound (1) with potent melanogenesis inhibitory activity.


Assuntos
Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Isoflavonas/biossíntese , Metiltransferases/genética , Metiltransferases/metabolismo , Streptomyces/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fermentação , Expressão Gênica , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Melanoma Experimental , Camundongos , Streptomyces/enzimologia
8.
J Biosci Bioeng ; 137(1): 47-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036317

RESUMO

Our pursuit of new compounds with enhanced bioavailability and bioactivity prompted us to employ the biotransformation-guided purification (BGP) approach which leverages proficient in vitro biotransformation techniques. Angelica dahurica roots, also called Baizhi in Chinese traditional medicine, are famous for their anti-inflammatory and analgesic properties. Herein, we applied the BGP methodology to Baizhi extracts, employing Deinococcus geothermalis amylosucrase (DgAS), an enzyme demonstrating catalytic competence across diverse substrates, for biotransformation. Initiating with a 70 % methanol extraction, we obtained the crude extract of commercial Baizhi powder, followed by an additional extraction using ethyl acetate. Notably, reactions performed on this extract yielded limited quantities of novel compounds. Subsequently, the extract underwent partitioning into four fractions based on HPLC profiling, leading to the successful isolation of a compound with significant yield from fraction 2 mixtures upon reaction with DgAS. Structural elucidation confirmed the compound as byakangelicin-7″-O-α-glucopyranoside (BG-G), a new alpha glycoside derivative of byakangelicin. Furthermore, validation experiments verified the capacity of DgAS to glycosylate pure byakangelicin, yielding BG-G. Remarkably, the aqueous solubility of BG-G exceeded that of byakangelicin by over 29,000-fold. In conclusion, BGP emerges as a potent strategy combining traditional medicinal insights with robust enzymatic tools for generating new compounds.


Assuntos
Glicosídeos , Medicina Tradicional Chinesa , Glucosiltransferases/metabolismo , Biotransformação
9.
J Biosci Bioeng ; 138(3): 218-224, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997871

RESUMO

Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 µM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 µM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.


Assuntos
Agrobacterium tumefaciens , Anti-Inflamatórios , Catecóis , Álcoois Graxos , Glucosídeos , alfa-Glucosidases , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Álcoois Graxos/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Catecóis/química , Catecóis/farmacologia , Catecóis/metabolismo , Glucosídeos/química , Glucosídeos/farmacologia , Glucosídeos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Solubilidade , Zingiber officinale/química
10.
Biochim Biophys Acta ; 1820(7): 1081-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22554915

RESUMO

BACKGROUND: Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood. METHODS: The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated. RESULTS: Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells. CONCLUSIONS: Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin. GENERAL SIGNIFICANCE: These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Caspases/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Citometria de Fluxo , Fluoruracila/administração & dosagem , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
11.
BMC Complement Altern Med ; 13: 237, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24070160

RESUMO

BACKGROUND: Alpinia oxyphylla is a common remedy in traditional Chinese medicine. Yakuchinone A is a major constituent of A. oxyphylla and exhibits anti-inflammatory, antitumor, antibacterial, and gastric protective activities. METHODS: Antioxidant and antitumor characteristics of yakuchinone A in skin cancer cells as well as novel mechanisms for the inhibition of adipocyte differentiation, cestocidal activities against Hymenolepis nana adults, and nematocidal activities against Anisakis simplex larvae are investigated. RESULTS: Yakuchinone A presents the ability of the removal of DPPH·and ABTS+ free radicals and inhibition of lipid peroxidation. Yakuchinone A suppresses intracellular lipid accumulation during adipocyte differentiation in 3 T3-L1 cells and the expressions of leptin and peroxisome proliferator-activated receptor γ (PPARγ). Yakuchinone A induces apoptosis and inhibits cell proliferation in skin cancer cells. The inhibition of cell growth by yakuchinone A is more significant for non-melanoma skin cancer (NMSC) cells than for melanoma (A375 and B16) and noncancerous (HaCaT and BNLCL2) cells. Treatment BCC cells with yakuchinone A shows down-regulation of Bcl-2, up-regulation of Bax, and an increase in cleavage poly (ADP-ribose) polymerase (PARP). This suggests that yakuchinone A induces BCC cells apoptosis through the Bcl-2-mediated signaling pathway. The anthelmintic activities of yakuchinone A for A. simplex are better than for H. nana. CONCLUSIONS: In this work, yakuchinone A exhibits antioxidative properties, anti-adipocyte differentiation, antitumor activity, and anthelmintic activities against A. simplex and H. nana.


Assuntos
Alpinia/química , Anti-Helmínticos/farmacologia , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Guaiacol/análogos & derivados , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Anisakis/efeitos dos fármacos , Anti-Helmínticos/química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Guaiacol/química , Guaiacol/farmacologia , Humanos , Hymenolepis nana/efeitos dos fármacos , Larva/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
J Biosci Bioeng ; 135(5): 402-410, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889998

RESUMO

Ganoderma sp. contains high amounts of diverse triterpenoids; however, few triterpenoid saponins could be isolated from the medicinal fungus. To produce novel Ganoderma triterpenoid saponins, biotransformation-guided purification (BGP) process was applied to a commercial Ganoderma extract. The commercial Ganoderma extract was partially separated into three fractions by preparative high-performance liquid chromatography, and the separated fractions were then directly biotransformed by a Bacillus glycosyltransferase (BsUGT489). One of the biotransformed products could be further purified and identified as a novel saponin: ganoderic acid C2 (GAC2)-3-O-ß-glucoside by nucleic magnetic resonance (NMR) and mass spectral analyses. Based on the structure of the saponin, the predicted precursor should be the GAC2, which was confirmed to be biotransformed into four saponins, GAC2-3-O-ß-glucoside, GAC2-3,15-O-ß-diglucoside and two unknown GAC2 monoglucosides, revealed by NMR and mass spectral analyses. GAC2-3-O-ß-glucoside and GAC2-3,15-O-ß-diglucoside possessed 17-fold and 200-fold higher aqueous solubility than that of GAC2, respectively. In addition, GAC2-3-O-ß-glucoside retained the most anti-α-glucosidase activity of GAC2 and was comparable with that of the anti-diabetes drug (acarbose). The present study showed that the BGP process is an efficient strategy to survey novel and bioactive molecules from crude extracts of natural products.


Assuntos
Ganoderma , Saponinas , Triterpenos , Ganoderma/química , Biotransformação , Glucosídeos
13.
Biol Pharm Bull ; 35(12): 2198-203, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23207771

RESUMO

trans-Caffeic acid stearyl ester (TCASE) from the root cortex of Paeonia suffruticosa ANDREWS is a traditional medicinal herb that has several beneficial properties. However, the inhibitory effect of TCASE on melanogenesis has not been explored. In the cell viability assay, TCASE did not show a cytotoxic effect at a dose of 65 µM for 48 h in B16, HaCaT and Hs68 cells. TCASE considerably inhibits melanin synthesis, and reduces intracellular cyclic adenosine monophosphate (cAMP) levels, tyrosinase activity and L-3-(3,4-dihydroxyphenyl)-alanine (DOPA) oxidase activity in a concentration-dependent manner in the presence of α-melanocyte-stimulating hormone (α-MSH) in B16 cells, and the inhibition efficiency of TCASE exceeds that of ascorbic acid and arbutin. TCASE reduces melanocortin-1 receptor (MC1R), microphthalmia transcription factor (MITF), tyrosinase, tyrosinase-related protein-2 (TRP-2) and TRP-1 mRNA and protein levels in B16 cells. Based on the findings, TCASE is posited to inhibit melanogenesis signaling while suppressing cAMP levels and, subsequently, MC1R, MITF, tyrosinase, TRP-2 and TRP-1 down-regulation, resulting in the suppression of tyrosinase activity, DOPA oxidase activity and melanin synthesis.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Melaninas/biossíntese , Melanoma Experimental/tratamento farmacológico , Paeonia/química , Fitoterapia , alfa-MSH/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Ácidos Cafeicos/farmacologia , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Regulação para Baixo , Humanos , Melanoma Experimental/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais
14.
Int J Mol Sci ; 13(8): 10359-10367, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22949866

RESUMO

Homoisoflavanone, sappanone A, was isolated from Caesalpinia sappan and proven to dose-dependently inhibit both melanogenesis and cellular tyrosinase activity via repressing tyrosinase gene expression in mouse B16 melanoma cells. To our knowledge, sappanone A is the first homoisoflavanone to be discovered with melanogenesis inhibitory activity. Our results give a new impetus to the future search for other homoisoflavanone melanogenesis inhibitors.


Assuntos
Caesalpinia/química , Inibidores Enzimáticos/farmacologia , Isoflavonas/farmacologia , Melaninas/biossíntese , Melanoma Experimental/patologia , Extratos Vegetais/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Camundongos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Plants (Basel) ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079584

RESUMO

This study demonstrated the enzymatic hydroxylation of glycitin to 3'-hydroxyglycitin, confirming the structure by mass and nucleic magnetic resonance spectral analyses. The bioactivity assays further revealed that the new compound possessed over 100-fold higher 1,1-diphenyl-2-picrylhydrazine free-radical scavenging activity than the original glycitin, although its half-time of stability was 22.3 min. Furthermore, the original glycitin lacked anti-α-glucosidase activity, whereas the low-toxic 3'-hydroxyglycitin displayed a 10-fold higher anti-α-glucosidase activity than acarbose, a standard clinical antidiabetic drug. The inhibition mode of 3'-hydroxyglycitin was noncompetitive, with a Ki value of 0.34 mM. These findings highlight the potential use of the new soy isoflavone 3'-hydroxyglycitin in biotechnology industries in the future.

16.
Plants (Basel) ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079669

RESUMO

Ha-Soo-Oh is a traditional Chinese medicine prepared from the roots of Polygonum multiflorum Thunb. The herb extract has been widely used in Asian countries as a tonic agent and nutritional supplement for centuries. To identify new bioactive compounds in Chinese herbs, the biotransformation-guided purification (BGP) process was applied to Ha-Soo-Oh with Bacillus megaterium tyrosinase (BmTYR) as a biocatalyst. The result showed that a major biotransformed compound could be purified using the BGP process with preparative high-performance liquid chromatography (HPLC), and it was confirmed as a new compound, 2,3,5,3',4'-pentahydroxystilbene-2-O-ß-glucoside (PSG) following mass and nucleic magnetic resonance (NMR) spectral analyses. PSG was further confirmed as a biotransformation product from 2,3,5,4'-tetrahydroxystilbene-2-O-ß-glucoside (TSG) by BmTYR. The new PSG exhibited 4.7-fold higher 1,1-diphenyl-2-picrylhydrazine (DPPH) free radical scavenging activity than that of TSG. The present study highlights the potential usage of BGP in herbs to discover new bioactive compounds in the future.

17.
Biology (Basel) ; 11(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35741343

RESUMO

Glycosylation occurring at either lipids, proteins, or sugars plays important roles in many biological systems. In nature, enzymatic glycosylation is the formation of a glycosidic bond between the anomeric carbon of the donor sugar and the functional group of the sugar acceptor. This study found novel glycoside anomers without an anomeric carbon linkage of the sugar donor. A glycoside hydrolase (GH) enzyme, amylosucrase from Deinococcus geothermalis (DgAS), was evaluated to glycosylate ganoderic acid F (GAF), a lanostane triterpenoid from medicinal fungus Ganoderma lucidum, at different pH levels. The results showed that GAF was glycosylated by DgAS at acidic conditions pH 5 and pH 6, whereas the activity dramatically decreased to be undetectable at pH 7 or pH 8. The biotransformation product was purified by preparative high-performance liquid chromatography and identified as unusual α-glucosyl-(2→26)-GAF and ß-glucosyl-(2→26)-GAF anomers by mass and nucleic magnetic resonance (NMR) spectroscopy. We further used DgAS to catalyze another six triterpenoids. Under the acidic conditions, two of six compounds, ganoderic acid A (GAA) and ganoderic acid G (GAG), could be converted to α-glucosyl-(2→26)-GAA and ß-glucosyl-(2→26)-GAA anomers and α-glucosyl-(2→26)-GAG and ß-glucosyl-(2→26)-GAG anomers, respectively. The glycosylation of triterpenoid aglycones was first confirmed to be converted via a GH enzyme, DgAS. The novel enzymatic glycosylation-formed glycoside anomers opens a new bioreaction in the pharmaceutical industry and in the biotechnology sector.

18.
Exp Dermatol ; 20(9): 720-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21615508

RESUMO

Two natural acetophenone derivatives, 2,5-dihydroxyacetophenone (2,5-DHAP) and 2,6-DHAP, were purified from Cynanchum bungei and identified as murine tyrosinase inhibitors. Investigation into 2,5-DHAP showed it to be an uncompetitive inhibitor of murine tyrosinase (K(I) 0.28 mm). 2,5-DHAP strongly inhibited both melanogenesis and cellular tyrosinase activity in vitro in 3-isobutyl-1-methylxanthin-stimulated B16 mouse melanoma cells or in vivo in zebrafish and mouse models, but showed no cytotoxicity at the concentrations used. In B16 cells, 2,5-DHAP inhibition was dose-dependent and was fourfold greater than that of arbutin. 2,5-DHAP had no effect on the expression of tyrosinase protein or mRNA, as confirmed by Western blotting and quantitative real-time reverse transcription polymerase chain reaction, respectively. A 2% gel preparation of 2,5-DHAP applied to the skin of mice significantly increased the average skin-whitening index (L value), indicating its potential use as a treatment for skin hyperpigmentation in humans.


Assuntos
Cynanchum/química , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pigmentação da Pele/efeitos dos fármacos , Acetofenonas/isolamento & purificação , Acetofenonas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Humanos , Técnicas In Vitro , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/enzimologia , Camundongos , Monofenol Mono-Oxigenase/genética , Transtornos da Pigmentação/tratamento farmacológico , Pigmentação da Pele/fisiologia , Peixe-Zebra
19.
Biosci Biotechnol Biochem ; 75(5): 914-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21597196

RESUMO

Our previous study showed that a methanol extract from Trifolium pratense exerted potent inhibitory activity on melanogenesis in mouse B16 melanoma cells. In the present study, the active compound in this Chinese herb extract was isolated and identified as biochanin A by mass spectrum, (1)H-NMR, and (13)C-NMR analysis. The inhibitory effects of biochanin A on melanogenesis were investigated in vitro in cultured melanoma cells and in vivo in zebrafish and mice. Biochanin A dose-dependently inhibited both melanogenesis and cellular tyrosinase activity in B16 cells and in zebrafish embryos. Application of a cream containing 2% biochanin A twice daily to the skin of mice also increased the skin-whitening index value after 1 week of treatment, and the increase continued for another 2 weeks. Biochanin A was confirmed as a good candidate for use as a skin-whitening agent in the treatment of skin hyperpigmentation disorders.


Assuntos
Genisteína/farmacologia , Melaninas/biossíntese , Trifolium/química , Animais , Linhagem Celular Tumoral , Genisteína/análise , Genisteína/isolamento & purificação , Humanos , Camundongos , Pigmentação/efeitos dos fármacos , Peixe-Zebra
20.
Int J Mol Sci ; 12(6): 3941-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747716

RESUMO

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of the fruits of Rubus chingii was studied in vitro. Ethanolic extract, ethyl acetate and n-butanol fractions from dried R. chingii fruits revealed strong DPPH free radical scavenging activity with IC(50) values of 17.9, 3.4 and 4.0 µg/mL, respectively. The ethyl acetate and n-butanol fractions were further purified by a combination of silica gel chromatography, Lobar RP-8 chromatography, and high-pressure liquid chromatography (HPLC). Nine compounds were isolated, where methyl (3-hydroxy-2-oxo-2,3-dihydroindol-3-yl)-acetate (2), vanillic acid (5), kaempferol (7), and tiliroside (9) showed stronger DPPH free radical scavenging activity than that of ascorbic acid (131.8 µM) with IC(50) values of 45.2, 34.9, 78.5, and 13.7 µM, respectively. In addition, rubusine (1) is a new compound discovered in the present study and methyl (3-hydroxy-2-oxo-2,3-dihydroindol-3-yl)-acetate (2), methyl dioxindole-3-acetate (3), and 2-oxo-1,2-dihydroquinoline-4-carboxylic acid (4) were isolated from the fruits for the first time.


Assuntos
Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Rubus/química , Acetatos/química , Alcaloides/química , Alcaloides/isolamento & purificação , Compostos de Bifenilo/química , Butanóis/química , Cromatografia Líquida de Alta Pressão , Etanol/química , Flavonoides/química , Flavonoides/isolamento & purificação , Frutas/química , Frutas/metabolismo , Oxirredução , Fenóis/química , Fenóis/isolamento & purificação , Picratos/química , Rubus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA