Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Mol Life Sci ; 79(10): 530, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167862

RESUMO

The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABAB-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação , Ácido gama-Aminobutírico/metabolismo
2.
J Neurosci ; 37(43): 10372-10388, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28935766

RESUMO

Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT2B-receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse.SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT2B receptors. These data support the idea that the chronic 5-HT2B-receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity.


Assuntos
Cocaína/administração & dosagem , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Núcleo Accumbens/metabolismo , Receptor 5-HT2B de Serotonina/biossíntese , Transdução de Sinais/fisiologia , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Accumbens/efeitos dos fármacos , Projetos Piloto , Distribuição Aleatória , Receptor 5-HT2B de Serotonina/deficiência , Autoadministração , Transdução de Sinais/efeitos dos fármacos
3.
J Biol Chem ; 292(15): 6352-6368, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28258217

RESUMO

The serotonin receptor subtypes 2 comprise 5-HT2A, 5-HT2B, and 5-HT2C, which are Gαq-coupled receptors and display distinct pharmacological properties. Although co-expressed in some brain regions and involved in various neurological disorders, their functional interactions have not yet been studied. We report that 5-HT2 receptors can form homo- and heterodimers when expressed alone or co-expressed in transfected cells. Co-immunoprecipitation and bioluminescence resonance energy transfer studies confirmed that 5-HT2C receptors interact with either 5-HT2A or 5-HT2B receptors. Although heterodimerization with 5-HT2C receptors does not alter 5-HT2C Gαq-dependent inositol phosphate signaling, 5-HT2A or 5-HT2B receptor-mediated signaling was totally blunted. This feature can be explained by a dominance of 5-HT2C on 5-HT2A and 5-HT2B receptor binding; in 5-HT2C-containing heterodimers, ligands bind and activate the 5-HT2C protomer exclusively. This dominant effect on the associated protomer was also observed in neurons, supporting the physiological relevance of 5-HT2 receptor heterodimerization in vivo Accordingly, exogenous expression of an inactive form of the 5-HT2C receptor in the locus ceruleus is associated with decreased 5-HT2A-dependent noradrenergic transmission. These data demonstrate that 5-HT2 receptors can form functionally asymmetric heterodimers in vitro and in vivo that must be considered when analyzing the physiological or pathophysiological roles of serotonin in tissues where 5-HT2 receptors are co-expressed.


Assuntos
Locus Cerúleo/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Masculino , Camundongos , Multimerização Proteica , Receptores 5-HT2 de Serotonina/genética
4.
Nature ; 468(7327): 1061-6, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21179162

RESUMO

Impulsivity, describing action without foresight, is an important feature of several psychiatric diseases, suicidality and violent behaviour. The complex origins of impulsivity hinder identification of the genes influencing it and the diseases with which it is associated. Here we perform exon-focused sequencing of impulsive individuals in a founder population, targeting fourteen genes belonging to the serotonin and dopamine domain. A stop codon in HTR2B was identified that is common (minor allele frequency > 1%) but exclusive to Finnish people. Expression of the gene in the human brain was assessed, as well as the molecular functionality of the stop codon, which was associated with psychiatric diseases marked by impulsivity in both population and family-based analyses. Knockout of Htr2b increased impulsive behaviours in mice, indicative of predictive validity. Our study shows the potential for identifying and tracing effects of rare alleles in complex behavioural phenotypes using founder populations, and indicates a role for HTR2B in impulsivity.


Assuntos
Comportamento Impulsivo/genética , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2B de Serotonina/metabolismo , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Feminino , Finlândia , Efeito Fundador , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Genótipo , Humanos , Masculino , Transtornos Mentais/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Testosterona/sangue , Testosterona/líquido cefalorraquidiano
5.
Mol Pharmacol ; 85(1): 127-38, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24174497

RESUMO

The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family.


Assuntos
Receptor 5-HT2B de Serotonina/genética , Sequência de Aminoácidos , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células COS , Proliferação de Células , Chlorocebus aethiops , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Polimorfismo Genético , Ensaio Radioligante , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais
6.
Blood ; 119(7): 1772-80, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22186990

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.


Assuntos
Medula Óssea/fisiologia , Hipertensão Pulmonar/genética , Receptor 5-HT2B de Serotonina/fisiologia , Animais , Sangue/metabolismo , Análise Química do Sangue , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2B de Serotonina/metabolismo
7.
Biomedicines ; 11(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37509563

RESUMO

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is involved in numerous physiological functions and plays a key role in pain modulation including neuropathic pain. Diabetic neuropathy is a common complication of diabetes mellitus often accompanied by chronic neuropathic pain. Animal models of diabetes offer relevant tools for studying the pathophysiological mechanisms and pharmacological sensitivity of diabetic neuropathic pain and for identifying new therapeutic targets. In this review, we report data from preclinical work published over the last 15 years on the analgesic activity of drugs acting on the serotonergic system, such as serotonin and noradrenaline reuptake inhibitor (SNRI) antidepressants, and on the involvement of certain serotonin receptors-in particular 5-HT1A, 5-HT2A/2c and 5-HT6 receptors-in rodent models of painful diabetic neuropathy.

8.
Biomolecules ; 13(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830733

RESUMO

Diabetic neuropathy is often associated with chronic pain. Serotonin type 6 (5-HT6) receptor ligands, particularly inverse agonists, have strong analgesic potential and may be new candidates for treating diabetic neuropathic pain and associated co-morbid cognitive deficits. The current study addressed the involvement of 5-HT6 receptor constitutive activity and mTOR signaling in an experimental model of diabetic neuropathic pain induced by streptozocin (STZ) injection in the rat. Here, we show that mechanical hyperalgesia and associated cognitive deficits are suppressed by the administration of 5-HT6 receptor inverse agonists or rapamycin. The 5-HT6 receptor ligands also reduced tactile allodynia in traumatic and toxic neuropathic pain induced by spinal nerve ligation and oxaliplatin injection. Furthermore, both painful and co-morbid cognitive symptoms in diabetic rats are reduced by intrathecal delivery of a cell-penetrating peptide that disrupts 5-HT6 receptor-mTOR physical interaction. These findings demonstrate the deleterious influence of the constitutive activity of spinal 5-HT6 receptors upon painful and cognitive symptoms in diabetic neuropathic pains of different etiologies. They suggest that targeting the constitutive activity of 5-HT6 receptors with inverse agonists or disrupting the 5-HT6 receptor-mTOR interaction might be valuable strategies for the alleviation of diabetic neuropathic pain and cognitive co-morbidities.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Agonismo Inverso de Drogas , Ligantes , Serotonina/farmacologia , Hiperalgesia , Serina-Treonina Quinases TOR
9.
J Neurosci ; 31(8): 2756-68, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21414898

RESUMO

Heterogeneity of central serotonin (5-HT) raphe neurons is suggested by numerous lines of evidence, but its genetic basis remains elusive. The transcription factor Pet1 is required for the acquisition of serotonergic identity in a majority of neurons in the raphe nuclei. Nevertheless, a subset of 5-HT neurons differentiates in Pet1 knock-out mice. We show here that these residual 5-HT neurons outline a unique subpopulation of raphe neurons with highly selective anatomical targets and characteristic synaptic differentiations. In Pet1 knock-out mice, 5-HT innervation strikingly outlines the brain areas involved in stress responses with dense innervation to the basolateral amygdala, the paraventricular nucleus of the hypothalamus, and the intralaminar thalamic nuclei. In these regions, 5-HT terminals establish asymmetric synaptic junctions. This target selectivity could not be related to altered growth of the remaining 5-HT neurons, as indicated by axon tracing and cell culture analyses. The residual 5-HT axon terminals are functional with maintained release properties in vitro and in vivo. The functional consequence of this uneven distribution of 5-HT innervation on behavior was characterized. Pet1 knock-out mice showed decreased anxiety behavior in novelty exploration and increased fear responses to conditioned aversive cues. Overall, our findings lead us to propose the existence of Pet1-dependent and Pet1-resistant 5-HT neurons targeting different brain centers that might delineate the anatomical basis for a dual serotonergic control on stress responses.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/citologia , Núcleos da Rafe/citologia , Núcleos da Rafe/crescimento & desenvolvimento , Serotonina/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurogênese/genética , Neurônios/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia
10.
Circ Res ; 104(1): 113-23, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19023134

RESUMO

By mimicking sympathetic stimulation in vivo, we previously reported that mice globally lacking serotonin 5-HT(2B) receptors did not develop isoproterenol-induced left ventricular hypertrophy. However, the exact cardiac cell type(s) expressing 5-HT(2B) receptors (cardiomyocytes versus noncardiomyocytes) involved in pathological heart hypertrophy was never addressed in vivo. We report here that mice expressing the 5-HT(2B) receptor solely in cardiomyocytes, like global 5-HT(2B) receptor-null mice, are resistant to isoproterenol-induced cardiac hypertrophy and dysfunction, as well as to isoproterenol-induced increases in cytokine plasma-levels. These data reveal a key role of noncardiomyocytes in isoproterenol-induced hypertrophy in vivo. Interestingly, we show that primary cultures of angiotensinogen null adult cardiac fibroblasts are releasing cytokines on stimulation with either angiotensin II or serotonin, but not in response to isoproterenol stimulation, demonstrating a critical role of angiotensinogen in adrenergic-dependent cytokine production. We then show a functional interdependence between AT(1)Rs and 5-HT(2B) receptors in fibroblasts by revealing a transinhibition mechanism that may involve heterodimeric receptor complexes. Both serotonin- and angiotensin II-dependent cytokine production occur via a Src/heparin-binding epidermal growth factor-dependent transactivation of epidermal growth factor receptors in cardiac fibroblasts, supporting a common signaling pathway. Finally, we demonstrate that 5-HT(2B) receptors are overexpressed in hearts from patients with congestive heart failure, this overexpression being positively correlated with cytokine and norepinephrine plasma levels. Collectively, these results reveal for the first time that interactions between AT(1) and 5-HT(2B) receptors coexpressed by noncardiomyocytes are limiting key events in adrenergic agonist-induced, angiotensin-dependent cardiac hypertrophy. Accordingly, antagonists of 5-HT(2B) receptors might represent novel therapeutics for sympathetic overstimulation-dependent heart failure.


Assuntos
Fibroblastos/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocárdio/patologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor 5-HT2B de Serotonina/fisiologia , Adulto , Angiotensina II/deficiência , Angiotensina II/fisiologia , Angiotensina II/toxicidade , Animais , Células Cultivadas/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Receptores ErbB/fisiologia , Feminino , Fibroblastos/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Isoproterenol/toxicidade , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Norepinefrina/fisiologia , Mapeamento de Interação de Proteínas , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/fisiologia
11.
ACS Pharmacol Transl Sci ; 3(2): 171-178, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296760

RESUMO

Cells are sensitive to chemical stimulation which is converted into intracellular biochemical signals by the activation of specific receptors. Mechanical stimulations can also induce biochemical responses via the activation of various mechano-sensors. Although principally appreciated for their chemosensory function, G-protein-coupled receptors (GPCRs) may participate in mechano-transduction. They are indirectly activated by the paracrine release of chemical compounds secreted in response to mechanical stimuli, but they might additionally behave as mechano-sensors that are directly stimulated by mechanical forces. Although several studies are consistent with this latter hypothesis, the molecular mechanisms of a potential direct mechanical activation of GPCRs have remained elusive until recently. In particular, investigating the activation of the catecholamine ß2-adrenergic receptor by a pathogen revealed that traction forces directly exerted on the N-terminus of the receptor via N-glycan chains activate specific signaling pathways. These findings open new perspectives in GPCR biology and pharmacology since most GPCRs express N-glycan chains in their N-terminus, which might similarly be involved in the interaction with cell-surface glycan-specific lectins in the context of cell-to-cell mechanical signaling.

12.
Prog Neurobiol ; 193: 101846, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32512114

RESUMO

Chronic neuropathic pain is a highly disabling syndrome that is poorly controlled by currently available analgesics. Here, we show that painful symptoms and associated cognitive deficits induced by spinal nerve ligation in the rat are prevented by the administration of serotonin 5-HT6 receptor inverse agonists or by the mTOR inhibitor rapamycin. In contrast, they are not alleviated by the administration of 5-HT6 receptor neutral antagonists. Likewise, activation of mTOR by constitutively active 5-HT6 receptors mediates allodynia in oxaliplatin-induced peripheral neuropathy in rats but not mechanical nociception in healthy rats. Furthermore, both painful and co-morbid cognitive symptoms in neuropathic rats are strongly reduced by intrathecal delivery of a cell-penetrating peptide that disrupts 5-HT6 receptor/mTOR physical interaction. Collectively, these findings demonstrate a deleterious influence of non-physiological mTOR activation by constitutively active spinal 5-HT6 receptors upon painful and cognitive symptoms in neuropathic pains of different etiologies. They suggest that targeting the constitutive activity of 5-HT6 receptors with inverse agonists or disrupting the 5-HT6 receptor/mTOR interaction might be valuable strategies for the alleviation of neuropathic pain and cognitive co-morbidities.


Assuntos
Disfunção Cognitiva , Hiperalgesia , Neuralgia , Nociceptividade , Receptores de Serotonina , Serotoninérgicos/farmacologia , Serina-Treonina Quinases TOR , Animais , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nociceptividade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Serotoninérgicos/administração & dosagem , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
J Neurosci ; 28(11): 2933-40, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18337424

RESUMO

The "club drug" 3,4-methylenedioxymethamphetamine (MDMA; also known as ecstasy) binds preferentially to and reverses the activity of the serotonin transporter, causing release of serotonin [5-hydroxytryptamine (5-HT)] stores from nerve terminals. Subsequent activation of postsynaptic 5-HT receptors by released 5-HT has been shown to be critical for the unique psychostimulatory effects of MDMA. In contrast, the effects of direct activation of presynaptic and/or postsynaptic receptors by MDMA have received far less attention, despite the agonist actions of the drug itself at 5-HT(2) receptors, in particular the 5-HT(2B) receptor. Here we show that acute pharmacological inhibition or genetic ablation of the 5-HT(2B) receptor in mice completely abolishes MDMA-induced hyperlocomotion and 5-HT release in nucleus accumbens and ventral tegmental area. Furthermore, the 5-HT(2B) receptor dependence of MDMA-stimulated release of endogenous 5-HT from superfused midbrain synaptosomes suggests that 5-HT(2B) receptors act, unlike any other 5-HT receptor, presynaptically to affect MDMA-stimulated 5-HT release. Thus, our findings reveal a novel regulatory component in the actions of MDMA and represent the first demonstration that 5-HT(2B) receptors play an important role in the brain, i.e., modulation of 5-HT release. As such, 5-HT(2B) receptor antagonists may serve as promising therapeutic drugs for MDMA abuse.


Assuntos
Hipercinese/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Feminino , Hipercinese/induzido quimicamente , Masculino , Camundongos , Camundongos Mutantes , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia
14.
Nat Commun ; 10(1): 4752, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628314

RESUMO

Meningococcus utilizes ß-arrestin selective activation of endothelial cell ß2 adrenergic receptor (ß2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that ß2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on ß2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.


Assuntos
Fímbrias Bacterianas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neisseria meningitidis/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Fímbrias Bacterianas/genética , Células HEK293 , Humanos , Lectinas/metabolismo , Microscopia Confocal , Neisseria meningitidis/fisiologia , Polissacarídeos/metabolismo , Receptores Adrenérgicos beta 2/genética , Homologia de Sequência de Aminoácidos , beta-Arrestinas/metabolismo
15.
Neuropsychopharmacology ; 43(7): 1623-1632, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453444

RESUMO

Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT2B-receptor stimulation by BW723C86 counteracted 5-HT1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT1A-autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT2B receptor acts as a direct positive modulator of serotonin Pet1-positive neurons in an opposite way as the known 5-HT1A-negative autoreceptor.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Indóis/farmacologia , Núcleos da Rafe/fisiologia , Receptor 5-HT2B de Serotonina/fisiologia , Neurônios Serotoninérgicos/fisiologia , Tiofenos/farmacologia , 3,4-Metilenodioxianfetamina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Anfetaminas/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurogênese/fisiologia , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Receptor 5-HT2B de Serotonina/genética , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Fatores de Transcrição/genética
16.
Cell Rep ; 21(4): 901-909, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069597

RESUMO

Transient reduced food intake (hypophagia) following high stress could have beneficial effects on longevity, but paradoxically, hypophagia can persist and become anorexia-like behavior. The neural underpinnings of stress-induced hypophagia and the mechanisms by which the brain prevents the transition from transient to persistent hypophagia remain undetermined. In this study, we report the involvement of a network governing goal-directed behavior (decision). This network consists of the ascending serotonergic inputs from the dorsal raphe nucleus (DR) to the medial prefrontal cortex (mPFC). Specifically, adult restoration of serotonin 4 receptor (5-HT4R) expression in the mPFC rescues hypophagia and specific molecular changes related to depression resistance in the DR (5-HT release elevation, 5-HT1A receptor, and 5-HT transporter reductions) of stressed 5-HT4R knockout mice. The adult mPFC-5-HT4R knockdown mimics the null phenotypes. When mPFC-5-HT4Rs are overexpressed and DR-5-HT1ARs are blocked in the DR, hypophagia following stress persists, suggesting an antidepressant action of early anorexia.


Assuntos
Anorexia/metabolismo , Córtex Pré-Frontal/metabolismo , Núcleos da Rafe/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Estresse Psicológico/metabolismo , Adaptação Fisiológica , Animais , Anorexia/etiologia , Anorexia/fisiopatologia , Masculino , Camundongos , Receptores 5-HT4 de Serotonina/genética , Estresse Psicológico/complicações
18.
Brain Struct Funct ; 221(8): 4169-4185, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26645984

RESUMO

Prenylated Rab acceptor family, member 2 (PRAF2) is a four transmembrane domain protein of 19 kDa that is highly expressed in particular areas of mammalian brains. PRAF2 is mostly found in the endoplasmic reticulum (ER) of neurons where it plays the role of gatekeeper for the GB1 subunit of the GABAB receptor, preventing its progression in the biosynthetic pathway in the absence of hetero-dimerization with the GB2 subunit. However, PRAF2 can interact with several receptors and immunofluorescence studies indicate that PRAF2 distribution is larger than the ER, suggesting additional biological functions. Here, we conducted an immuno-cytochemical study of PRAF2 distribution in mouse central nervous system (CNS) at anatomical, cellular and ultra-structural levels. PRAF2 appears widely expressed in various regions of mature CNS, such as the olfactory bulbs, cerebral cortex, amygdala, hippocampus, ventral tegmental area and spinal cord. Consistent with its regulatory role of GABAB receptors, PRAF2 was particularly abundant in brain regions known to express GB1 subunits. However, other brain areas where GB1 is expressed, such as basal ganglia, thalamus and hypothalamus, contain little or no PRAF2. In these areas, GB1 subunits might reach the cell surface of neurons independently of GB2 to exert biological functions distinct from those of GABAB receptors, or be regulated by other gatekeepers. Electron microscopy studies confirmed the localization of PRAF2 in the ER, but identified previously unappreciated localizations, in mitochondria, primary cilia and sub-synaptic region. These data indicate additional modes of GABAB regulation in specific brain areas and new biological functions of PRAF2.


Assuntos
Encéfalo/metabolismo , Medula Espinal/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Encéfalo/citologia , Células HEK293 , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/ultraestrutura
20.
Eur Neuropsychopharmacol ; 26(2): 265-279, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26727039

RESUMO

Depressive disorders are among the most prevalent neuropsychiatric dysfunctions worldwide, with high rates of resistance to antidepressant treatment. Genetic factors clearly contribute to the manifestation of depression as well as to the response to antidepressants. Transgenic mouse models appear as seminal tools to disentangle this complex disorder. Here, we analyzed new key aspects of the phenotype of knock-out mice for the gene encoding the serotonin 2B receptor (Htr(2B)(-/-)), including basal phenotype, ability to develop a depressive-like phenotype upon chronic isolation, and effect of chronic exposure to fluoxetine on chronically stressed Htr(2B)(-/-) mice. We find, here, that Htr(2B)(-/-) mice display an antidepressant-like phenotype, which includes reduced latency to feed in the novelty suppressed feeding test, basal increase in hippocampal BDNF levels, no change in TrkB and p75 protein levels, and an increased preference for sucrose consumption compared to wild type (Htr(2B)(+/+)) mice. Nevertheless, we show that these mice can develop depressive-like behaviors when socially isolated during four weeks. Selective serotonin reuptake inhibitors (SSRI) have been previously shown to be ineffective in non-stressed Htr(2B)(-/-) mice. We evaluated, here, the effects of the SSRI fluoxetine in chronically stressed Htr(2B)(-/-) mice and similarly no behavioral or plastic effect was induced by this antidepressant. All together, these results highlight the suitability to study resistance to SSRI antidepressants of this mouse model displaying panoply of conditions among which behavioral, neurotrophic and plastic causative factors can be analyzed.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/genética , Receptor 5-HT2B de Serotonina/deficiência , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Tempo de Reação/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA