Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Med Sci ; 36(2): 311-315, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32372235

RESUMO

Biosafety materials used in the correct handling of low power laser equipment may interfere on the power delivered at the target tissue and, possibly, on the effects on biological tissues. The aim of this study was to evaluate the interference of the use of polyvinyl chloride (PVC) and polyethylene (PEAD) protection materials on the output power of low power lasers. Two low power diode laser devices with different wavelengths (red and infrared) were used. For each wavelength, two protection materials and two evaluation times (before and after protection) were considered. The output power (mW) was measured with the tip positioned in close contact with the power meter receiver. Parametric statistical test, two-way ANOVA for repeated measures (protection material and time), was performed considering the level of significance of 5%. In respect to "time", all groups had the output power reduced after placing the protective material (p < 0.05). Comparing the protection materials, the PEAD showed a greater reduction in output power than the PVC for both red and infrared wavelengths. It was concluded that, among the biosafety materials tested, PVC is the most suitable for the protection of the tip of the low power lasers.


Assuntos
Contenção de Riscos Biológicos , Lasers , Humanos , Raios Infravermelhos , Polietileno/química , Cloreto de Polivinila/química
2.
Prog Biomater ; 8(1): 23-29, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30725401

RESUMO

In vitro effect of 1% theobromine addition on the physical and chemical properties of conventional glass ionomer (GIC) cement was investigated. Conventional GIC (GIC-C) and 1% theobromine added to GIC (GIC-THEO) specimens were compared regarding the microhardness (n = 10), sorption (n = 5), solubility (n = 5), color change (n = 10), fluoride release in saliva (n = 10) and the amount of biofilm deposition (n = 20). Compared against conventional GIC, adding 1% theobromine increased microhardness (p < 0.05), while its sorption, solubility, color and fluoride release to saliva (p > 0.05) remained unchanged. On the other hand, Streptococcus mutans biofilm amount deposited on its surface decreased statistically when theobromine was added to GIC (p < 0.05). Based on the results, it could be concluded that 1% theobromine addition to GIC can be a good strategy as it keeps some of its properties and improves microhardness and biofilm deposits strengthening its role in the preventive approach of dentistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA