Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(23): 16597-16602, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832795

RESUMO

Silver nanoclusters (Agn NCs) exhibit a remarkable optical property known as localized surface plasmon resonance (LSPR) in the visible to ultraviolet wavelengths. In this study, we address the size gap in LSPR responses between small NCs and nano-islands by synthesizing large Agn NCs with a countable number of atoms (n = 70-100) using a magnetron sputtering method, which were precisely size-selected and soft-landed onto substrates. The monodispersed Agn NCs were immobilized on a pre-decorated substrate with fullerene (C60) molecules, and their LSPR behaviors were characterized using two-photon photoemission (2PPE) spectroscopy. Due to the distinct polarization selectivity of incident light associated with LSPR, the intensity ratio between p- and s-polarized lights (Ip/Is) in 2PPE spectroscopy serves as a reliable indicator of LSPR and its structural correlations. From n = 70 to 100, the Ip/Is value gradually decreases as the cluster size increases. This decrease is attributed to the enhancement of s-polarized light (Is), indicating that large Agn NCs on a C60 substrate undergo a deformation from spherical to flattened geometries, particularly above approximately n = 55.

2.
Acc Chem Res ; 51(8): 1735-1745, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29715011

RESUMO

Nanoclusters, aggregates of several to hundreds of atoms, have been one of the central issues of nanomaterials sciences owing to their unique structures and properties, which could be found neither in nanoparticles with several nanometer diameters nor in organometallic complexes. Along with the chemical nature of each element, properties of nanoclusters change dramatically with size parameters, making nanoclusters strong potential candidates for future tailor-made materials; these nanoclusters are expected to have attractive properties such as redox activity, catalysis, and magnetism. Alloying of nanoclusters additionally gives designer functionality by fine control of their electronic structures in addition to size parameters. Among binary nanoclusters, binary cage superatoms (BCSs) composed of transition metal (M) encapsulating silicon cages, M@Si16, have unique cage structures of 16 silicon atoms, which have not been found in elemental silicon nanoclusters, organosilicon compounds, and silicon based clathrates. The unique composition of these BCSs originates from the simultaneous satisfaction of geometric and electronic shell-closings in terms of cage geometry and valence electron filling, where a total of 68 valence electrons occupy the superatomic orbitals of (1S)2(1P)6(1D)10(1F)14(2S)2(1G)18(2P)6(2D)10 for M = group 4 elements in neutral ground state. The most important issue for M@Si16 BCSs is fine-tuning of their characters by replacement of the central metal atoms, M, based on one-by-one adjustment of valence electron counts in the same structure framework of Si16 cage; the replacement of M yields a series of M@Si16 BCSs, based on their superatomic characteristics. So far, despite these unique features probed in the gas-phase molecular beam and predicted by quantum chemical calculations, M@Si16 have not yet been isolated. In this Account, we have focused on recent advances in synthesis and characterizations of M@Si16 BCSs (M = Ti and Ta). A series of M@Si16 BCSs (M = groups 3 to 5) was found in gas-phase molecular beam experiments by photoelectron spectroscopy and mass spectrometry: formation of halogen-, rare-gas-, and alkali-like superatoms was identified through one-by-one tuning of number of total valence electrons. Toward future functional materials in the solid state, we have developed an intensive, size-selected nanocluster source based on high-power impulse magnetron sputtering coupled with a mass spectrometer and a soft-landing apparatus. With scanning probe microscopy and photoelectron spectroscopy, the structure of surface-immobilized BCSs has been elucidated; BCSs can be dispersed in an isolated form using C60 fullerene decoration of the substrate. The intensive nanocluster source also enables the synthesis of BCSs in the 100-mg scale by coupling with a direct liquid-embedded trapping method into organic dispersants, enabling their structure characterization as a highly symmetric "metal-encapsulating tetrahedral silicon-cage" (METS) structure with Frank-Kasper geometry.

3.
J Am Chem Soc ; 137(44): 14015-8, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26513325

RESUMO

Chemical characterization was performed for an alkali-like superatom consisting of a Ta-encapsulating Si16 cage, Ta@Si16, deposited on a graphite substrate using X-ray photoelectron spectroscopy (XPS) to element-specifically clarify the local electronic structure of the cage atoms. The XPS spectra derived from Ta 4f and Si 2p core levels have been well modeled with a single chemical component, revealing the formation of a symmetric Si cage around the Ta atom in the deposited nanoclusters. On chemical treatments by heating or oxygen exposure, it is found that the deposited Ta@Si16 is thermally stable up to 700 K and is also exceptionally less reactive toward oxygen compared to other Ta-Si nanoclusters, although some heat degradation and oxidation accompany the treatments. These results show the promising possibility of applying Ta@Si16 as a building block to fabricate cluster-assembled materials consisting of naked nanoclusters.

4.
J Am Chem Soc ; 136(5): 1825-31, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24451024

RESUMO

In this study, we investigate the photoexcited electronic states of ferrocene (Fc) molecules adsorbed on an organic insulating surface by two-photon photoemission spectroscopy. This insulating layer, composed of a decanethiolate self-assembled monolayer formed on an Au(111) substrate, enables us to probe the electronically excited states localized at the adsorbed Fc molecules. The adsorbate-specific state is resonantly excited by photons at 4.57 eV, which is 0.5 eV smaller than the energy of the first molecular Rydberg state of free Fc in the gas phase. This result indicates that the electrons are bound to both the excited hole formed in the adsorbate and the positive image charge induced in the substrate. The hybridized electronic characteristics of the adsorbate-specific state are responsible for the strong transition selectivity and short lifetime of the excited state.


Assuntos
Compostos Ferrosos/química , Modelos Moleculares , Espectroscopia Fotoeletrônica , Fótons , Adsorção , Alcanos/química , Elétrons , Ouro/química , Metalocenos , Processos Fotoquímicos , Compostos de Sulfidrila/química
5.
Nat Commun ; 13(1): 1336, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288553

RESUMO

Aluminum nanoclusters (Aln NCs), particularly Al13- (n = 13), exhibit superatomic behavior with interplay between electron shell closure and geometrical packing in an anionic state. To fabricate superatom (SA) assemblies, substrates decorated with organic molecules can facilitate the optimization of cluster-surface interactions, because the molecularly local interactions for SAs govern the electronic properties via molecular complexation. In this study, Aln NCs are soft-landed on organic substrates pre-deposited with n-type fullerene (C60) and p-type hexa-tert-butyl-hexa-peri-hexabenzocoronene (HB-HBC, C66H66), and the electronic states of Aln are characterized by X-ray photoelectron spectroscopy and chemical oxidative measurements. On the C60 substrate, Aln is fixed to be cationic but highly oxidative; however, on the HB-HBC substrate, they are stably fixed as anionic Aln- without any oxidations. The results reveal that the careful selection of organic molecules controls the design of assembled materials containing both Al13- and boron-doped B@Al12- SAs through optimizing the cluster-surface interactions.

6.
Phys Rev Lett ; 106(11): 116802, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469886

RESUMO

We have succeeded in detecting metallic transport in a monatomic layer of In on an Si(111) surface, Si(111)-sqrt[7]×sqrt[3]-In surface reconstruction, using the micro-four-point probe method. The In layer exhibited conductivity higher than the minimum metallic conductivity (the Ioffe-Regel criterion) and kept the metallic temperature dependence of resistivity down to 10 K. This is the first example of a monatomic layer, with the exception of graphene, showing metallic transport without carrier localization at cryogenic temperatures. By introducing defects on this surface, a metal-insulator transition occurred due to Anderson localization, showing hopping conduction.

7.
ACS Nano ; 15(1): 1199-1209, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33411503

RESUMO

The plasmonic response of metallic nanostructures plays a key role in amplifying photocatalytic and photoelectric conversion. Since the plasmonic behavior of noble metal nanoparticles is known to generate energetic charge carriers such as hot electrons, it is expected that the hot electrons can enhance conversion efficiency if they are transferred into a neighboring molecule or semiconductor. However, the method of transferring the energized charge carriers from the plasmonically generated hot electrons to the neighboring species remains controversial. Herein, we fabricated a molecularly well-defined heterointerface between the size-selected plasmonic noble-metal nanoclusters (NCs) of Agn (n = 3-55)/Aun (n = 21) and the organic C60 film to investigate hot electron generation and relaxation dynamics using time-resolved two-photon photoemission (2PPE) spectroscopy. By tuning the NC size and the polarization of the femtosecond excitation photons, the plasmonic behavior is characterized by 2PPE intensity enhancement by 10-100 times magnitude, which emerge at n ≥ 9 for Agn NCs. The 2PPE spectra exhibit contributions from low-energy electrons forming coherent plasmonic currents and hot electrons with an excitation energy up to photon energy owing to two-photon excitation of an occupied state of the Agn NC below the Fermi level. The time-resolved pump-probe measurements demonstrate that plasmon dephasing generates hot electrons which undergo electron-electron scattering. However, no photoemission occurs via the charge transfer state forming Agn+C60- located in the vicinity of the Fermi level. Thus, this study reveals the mechanism of ultrafast confined hot electron relaxation within plasmonic Agn NCs at the molecular heterointerface.

8.
Nanotechnology ; 21(46): 465704, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20972314

RESUMO

A single vortex is excited into nano-size Pb superconducting island structures by a local current injection from a probe tip of a scanning tunneling microscope. For the excitation, a sufficient amount and duration of the pulsed current are required. Injecting the current at peripheral sites is more effective than the center for the vortex excitation. Time-dependent Ginzburg-Landau calculations suggest that a current-induced normal-state area, which can be nucleated by the tunneling current exceeding the critical current and expanded by the Joule heating, reduces the required magnetic field for the vortex penetration and excites a vortex into the islands.

9.
Rev Sci Instrum ; 79(3): 033703, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18377011

RESUMO

Low-temperature ultrahigh vacuum frequency-modulation atomic force microscopy (AFM) was performed using a 1 MHz length-extension type of quartz resonator as a force sensor. Taking advantage of the high stiffness of the resonator, the AFM was operated with an oscillation amplitude smaller than 100 pm, which is favorable for high spatial resolution, without snapping an AFM tip onto a sample surface. Atomically resolved imaging of the adatom structure on the Si(111)-(7x7) surface was successfully obtained.

10.
ACS Nano ; 11(4): 4307-4314, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28399361

RESUMO

Organic thin film electronics place a high demand on bottom-up technology to form a two-dimensionally (2D) functional unit consisting of a single molecular crystalline layer bound to a layered structure. As the strong interaction between a substrate and molecules makes it difficult to evaluate the electronic properties of organic films, the nature of electronic excited states has not been elucidated. Here, we study a 2D crystalline anthracene monolayer electronically decoupled by alkanethiolates on a gold substrate using scanning tunneling microscopy and time-resolved two-photon photoemission spectroscopy and unravel the geometric/electronic structures and excited electron dynamics. Our data reveal that dispersive 2D excited electrons on the surface can be highly coupled with an annihilation of nondispersive excitons that facilitate electron emission with vibronic interaction. Our results provide a fundamental framework for understanding photoexcited anthracene monolayer and show how the coupling between dispersive and nondispersive excited states may assist charge separation in crystalline molecular layers.

11.
Sci Rep ; 6: 35853, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775005

RESUMO

Time-resolved two-photon photoemission (TR-2PPE) spectroscopy is employed to probe the electronic states of a C60 fullerene film formed on highly oriented pyrolytic graphite (HOPG), acting as a model two-dimensional (2D) material for multi-layered graphene. Owing to the in-plane sp2-hybridized nature of the HOPG, the TR-2PPE spectra reveal the energetics and dynamics of photocarriers in the C60 film: after hot excitons are nascently formed in C60 via intramolecular excitation by a pump photon, they dissociate into photocarriers of free electrons and the corresponding holes, and the electrons are subsequently detected by a probe photon as photoelectrons. The decay rate of photocarriers from the C60 film into the HOPG is evaluated to be 1.31 × 1012 s-1, suggesting a weak van der Waals interaction at the interface, where the photocarriers tentatively occupy the lowest unoccupied molecular orbital (LUMO) of C60. The photocarrier electron dynamics following the hot exciton dissociation in the organic thin films has not been realized for any metallic substrates exhibiting strong interactions with the overlayer. Furthermore, the thickness dependence of the electron lifetime in the LUMO reveals that the electron hopping rate in C60 layers is 3.3 ± 1.2 × 1013 s-1.

12.
Nanoscale ; 6(24): 14702-7, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25286979

RESUMO

The controlled assembly of superatomic nanocluster ions synthesized in the gas phase is a key technology for constructing a novel series of functional nanomaterials. However, it is generally difficult to immobilize them onto a conductive surface while maintaining their original properties owing to undesirable modifications of their geometry and charge state. In this study, it has been shown that this difficulty can be overcome by controlling the donor-acceptor interaction between nanoclusters and surfaces. Cations of Ta-atom-encapsulated Si(16) cage nanoclusters (Ta@Si(16)) behaving as rare-gas-like superatoms are synthesized in the gas phase and deposited on conductive surfaces terminated with acceptor-like C(60) and donor-like α-sexithiophene (6 T) molecules. Scanning tunneling microscopy and spectroscopy have demonstrated that Ta@Si(16) cations can be densely immobilized onto C(60)-terminated surfaces while retaining their cage shape and positive charge, which is realized by creating binary charge transfer complexes (Ta@Si(16)(+)-C(60)(-)) on the surfaces. The Ta@Si(16) nanoclusters exhibit excellent thermal stability on C(60-)terminated surfaces similar to those in the gas phase, whereas the nanoclusters destabilize at room temperature on 6 T-terminated surfaces owing to the loss of electronic closure via a change in the charge state.

13.
J Phys Chem Lett ; 3(8): 981-5, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26286559

RESUMO

Charge separation dynamics relevant to an electron transfer have been revealed by time- and angle-resolved two-photon photoemission spectroscopy for an n-alkanethiolate self-assembled monolayer (SAM) on a Au(111) surface fabricated by a chemical-wet process. The electron was photoexcited into an image potential state located at 3.7 eV above the Fermi level (EF), and it survived well for more than 100 ps on dodecanethiolate (C12)-SAM. The degree of electron separation is precisely controlled by selecting the length of the alkyl chain (C10-C18). We have also evaluated molecular conductivity at the specific electron energy of EF + 3.7 eV. The tunneling decay parameter, ß, was fitted by ß90 K = 0.097 Å(-1) and ßRT = 0.13 Å(-1). These values were one order smaller than that at around EF by conventional contact probe methods.

14.
ACS Nano ; 6(10): 8728-34, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22958159

RESUMO

The electronic properties of alkanethiol self-assembled monolayers (alkanethiolate SAMs) associated with their molecular-scale geometry are investigated using scanning tunneling microscopy and spectroscopy (STM/STS). We have selectively formed the three types of alkanethiolate SAMs with standing-up, lying-down, and lattice-gas phases by precise thermal annealing of the SAMs which are conventionally prepared by depositing alkanethiol molecules onto Au(111) surface in solution. The empty and filled states of each SAM are evaluated over a wide energy range covering 6 eV above/below the Fermi level (E(F)) using two types of STS on the basis of tunneling current-voltage and distance-voltage measurements. Electronic states originating from rigid covalent bonds between the thiol group and substrate surface are observed near E(F) in the standing-up and lying-down phases but not in the lattice-gas phase. These states contribute to electrical conduction in the tunneling junction at a low bias voltage. At a higher energy, a highly conductive state stemming from the alkyl chain and an image potential state (IPS) formed in a vacuum gap appear in all phases. The IPS shifts toward a higher energy through the change in the geometry of the SAM from the standing-up phase to the lattice-gas phase through the lying-down phase. This is explained by the increasing work function of alkanethiolate/Au(111) with decreasing density of surface molecules.


Assuntos
Alcanos/química , Microscopia de Tunelamento/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Análise Espectral/métodos , Compostos de Sulfidrila/química , Transferência de Energia , Teste de Materiais , Tamanho da Partícula
15.
Phys Rev Lett ; 102(10): 105503, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392124

RESUMO

Nanoscale chemical imaging using scanning tunneling microscopy is demonstrated with a core-level excitation of the probed element by a synchrotron radiation light. Pronounced element-specific contrasts were observed in the spatial resolution of approximately 10 nm on checkerboard-patterned Ni and Fe samples in differential photoinduced current images taken with the scanning tunneling microscopy tip under the synchrotron radiation irradiation whose photon energies are above and below the Ni (Fe) L absorption edge. The local detection of the photoinduced secondary electrons through the surface barrier lowered by the proximate tip and/or via the tunneling process probably plays an important role in achieving the high-spatial resolution.

16.
Phys Rev Lett ; 101(16): 167001, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18999704

RESUMO

Superconductivity of nanosized Pb-island structures whose radius is 0.8 to 2.5 times their coherence length was studied under magnetic fields using low-temperature scanning tunneling microscopy and spectroscopy. Spatial profiles of superconductivity were obtained by conductance measurements at zero-bias voltage. Critical magnetic fields for vortex penetration and expulsion and for superconductivity breaking were measured for each island. The critical fields depending on the lateral size of the islands and existence of the minimum lateral size for vortex formation were observed.

17.
Nanotechnology ; 19(46): 465707, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21836262

RESUMO

Individual adsorption and two-dimensional assembling of 5,10,15,20-tetrakis-(4-bromophenyl)-porphyrin-Co (TBrPP-Co) molecules on a Si(111)-[Formula: see text] Ag reconstructed surface have been studied using low-temperature scanning tunnelling microscopy (STM). All the isolated molecules are observed in a planar shape with slight distortion. The isolated molecules can be controllably rotated with an STM tip to the orientation along the trigonal lattice ([Formula: see text] direction) of the substrate. With an increased coverage (0.07 ML) and appropriate annealing, the molecules assemble to form three types of ordered phase. The long-range ordered structures, however, disappear at higher coverage (0.75 ML).

18.
Phys Rev Lett ; 89(26): 266105, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12484838

RESUMO

Observation of the rest-atom layer of the Si(111)-(7 x 7) surface is performed by atomic force microscopy. By detecting the force due to the single chemical covalent bond formed between the tip and the sample surface, individual atoms on the layer were clearly resolved. Unprecedented high spatial resolution was achieved by setting the detection force at a small value and by reducing background forces due to the long-range interactions with the small oscillation amplitude of the cantilever and sharp probe tip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA