Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589823

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Assuntos
Glucosefosfato Desidrogenase , Músculo Liso Vascular , Canal de Ânion 1 Dependente de Voltagem , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Becaplermina/genética , Becaplermina/metabolismo , Proliferação de Células , Proteína X Associada a bcl-2/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Apoptose , Miócitos de Músculo Liso/metabolismo , Movimento Celular/genética , Células Cultivadas , Fenótipo
2.
Environ Toxicol ; 36(7): 1288-1302, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33733556

RESUMO

To investigate the role of circKDM4C in acute myeloid leukemia (AML), the expression of circKDM4C, hsa-let-7b-5p, and P53 was measured by qRT-RCR. AML cell lines(K-562 and HL-60) were transfected correspondingly and investigated for cell proliferation, migration, and invasion abilities by CCK-8, colony formation, transwell, and wound healing assays, respectively. The levels of P53, ACSL4, PTGS2, GPX4, and FTH1 in the K-562, and HL-60 cells were measured by western blotting. Also, circKDM4C mediated regulation of ferroptosis was studied. The Phen Green SK probe and confocal laser scanning microscope were used to assess the cellular iron levels. The reactive oxygen species levels were analyzed by fluorescence-activated cell sorting using the C11-BODIPY probe. Bioinformatics analysis predicted the putative binding sites among circKDM4C, hsa-let-7b-5p, and P53. These were verified using the dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation assays. Finally, in vitro findings were also verified in vivo using the nude mice. CircKDM4C was significantly down-regulated in AML patients. The overexpression of circKDM4C in AML cell lines inhibited the cell proliferation, migration, invasion, and promoted ferroptosis. We found that circKDM4C acts as a sponge of hsa-let-7b-5p and thereby regulates p53 which is a target gene of hsa-let-7b-5p. Also, the expression of circKDM4C and hsa-let-7b-5p are negatively correlated, while circKDM4C and p53 are positively correlated to AML patients. Moreover, we found that circKDM4C induces ferroptosis by sponging hsa-let-7b-5p which upregulates the expression of P53. This work emphasizes the role of circKDM4C in AML patients, which could be explored for the therapeutic role.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , MicroRNAs , Animais , Proliferação de Células , Humanos , Histona Desmetilases com o Domínio Jumonji , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Nus , Proteína Supressora de Tumor p53/genética
3.
Arterioscler Thromb Vasc Biol ; 37(10): 1849-1859, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798142

RESUMO

OBJECTIVE: Smooth muscle (SM) 22α, an actin-binding protein, displays an upregulated expression as a marker during cellular senescence. However, the causal relationship between SM22α and senescence is poorly understood. This study aimed to investigate the role of SM22α in angiotensin II (Ang II)-induced senescence of vascular smooth muscle cells (VSMCs). APPROACH AND RESULTS: We prepared a model of VSMC senescence induced by Ang II and found that the expression of SM22α in VSMCs was increased in response to chronic Ang II treatment. Overexpression of SM22α promoted Ang II-induced VSMC senescence, whereas knockdown of SM22α suppressed this process. Moreover, this effect of SM22α was p53 dependent. Increased SM22α protein obstructed ubiquitination and degradation of p53 and subsequently improved its stability. Furthermore, SM22α inhibited phosphorylation of Mdm2 (mouse double minute 2 homolog), an E3 ubiquitin-protein ligase, accompanied by a decreased interaction between Mdm2 and p53. Using LY294002, a PI3K/Akt inhibitor, we found that PI3K/Akt-mediated Mdm2 phosphorylation and activation was inhibited in senescent or SM22α-overexpressed VSMCs, in parallel with decreased p53 ubiquitination. We further found that SM22α inhibited activation of PI3K/Akt/Mdm2 pathway via strengthening actin cytoskeleton. In the in vivo study, we showed that the disruption of SM22α reduced the increase of blood pressure induced by Ang II, associated with decreased VSMC senescence through a mechanism similar to that in VSMCs in vitro. CONCLUSIONS: In conclusion, these findings suggest that the accumulation of SM22α promotes Ang II-induced senescence via the suppression of Mdm2-mediated ubiquitination and degradation of p53 in VSMCs in vitro and in vivo.


Assuntos
Senescência Celular , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Citoesqueleto de Actina/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/metabolismo , Senescência Celular/efeitos dos fármacos , Hipertensão/fisiopatologia , Camundongos , Modelos Animais , Músculo Liso Vascular/citologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitinação , Regulação para Cima
4.
Zhongguo Zhong Yao Za Zhi ; 43(8): 1596-1601, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29751705

RESUMO

The enzymatic browning is one of the main reasons for affecting the quality of medicinal flowers. In the process of chrysanthemum harvesting and processing, improper treatment will lead to the browning and severely impact the appearance and quality of chrysanthemum. Peroxidase enzyme is one of the oxidoreductases that cause enzymatic browning of fresh chrysanthemum. The enzymatic characteristics of peroxidase (POD) in chrysanthemum were studied in this paper. In this experiment, the effects of different reaction substrates and their concentrations, PH value of buffer and reaction temperatures on the activity of POD enzyme were investigated. The results showed that the optimal substrate of POD was guaiacol, and the optimal concentration of POD was 50 mmol·L⁻¹. The optimal pH value and reaction temperature were 4.4 and 30-35 °C, respectively. Michaelis-Menten equation was obtained to express the kinetics of enzyme-catalyzed reaction of POD, Km=0.193 mol·L⁻¹, Vmax=0.329 D·min⁻¹. In addition, the results of POD enzyme thermal stability test showed that the POD enzyme activity was inhibited when being treated at 80 °C for 4 min or at 100 °C for 2 min. The above results were of practical significance to reveal the enzymatic browning mechanism, control the enzymatic browning and improve the quality of chrysanthemum, and can also provide the basis for the harvesting and processing of medicinal materials containing polyphenols.


Assuntos
Chrysanthemum , Flores , Cinética , Peroxidase , Temperatura
5.
Zhongguo Zhong Yao Za Zhi ; 43(3): 502-510, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600614

RESUMO

To investigate the differences of chemical compositions in Gynostemma pentaphyllum leaves prepared by different processing methods. Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to compare the chemical compositions between shade-dried processing and drum-dried processing. Forty six gypenosides were identified by control comparison, liquid chromatography-mass spectrometry(LC-MSn) fragmentation information, and literature data. The mass spectral peak area statistics was combined with principal component analysis(PCA), and the results showed that eight batches of Gynostemma pentaphyllum leaves samples were divided into two groups according to the two different processing methods; ten chemical compositions with significant differences were screened according to mass spectrum information combined with partial least-squares discriminant analysis(PLS-DA). The result showed that most parent nucleus of the gypenosides contained three to four glycosides in drum-dried samples, and one to two glycosides in the shade-dried samples. It was inferred from further MS analysis that desugarization of gypenosides was present to produce secondary glycosides with the effect of glucosidase in the shade-drying, thus resulting in difference in compositions. This study provided data support for harvesting, processing and quality control of Gynostemma pentaphyllum leaves.


Assuntos
Gynostemma/química , Folhas de Planta/química , Saponinas/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Saponinas/isolamento & purificação
6.
Circ Res ; 117(8): 684-94, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26291555

RESUMO

RATIONALE: Vascular smooth muscle cell (VSMC) survival under stressful conditions is integral to promoting vascular repair, but facilitates plaque stability during the development of atherosclerosis. The cytoskeleton-associated smooth muscle (SM) 22α protein is involved in the regulation of VSMC phenotypes, whereas the pentose phosphate pathway plays an essential role in cell proliferation through the production of dihydronicotinamide adenine dinucleotide phosphate. OBJECTIVE: To identify the relationship between dihydronicotinamide adenine dinucleotide phosphate production and SM22α activity in the development and progression of vascular diseases. METHODS AND RESULTS: We showed that the expression and activity of glucose-6-phosphate dehydrogenase (G6PD) are promoted in platelet-derived growth factor (PDGF)-BB-induced proliferative VSMCs. PDGF-BB induced G6PD membrane translocation and activation in an SM22α K21 ubiquitination-dependent manner. Specifically, the ubiquitinated SM22α interacted with G6PD and mediated G6PD membrane translocation. Furthermore, we found that tumor necrosis factor receptor-associated factor (TRAF) 6 mediated SM22α K21 ubiquitination in a K63-linked manner on PDGF-BB stimulation. Knockdown of TRAF6 decreased the membrane translocation and activity of G6PD, in parallel with reduced SM22α K21 ubiquitination. Elevated levels of activated G6PD consequent to PDGF-BB induction led to increased dihydronicotinamide adenine dinucleotide phosphate generation through stimulation of the pentose phosphate pathway, which enhanced VSMC viability and reduced apoptosis in vivo and in vitro via glutathione homeostasis. CONCLUSIONS: We provide evidence that TRAF6-induced SM22α ubiquitination maintains VSMC survival through increased G6PD activity and dihydronicotinamide adenine dinucleotide phosphate production. The TRAF6-SM22α-G6PD pathway is a novel mechanism underlying the association between glucose metabolism and VSMC survival, which is beneficial for vascular repair after injury but facilitates atherosclerotic plaque stability.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADP/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Apoptose , Becaplermina , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/patologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Homeostase , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neointima , Via de Pentose Fosfato , Placa Aterosclerótica , Transporte Proteico , Proteínas Proto-Oncogênicas c-sis/farmacologia , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Fatores de Tempo , Transfecção , Ubiquitinação
7.
Zhongguo Zhong Yao Za Zhi ; 42(23): 4636-4640, 2017 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-29376264

RESUMO

Seven compounds(deacetylasperulasidic acid methyl ester, gardenoside, chlorogenic acid, geniposide, crocin-Ⅰ, crocin-Ⅱ, chikusetsu saponin Ⅳa)were determined simultaneously by multiple wavelength HPLC with diode array detector(DAD) in different parts of Gardenia jasminoides. The results showed that these components in different parts of G. jasminoides had a different distribution, and there was a large difference in content of each component. Geniposide was mainly distributed in fruits and leaves; chikusetsu saponin Ⅳa was mainly distributed in roots and stems; crocus glycosides existed mainly in fruits; chlorogenic acid had a higher distribution in leaves and stems; gardenoside had a higher distribution in leaves and roots, while ceacetylasperulasidic acid methyl ester had a higher distribution in roots and stems. Based on the analysis of the chemical composition and content difference in different parts of G. jasminoides, the basis for the comprehensive utilization and quality evaluation of resources of G. jasminoides was provided.


Assuntos
Frutas/química , Gardenia/química , Compostos Fitoquímicos/análise , Folhas de Planta/química , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão , Iridoides/análise
8.
Zhongguo Zhong Yao Za Zhi ; 42(7): 1331-1337, 2017 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29052395

RESUMO

To optimize the purification process of gynostemma pentaphyllum saponins (GPS) based on "adjoint marker" online control technology with GPS as the testing index. UPLC-QTOF-MS technology was used for qualitative analysis. "Adjoint marker" online control results showed that the end point of load sample was that the UV absorbance of effluent liquid was equal to half of that of load sample solution, and the absorbance was basically stable when the end point was stable. In UPLC-QTOF-MS qualitative analysis, 16 saponins were identified from GPS, including 13 known gynostemma saponins and 3 new saponins. This optimized method was proved to be simple, scientific, reasonable, easy for online determination, real-time record, and can be better applied to the mass production and automation of production. The results of qualitative analysis indicated that the "adjoint marker" online control technology can well retain main efficacy components of medicinal materials, and provide analysis tools for the process control and quality traceability.


Assuntos
Medicamentos de Ervas Chinesas/química , Gynostemma/química , Saponinas/isolamento & purificação , Biomarcadores , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
9.
Am J Physiol Cell Physiol ; 311(5): C758-C767, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27629412

RESUMO

We previously demonstrated that smooth muscle (SM) 22α promotes the migration activity in contractile vascular smooth muscle cells (VSMCs). Based on the varied functions exhibited by SM22α in different VSMC phenotypes, we investigated the effect of SM22α on VSMC migration under pathological conditions. The results demonstrated that SM22α overexpression in synthetic VSMCs inhibited platelet-derived growth factor (PDGF)-BB-induced cell lamellipodium formation and migration, which was different from its action in contractile cells. The results indicated two distinct mechanisms underlying inhibition of lamellipodium formation by SM22α, increased actin dynamic stability and decreased Ras activity via interference with interactions between Ras and guanine nucleotide exchange factor. The former inhibited actin cytoskeleton rearrangement in the cell cortex, while the latter significantly disrupted actin nucleation activation of the Arp2/3 complex. Baicalin, a herb-derived flavonoid compound, inhibited VSMC migration via upregulation of SM22α expression in vitro and in vivo. These data suggest that SM22α regulates lamellipodium formation and cell migration in a phenotype-dependent manner in VSMCs, which may be a new therapeutic target for vascular lesion formation.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas ras/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Camundongos , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
10.
J BUON ; 21(3): 626-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27569083

RESUMO

PURPOSE: The main aim of this research was to evaluate the anticancer and apoptotic effects of germanicol - a natural triterpene - in HCT-116 and HT29 human colon cancer cells and deciphering its mode of action by studying its effect on the cell cycle and cell migration. METHODS: Cell cytotoxicity was evaluated by MTT assay, while cell death was assessed by LDH assay. Fluorescence microscopy, using DAPI and acridine orange/ethidium bromide (AO-ETBR), was carried out to evaluate the effect of germanicol on cellular morphology and apoptosis induction. Apoptosis quantification was performed by Annexin V-FITC assay, while cell cycle analysis was performed by flow cytometry using propidium iodide (PI). RESULTS: The results revealed that germanicol showed selective, potent and dose-dependent cytotoxicity in HCT-116 and HT29 human colon cancer cells, while it showed lower cytotoxicity in normal colon cells (human colon fibroblast, CCD-18Co). LDH assay also showed that germanicol induced dose-dependent cell death in HCT-116 and HT29 cells. Fluorescence microscopy revealed that germanicol induced apoptosis via chromatin condensation and DNA damage in HCT-116 colon cancer cells. It also revealed that the percentage of cells with orange and red fluorescence increased when adding a germanicol dose, indicating apoptosis. Germanicol also inhibited cancer cell migration. CONCLUSION: The current findings reveal that germanicol exhibits selective antiproliferative activity against two human colon cancer cells. The normal cell line was less affected by the drug, as compared to the two cancer cell lines, indicating that germanicol will not target normal living cells. The antiproliferative effect was shown to be mediated through the induction of apoptosis and suppression of cell migration.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Triterpenos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Dano ao DNA , Células HCT116 , Células HT29 , Humanos
11.
J Mol Cell Cardiol ; 84: 191-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25937534

RESUMO

Smooth muscle (SM) 22α, an actin-binding protein, is down-regulated in atherosclerotic arteries. Disruption of SM22α promotes arterial inflammation through activation of reactive oxygen species (ROS)-mediated nuclear factor (NF)-κB pathways. This study aimed to investigate the mechanisms by which SM22α regulates vascular inflammatory response. The ligation injury model of SM22α(-/-) mice displayed up-regulation of inflammatory molecules MCP-1, VCAM-1, and ICAM-1 in the carotid arteries. Similar results were discovered in human atherosclerotic samples. In vitro studies, overexpression of SM22α attenuated TNF-α-induced IκBα phosphorylation and degradation, accompanied by decreased NF-κB activity and reduced inflammatory molecule expression. Using coimmunoprecipitation, we found that SM22α interacted with and stabilized IκBα in quiescent VSMCs. Upon TNF-α stimulation, SM22α was phosphorylated by casein kinase (CK) II at Thr139, leading to dissociation of SM22α from IκBα, followed by IκBα degradation and NF-κB activation. Our findings demonstrate that SM22α is a phosphorylation-regulated suppressor of IKK-IκBα-NF-κB signaling cascades. SM22α may be a novel therapeutic target for human vascular diseases and other inflammatory conditions.


Assuntos
Proteínas I-kappa B/metabolismo , Inflamação/patologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Idoso , Animais , Caseína Quinase II/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , DNA/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia
12.
Circ Res ; 111(6): 697-707, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22798525

RESUMO

RATIONALE: We have demonstrated that smooth muscle (SM) 22α inhibits cell proliferation via blocking Ras-ERK1/2 signaling in vascular smooth muscle cells (VSMCs) and in injured arteries. The recent study indicates that SM22α disruption can independently promote arterial inflammation through activation of reactive oxygen species (ROS)-mediated NF-κB pathways. However, the mechanisms by which SM22α controls ROS production have not been characterized. OBJECTIVE: To investigate how SM22α disruption promotes ROS production and to characterize the underlying mechanisms. METHODS AND RESULTS: ROS level was measured by dihydroethidium staining for superoxide and TBA assay for malondialdehyde, respectively. We showed that downregulation and phosphorylation of SM22α were associated with angiotensin (Ang) II-induced increase in ROS production in VSMCs of rats and human. Ang II induced the phosphorylation of SM22α at Serine 181 in an Ang II type 1 receptor-PKCδ pathway-dependent manner. Phosphorylated SM22α activated the protein kinase C (PKC)δ-p47phox axis via 2 distinct pathways: (1) disassociation of PKCδ from SM22α, and in turn binding to p47phox, in the early stage of Ang II stimulation; and (2) acceleration of SM22α degradation through ubiquitin-proteasome, enhancing PKCδ membrane translocation via induction of actin cytoskeletal dynamics in later oxidative stress. Inhibition of SM22α phosphorylation abolished the Ang II-activated PKCδ-p47phox axis and inhibited the hypertrophy and hyperplasia of VSMCs in vitro and in vivo, accompanied with reduction of ROS generation. CONCLUSIONS: These findings indicate that the disruption of SM22α plays pivotal roles in vascular oxidative stress. PKCδ-mediated SM22α phosphorylation is a novel link between actin cytoskeletal remodeling and oxidative stress and may be a potential target for the development of new therapeutics for cardiovascular diseases.


Assuntos
Actinas/metabolismo , Angiotensina II/farmacologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , NADPH Oxidases/metabolismo , Proteína Quinase C-delta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Células Cultivadas , Regulação para Baixo , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hiperplasia , Hipertrofia , Masculino , Proteínas dos Microfilamentos/genética , Microscopia Confocal , Proteínas Musculares/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosforilação , Ligação Proteica , Interferência de RNA , Ratos , Ratos Sprague-Dawley
13.
Zhong Yao Cai ; 37(9): 1627-32, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25857165

RESUMO

OBJECTIVE: To develop a method for simultaneous determination of cis-2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside (cis-THSG) and trans-2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside (trans-THSG) in mice and comparative study of cis-THSG and trans-THSG in pharmacokinetic and tissue distribution. METHODS: Analyses was performed using a Diamonsil C,18 (250 mm x 4.6 mm, 5 microm) column with acetonitrile-methanol-0.1% acetic acid (11:7: 82) as the mobile phase at a flow rate of 1.0 mL/min. Polydatin was took as the internal standard. The detection wavelength was set at 285 and 320 nm. RESULTS: Intra-day and inter-day RSD were less than 9.47%. The recoveries and stabilities( RE) were ranged from -9.69% to 4.18% and from -9.49% to 1.33%, respectively. The pharmacokinetic parameters showed that the elimination half-life of cis-THSG was longer than that of trans-THSG and the biological availability of cis-THSG was higher than that of trans-THSG. Both cis-THSG and trans-THSG were widely distributed in the tissues. At the same dosage,the tissue concentrations of trans-THSG were greater than those of cis-THSG. CONCLUSION: The method is specific,sensitive, simple, rapid and suitable for simultaneous determination of cis-THSG and trans-THSG in mice. The results of pharmacokinetic and tissue distribution indicated that there was significant difference between cis-THSG and trans-THSG in vivo.


Assuntos
Glucosídeos/farmacocinética , Estilbenos/farmacocinética , Ácido Acético , Animais , Glucosídeos/química , Meia-Vida , Camundongos , Estilbenos/química
14.
Brain Res Bull ; 210: 110924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460911

RESUMO

Radiation therapy is a common treatment modality for patients with malignant tumors of the head and neck, chest and axilla. However, radiotherapy inevitably causes damage to normal tissues at the irradiated site, among which damage to the brachial plexus nerve(BP) is a serious adverse effect in patients receiving radiation therapy in the scapular or axillary regions, with clinical manifestations including abnormal sensation, neuropathic pain, and dyskinesia, etc. These adverse effects seriously reduce the living quality of patients and pose obstacles to their prognosis. Therefore, it is important to elucidate the mechanism of radiation induced brachial plexus injury (RIBP) which remains unclear. Current studies have shown that the pathways of radiation-induced BP injury can be divided into two categories: direct injury and indirect injury, and the indirect injury is closely related to the inflammatory response, microvascular damage, cytokine production and other factors causing radiation-induced fibrosis. In this review, we summarize the underlying mechanisms of RIBP occurrence and possible effective methods to prevent and treat RIBP.


Assuntos
Neuropatias do Plexo Braquial , Plexo Braquial , Neuralgia , Lesões por Radiação , Humanos , Neuropatias do Plexo Braquial/etiologia , Neuropatias do Plexo Braquial/epidemiologia , Plexo Braquial/efeitos da radiação , Prognóstico , Neuralgia/complicações , Lesões por Radiação/terapia , Lesões por Radiação/complicações
15.
Int J Radiat Oncol Biol Phys ; 117(1): 186-197, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001764

RESUMO

PURPOSE: Our objective was to assess the incidence and dose-volume predictors of radiation esophagitis (RE) in patients with breast cancer undergoing hypofractionated regional nodal irradiation. METHODS AND MATERIALS: Eligible patients who received intensity modulated radiation therapy (RT) at the chest wall, the supraclavicular/infraclavicular fossa, level II axilla, and/or the internal mammary chain after mastectomy were included. The prescribed dose was 43.5 Gy in 15 fractions. RE was evaluated weekly during RT and at 1 and 2 weeks, followed by 3 and 6 months after RT, and was graded according to National Cancer Institute Common Toxicity Criteria for Adverse Events, version 3.0. The esophagus was contoured from the lower border level of the cricoid cartilage to the lower margin of the aortic arch. Esophageal total volume, mean dose, maximum dose, and the relative volumes (RV) and absolute volumes (AV) receiving at least 5 to 45 Gy by 5-Gy increments (RV5-RV45 and AV5-AV45) were evaluated. Univariable and multivariable logistic regression analyses were performed to determine risk factors for RE, and receiver operating characteristic curves were obtained to identify the thresholds of esophageal dosimetric parameters. RESULTS: In total, 298 patients were included between May 8, 2020, and January 5, 2022 (minimum post-RT follow-up: 6 months). Grade 2 and 3 RE incidence was 40.9% (122/298) and 0.3% (1/298), respectively. No grade 4 or 5 RE was observed. Esophageal RV20-RV40 and AV35-AV40 were significantly associated with the risk of grade ≥2 RE after adjusting for tumor laterality and internal mammary nodal irradiation. RV25 and AV35 were optimum dose-volume predictors for grade ≥2 RE at thresholds 20% for RV25 (35.9% vs 60.9%; P = .04) and 0.27 mL for AV35 (31.0% vs 54.6%; P = .04). CONCLUSIONS: RE is common in patients with breast cancer undergoing hypofractionated regional nodal irradiation. Maintaining the upper esophageal V25 at <20% and V35 at <0.27 mL may decrease the risk of RE.


Assuntos
Neoplasias da Mama , Esofagite , Parede Torácica , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Mastectomia , Esofagite/epidemiologia , Esofagite/etiologia , Mama
16.
Radiat Oncol ; 18(1): 194, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031125

RESUMO

PURPOSE: To report the planning benchmark case results of the POTENTIAL trial-a multicenter, randomized, phase 3 trial-to evaluate the value of internal mammary nodal (IMN) irradiation for patients with high-risk breast cancer. METHODS: All participating institutions were provided the outlines of one benchmark case, and they generated radiation therapy plans per protocol. The plans were evaluated by a quality assurance team, after which the institutions resubmitted their revised plans. The information on beams arrangement, skin flash, inhomogeneity corrections, and protocol compliance was assessed in the first and final submission. RESULTS: The plans from 26 institutions were analyzed. Some major deviations were found in the first submission. The protocol compliance rates of dose coverage for the planning target volume of chest wall, supraclavicular fossa plus axilla, and IMN region (PTVim) were all significantly improved in the final submission, which were 96.2% vs. 69.2%, 100% vs. 76.9%, and 88.4% vs. 53.8%, respectively. For OARs, the compliance rates of heart Dmean, left anterior descending coronary artery V40Gy, ipsilateral lung V5Gy, and stomach V5Gy were significantly improved. In the first and final submission, the mean values of PTVim V100% were 79.9% vs. 92.7%; the mean values of heart Dmean were 11.5 Gy vs. 9.7 Gy for hypofractionated radiation therapy and 11.5 Gy vs. 11.0 Gy for conventional fractionated radiation therapy, respectively. CONCLUSION: The major deviations were corrected and protocol compliance was significantly improved after revision, which highlighted the importance of planning benchmark case to guarantee the planning quality for multicenter trials.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Benchmarking , Mastectomia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação
17.
J Fluoresc ; 22(6): 1531-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22739705

RESUMO

Novel imidazo[1,5-a]pyridinyl 1,3,4-Oxadiazole derivatives were synthesized and characterised by IR, (1)H NMR and HRMS.UV-vis absorption and fluorescence properties of these compounds in different solutions showed that the maximal emission wavelength was not significantly changed in different solvents; however, maximum absorption wavelength was blue-shifted with the increase of solvent polarity. Absorption λ(max) and emission λ(max) was less correlated with substituent groups on benzene rings. The calculated molecular orbital correlates well with their absorption.


Assuntos
Modelos Moleculares , Fenômenos Ópticos , Oxidiazóis/química , Oxidiazóis/síntese química , Absorção , Técnicas de Química Sintética , Conformação Molecular , Imagem Molecular , Espectrometria de Fluorescência
18.
J Proteomics ; 264: 104634, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35661764

RESUMO

A major pathological mechanism involved in vascular remodeling diseases is the proliferation and migration of vascular smooth muscle cells. The lipid distribution of golden hamsters is similar to that of humans, which makes them an excellent study model for studying the pathogenesis and molecular characteristics of vascular remodeling diseases. We performed proteomic analysis on Sprague Dawley rat VSMCs (rVSMCs) and restenosis hamsters with low-density lipoprotein receptor (LDLR) deficiency as part of this study. We have also performed the enrichment analysis of differentially modified proteins in regards to Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein domain. 1070 differentially abundant proteins were assessed in rVSMCs before and after platelet-derived growth factor-BB (PDGF-BB) stimulation. Specifically, 1246 proteins displayed significant differences in the restenosis model in LDLR-deficient hamsters. An analysis of crosstalk between LDLR+/- hamsters artery restenosis and proliferating rVSMCs revealed 130 differentially expressed proteins, including 67 up-regulated proteins and 63 downregulated proteins. Enrichment analysis with KEGG showed differential proteins to be mainly concentrated in metabolic pathways. There are numerous differentially abundant proteins but particularly two proteins (phosphofructokinase 1 of liver type and lactate dehydrogenase A) were found to be up-regulated by PDGF-BB stimulation of rVSMCs and in a restenosis model of hamsters with LDLR+/- expression. SIGNIFICANCE: Based on bioinformatics, we have found glycolysis pathway plays an important role in both the LDLR+/- hamsters restenosis model and the proliferation of rVSMCs. Some key glycolysis enzymes may likely be developed either as new biomarkers or drug targets for vascular remodeling diseases.


Assuntos
Músculo Liso Vascular , Receptores de LDL/metabolismo , Remodelação Vascular , Animais , Becaplermina/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Cricetinae , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteômica , Ratos , Ratos Sprague-Dawley
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1435-1439, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208246

RESUMO

OBJECTIVE: To observe the mutation and expression of TCF3 gene in Burkitt's lymphoma (BL), and explore its effect on the proliferation of BL cells and clinical efficacy and prognosis. METHODS: The mutation and expression of TCF3 in tumor tissues from BL patients were observed by the second-generation sequencing and real-time quantitative PCR. The proliferation and apoptosis of lymphoma cells after TCF3 knocked down were observed by siRNA interference technique and CCK-8 method. Survival analysis was used to observe the relationship between TCF3 mutation and the treatment efficacy and prognosis of BL patients. RESULTS: There were high frequency mutation rate (mutation rate was 23.7%) and high expression of TCF3 in BL patients. After TCF3 knocked down, cell proliferation was inhibited and apoptosis was promoted. In TCF3-siRNA group and control group, the cell proliferation rate at 48 h was (50.2±5.9)% and (96.6±11.4)%, and apoptosis rate was 30.1% and 1.5%, respectively, which showed significantly different between the two groups (P<0.001, P=0.005). The complete remission rate of patients with TCF3 mutation was low. The complete remission rate of mutant group and wild-type group was 44.4% and 82.8%, respectively (P=0.023). The 2-year progression-free survival rate and overall survival rate of the patients with TCF3 mutation was 55.6% and 61.0%, respectively, which was lower than 83.2% and 85.2% of the patients without mutation, but the differences were not statistically significant. CONCLUSION: There are mutation and abnormal expression of TCF3 in patients with BL. Patients with TCF3 mutations have low remission rate and poor prognosis.


Assuntos
Linfoma de Burkitt , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Humanos , Prognóstico , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico
20.
Front Cardiovasc Med ; 9: 783739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369347

RESUMO

Background: The crotonylation of histones is discovered of late as one of the post-translational modifications (PTMs) that can regulate gene expression. However, the function of crotonylation on nonhistone proteins in vascular smooth muscle cells (VSMCs) is unclear. Here, we aim to find the cellular characteristics of crotonylated nonhistone proteins and the cross talk with ubiquitinated proteins in VSMC phenotypic remodeling using the modified omics and proteomic analysis. Methods: We performed the modified omics and proteomic analysis of VSMCs before and after the stimulation with platelet-derived growth factor-BB (PDGF-BB). The crotonylated and ubiquitinated pan-antibody was used to enrich proteins and then subjected to a high-throughput mass spectrometry analysis. The enrichment analysis was performed within differentially modified proteins in regard to GO terms, KEGG, and protein domains. Results: As a result, there were 2,138 crotonylation sites in 534 proteins and 1,359 ubiquitination sites corresponding to 657 proteins. These crotonylated proteins detected after PDGF-BB stimulation might be involved in various vital cellular pathways and carry out important functions in VSMCs. Some of them closely took part in significant physiological processes of VSMC phenotypic remodeling, including glycolysis/gluconeogenesis, vascular smooth muscle contraction, and the PI3K-Akt signaling pathway. Furthermore, the KEGG pathway enrichment analysis showed the involvement of ubiquitinated proteins in the physiological processes of VSMC phenotypic remodeling, including glycolysis/gluconeogenesis, vascular smooth muscle contraction, RAS signaling pathway, or the PI3K-Akt signaling pathway. A cross talk analysis showed that there were 199 sites within the 177 proteins modified by crotonylation and ubiquitination simultaneously. Protein-protein interaction (PPI) network analysis indicated that crotonylated and ubiquitinated proteins play an important role in cellular bioprocess commonly and possibly have a synergistic effect. Conclusion: In summary, our bioinformatics analysis shows that the crotonylation and ubiquitination of nonhistone proteins play an essential role in VSMC phenotypic transformation induced by PDGF-BB stimulation. The cross talk between crotonylation and ubiquitination in glycolysis is possibly a novel mechanism during VSMC phenotypic remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA