Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Annu Rev Immunol ; 29: 185-214, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21219183

RESUMO

Receptors of the innate immune system recognize conserved microbial features and provide key signals that initiate immune responses. Multiple transmembrane and cytosolic receptors have evolved to recognize RNA and DNA, including members of the Toll-like receptor and RIG-I-like receptor families and several DNA sensors. This strategy enables recognition of a broad range of pathogens; however, in some cases, this benefit is weighed against the cost of potential self recognition. Recognition of self nucleic acids by the innate immune system contributes to the pathology associated with several autoimmune or autoinflammatory diseases. In this review, we highlight our current understanding of nucleic acid sensing by innate immune receptors and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.


Assuntos
DNA/química , Infecções/imunologia , RNA/química , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Animais , Citosol/química , Retículo Endoplasmático/metabolismo , Humanos , Imunidade Inata , Lisossomos/metabolismo , Receptores Toll-Like/imunologia
2.
J Mol Cell Cardiol ; 186: 1-15, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951204

RESUMO

Myocardial infarction (MI) results from occlusion of blood supply to the heart muscle causing death of cardiac muscle cells. Following myocardial infarction (MI), extracellular matrix deposition and scar formation mechanically stabilize the injured heart as damaged myocytes undergo necrosis and removal. Fibroblasts and macrophages are key drivers of post-MI scar formation, maturation, and ongoing long-term remodelling; however, their individual contributions are difficult to assess from bulk analyses of infarct scar. Here, we employ state-of-the-art automated spatially targeted optical micro proteomics (autoSTOMP) to photochemically tag and isolate proteomes associated with subpopulations of fibroblasts (SMA+) and macrophages (CD68+) in the context of the native, MI tissue environment. Over a time course of 6-weeks post-MI, we captured dynamic changes in the whole-infarct proteome and determined that some of these protein composition signatures were differentially localized near SMA+ fibroblasts or CD68+ macrophages within the scar region. These results link specific cell populations to within-infarct protein remodelling and illustrate the distinct metabolic and structural processes underlying the observed physiology of each cell type.


Assuntos
Cicatriz , Infarto do Miocárdio , Ratos , Animais , Cicatriz/metabolismo , Proteômica , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Macrófagos/metabolismo , Remodelação Ventricular
3.
Cytokine ; 183: 156731, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168064

RESUMO

Subunit vaccines drive immune cell-cell interactions in the lymph node (LN), yet it remains unclear how distinct adjuvants influence the chemokines responsible for this interaction in the tissue. Here, we tested the hypothesis that classic Th1-polarizing vaccines elicit a unique chemokine signature in the LN compared to other adjuvants. Polyinosinic:polycytidylic acid (Poly I:C) vaccination resulted in dynamic upregulation of CXCL9 that was localized in the interfollicular region, a response not observed after vaccination with alum or a combination of alum and poly I:C. Experiments using in vivo mouse models and live ex vivo LN slices revealed that poly I:C vaccination resulted in a type-I IFN response in the LN that led to the secretion of IFNγ, and type-I IFN and IFNγ were required for CXCL9 expression in this context. CXCL9 expression in the LN was correlated with an IgG2c antibody polarization after vaccination; however, genetic depletion of the receptor for CXCL9 did not prevent the development of this polarization. Additionally, we measured secretion of CXCL9 from ex vivo LN slices after stimulation with a variety of adjuvants and confirmed that adjuvants that induced IFNγ responses also promoted CXCL9 expression. Taken together, these results identify a CXCL9 signature in a suite of Th1-polarizing adjuvants and determined the pathway involved in driving CXCL9 in the LN, opening avenues to target this chemokine pathway in future vaccines.

5.
Infect Immun ; 91(7): e0044222, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255461

RESUMO

The biology of a cell, whether it is a unicellular organism or part of a multicellular network, is influenced by cell type, temporal changes in cell state, and the cell's environment. Spatial cues play a critical role in the regulation of microbial pathogenesis strategies. Information about where the pathogen is-in a tissue or in proximity to a host cell-regulates gene expression and the compartmentalization of gene products in the microbe and the host. Our understanding of host and pathogen identity has bloomed with the accessibility of transcriptomics and proteomics techniques. A missing piece of the puzzle has been our ability to evaluate global transcript and protein expression in the context of the subcellular niche, primary cell, or native tissue environment during infection. This barrier is now lower with the advent of new spatial omics techniques to understand how location regulates cellular functions. This review will discuss how recent advances in spatial proteomics and transcriptomics approaches can address outstanding questions in microbial pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno , Proteômica , Interações Hospedeiro-Patógeno/genética , Proteômica/métodos , Perfilação da Expressão Gênica/métodos , Processamento de Proteína Pós-Traducional
6.
Allergy ; 78(12): 3193-3203, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37497566

RESUMO

BACKGROUND: Recent studies have shown deposition of immunoglobulin G4 (IgG4) and food proteins in the esophageal mucosa of eosinophilic esophagitis (EoE) patients. Our aims were to assess whether co-localization of IgG4 and major cow's milk proteins (CMPs) was associated with EoE disease activity and to investigate the proteins enriched in proximity to IgG4 deposits. METHODS: This study included adult subjects with EoE (n = 13) and non-EoE controls (n = 5). Esophageal biopsies were immunofluorescence stained for IgG4 and CMPs. Co-localization in paired samples from active disease and remission was assessed and compared to controls. The proteome surrounding IgG4 deposits was evaluated by the novel technique, AutoSTOMP. IgG4-food protein interactions were confirmed with co-immunoprecipitation and mass spectrometry. RESULTS: IgG4-CMP co-localization was higher in the active EoE group compared to paired remission samples (Bos d 4, p = .02; Bos d 5, p = .002; Bos d 8, p = .002). Co-localization was also significantly higher in the active EoE group compared to non-EoE controls (Bos d 4, p = .0013; Bos d 5, p = .0007; Bos d 8, p = .0013). AutoSTOMP identified eosinophil-derived proteins (PRG 2 and 3, EPX, RNASE3) and calpain-14 in IgG4-enriched areas. Co-immunoprecipitation and mass spectrometry confirmed IgG4 binding to multiple food allergens. CONCLUSION: These findings further contribute to the understanding of the interaction of IgG4 with food antigens as it relates to EoE disease activity. These data strongly suggest the immune complex formation of IgG4 and major cow's milk proteins. These immune complexes may have a potential role in the pathophysiology of EoE by contributing to eosinophil activation and disease progression.


Assuntos
Esofagite Eosinofílica , Adulto , Feminino , Animais , Bovinos , Humanos , Esofagite Eosinofílica/patologia , Complexo Antígeno-Anticorpo , Imunoglobulina G , Alérgenos , Proteínas do Leite
7.
J Hand Ther ; 36(2): 479-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36470784

RESUMO

We introduce a five-question decision-making tool for using relative motion in practice. The tool considers the primary aim of the relative motion orthosis, the amount of relative motion required and the number of fingers that should be included. The tool also helps clincians consider the person-specific characteristics that will impact the use of the orthoses, as well as, a variety of materials that could be used to fabricate the relative motion orthosis. Clinical examples demonstrate the use of the decision tool and illustrate the varied use of relative motion orthoses.

8.
J Immunol ; 204(12): 3329-3338, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32350081

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that establishes life-long infection in a wide range of hosts, including humans and rodents. To establish a chronic infection, pathogens often exploit the trade-off between resistance mechanisms, which promote inflammation and kill microbes, and tolerance mechanisms, which mitigate inflammatory stress. Signaling through the type I IL-1R has recently been shown to control disease tolerance pathways in endotoxemia and Salmonella infection. However, the role of the IL-1 axis in T. gondii infection is unclear. In this study we show that IL-1R-/- mice can control T. gondii burden throughout infection. Compared with wild-type mice, IL-1R-/- mice have more severe liver and adipose tissue pathology during acute infection, consistent with a role in acute disease tolerance. Surprisingly, IL-1R-/- mice had better long-term survival than wild-type mice during chronic infection. This was due to the ability of IL-1R-/- mice to recover from cachexia, an immune-metabolic disease of muscle wasting that impairs fitness of wild-type mice. Together, our data indicate a role for IL-1R as a regulator of host homeostasis and point to cachexia as a cost of long-term reliance on IL-1-mediated tolerance mechanisms.


Assuntos
Caquexia/imunologia , Tolerância Imunológica/imunologia , Receptores de Interleucina-1/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Caquexia/parasitologia , Inflamação/imunologia , Inflamação/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Toxoplasmose/parasitologia
9.
J Proteome Res ; 20(9): 4543-4552, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34436902

RESUMO

Tissue microenvironment properties like blood flow, extracellular matrix, or proximity to immune-infiltrate are important regulators of cell biology. However, methods to study regional protein expression in the native tissue environment are limited. To address this need, we developed a novel approach to visualize, purify, and measure proteins in situ using automated spatially targeted optical microproteomics (AutoSTOMP). Here, we report custom codes to specify regions of heterogeneity in a tissue section and UV-biotinylate proteins within those regions. We have developed liquid chromatography-mass spectrometry (LC-MS)/MS-compatible biochemistry to purify those proteins and label-free quantification methodology to determine protein enrichment in target cell types or structures relative to nontarget regions in the same sample. These tools were applied to (a) identify inflammatory proteins expressed by CD68+ macrophages in rat cardiac infarcts and (b) characterize inflammatory proteins enriched in IgG4+ lesions in human esophageal tissues. These data indicate that AutoSTOMP is a flexible approach to determine regional protein expression in situ on a range of primary tissues and clinical biopsies where current tools and sample availability are limited.


Assuntos
Proteínas , Proteômica , Animais , Cromatografia Líquida , Espectrometria de Massas , Ratos
10.
Anal Chem ; 92(2): 2005-2010, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31869197

RESUMO

Spatially targeted optical microproteomics (STOMP) is a method to study region-specific protein complexity in primary cells and tissue samples. STOMP uses a confocal microscope to visualize structures of interest and to tag the proteins within those structures by a photodriven cross-linking reaction so that they can be affinity purified and identified by mass spectrometry (eLife 2015, 4, e09579). However, the use of a custom photo-cross-linker and the requirement for extensive user intervention during sample tagging have posed barriers to the utilization of STOMP. To address these limitations, we built automated STOMP (autoSTOMP) which uses a customizable code in SikuliX to coordinate image capture and cross-linking functions in Zeiss Zen Black with image processing in FIJI. To increase protocol accessibility, we implemented a commercially available biotin-benzophenone photo-cross-linking and purification protocol. Here we demonstrate that autoSTOMP can efficiently label, purify, and identify proteins belonging to 1-2 µm structures in primary human foreskin fibroblasts or mouse bone marrow-derived dendritic cells infected with the protozoan parasite Toxoplasma gondii (Tg). AutoSTOMP can easily be adapted to address a range of research questions using Zeiss Zen Black microscopy systems and LC-MS protocols that are standard in many research cores.


Assuntos
Automação , Proteínas/análise , Proteômica , Animais , Células Dendríticas/química , Fibroblastos/química , Humanos , Camundongos , Estrutura Molecular , Imagem Óptica , Conformação Proteica
11.
Immunity ; 35(5): 721-32, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22078797

RESUMO

Recognition of nucleic acids as a signature of infection by Toll-like receptors (TLRs) 7 and 9 exposes the host to potential self-recognition and autoimmunity. It has been proposed that intracellular compartmentalization is largely responsible for reliable self versus nonself discrimination by these receptors. We have previously shown that TLR9 and TLR7 require processing prior to activation, which may further reinforce receptor compartmentalization and tolerance to self, yet this possibility remains untested. Here we report that residues within the TLR9 transmembrane (TM) region conferred the requirement for ectodomain proteolysis. TLR9 TM mutants responded to extracellular DNA, and mice expressing such receptors died from systemic inflammation and anemia. This inflammatory disease did not require lymphocytes and appeared to require recognition of self-DNA by dendritic cells. To our knowledge, these results provide the first demonstration that TLR-intrinsic mutations can lead to a break in tolerance.


Assuntos
Inflamação/genética , Inflamação/imunologia , Mutação , Receptor Toll-Like 9/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos B/imunologia , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Expressão Gênica , Genes Letais , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína/genética , Transporte Proteico , Proteólise , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Receptor Toll-Like 9/química , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
PLoS Biol ; 12(4): e1001845, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24781109

RESUMO

Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria.


Assuntos
Mitocôndrias/parasitologia , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/imunologia , Animais , Animais Geneticamente Modificados , Citocinas/metabolismo , Feminino , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/classificação , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Vacúolos/parasitologia
14.
Infect Immun ; 82(1): 460-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24218483

RESUMO

The obligate intracellular parasite Toxoplasma gondii is able to infect nearly all nucleated cell types of warm-blooded animals. This is achieved through the injection of hundreds of parasite effectors into the host cell cytosol, allowing the parasite to establish a vacuolar niche for growth, replication, and persistence. Here we show that Toxoplasma infection actives an inflammasome response in mice and rats, an innate immune sensing system designed to survey the host cytosol for foreign components leading to inflammation and cell death. Oral infection with Toxoplasma triggers an inflammasome response that is protective to the host, limiting parasite load and dissemination. Toxoplasma infection is sufficient to generate an inflammasome response in germfree animals. Interleukin 1ß (IL-1ß) secretion by macrophage requires the effector caspases 1 and 11, the adapter ASC, and NLRP1, the sensor previously described to initiate the inflammasome response to Bacillus anthracis lethal factor. The allele of NLRP1b derived from 129 mice is sufficient to enhance the B6 bone marrow-derived macrophage (BMDM) inflammasome response to Toxoplasma independent of the lethal factor proteolysis site. Moreover, N-terminal processing of NLRP1b, the only mechanism of activation known to date, is not observed in response to Toxoplasma infection. Cumulatively, these data indicate that NLRP1 is an innate immune sensor for Toxoplasma infection, activated via a novel mechanism that corresponds to a host-protective innate immune response to the parasite.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Imunidade Inata/imunologia , Inflamassomos/metabolismo , Toxoplasma/fisiologia , Toxoplasmose Animal/fisiopatologia , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Toxoplasma/imunologia , Toxoplasmose Animal/metabolismo
15.
Nature ; 456(7222): 658-62, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18820679

RESUMO

Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids; however, these responses come at the cost of potential autoimmunity owing to inappropriate recognition of self nucleic acids. The localization of TLR9 and TLR7 to intracellular compartments seems to have a role in facilitating responses to viral nucleic acids while maintaining tolerance to self nucleic acids, yet the cell biology regulating the transport and localization of these receptors remains poorly understood. Here we define the route by which TLR9 and TLR7 exit the endoplasmic reticulum and travel to endolysosomes in mouse macrophages and dendritic cells. The ectodomains of TLR9 and TLR7 are cleaved in the endolysosome, such that no full-length protein is detectable in the compartment where ligand is recognized. Notably, although both the full-length and cleaved forms of TLR9 are capable of binding ligand, only the processed form recruits MyD88 on activation, indicating that this truncated receptor, rather than the full-length form, is functional. Furthermore, conditions that prevent receptor proteolysis, including forced TLR9 surface localization, render the receptor non-functional. We propose that ectodomain cleavage represents a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acids.


Assuntos
Processamento de Proteína Pós-Traducional , Receptor Toll-Like 9/química , Receptor Toll-Like 9/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Complexo de Golgi/metabolismo , Ligantes , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fagossomos/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo
16.
Microbiol Mol Biol Rev ; 88(1): e0016422, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38299836

RESUMO

SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.


Assuntos
Criptosporidiose , Cryptosporidium , Parasitos , Plasmodium , Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Imunidade , Proteínas de Protozoários/metabolismo
17.
Adv Healthc Mater ; : e2400249, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648258

RESUMO

The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.

18.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538595

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Assuntos
Toxoplasma , Vacúolos , Animais , Humanos , Camundongos , Interferons/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Toxoplasma/metabolismo , Vacúolos/metabolismo
19.
J Neuroimmunol ; 393: 578402, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996717

RESUMO

Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.


Assuntos
Neoplasias Encefálicas , Toxoplasmose , Animais , Camundongos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Toxoplasmose/imunologia , Toxoplasma/imunologia , Meduloblastoma/imunologia , Meduloblastoma/patologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Transgênicos , Feminino
20.
Trends Parasitol ; 39(12): 1074-1086, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839913

RESUMO

Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.


Assuntos
Parasitos , Plasmodium , Infecções por Protozoários , Toxoplasma , Animais , Humanos , Interações Hospedeiro-Parasita , Infecções por Protozoários/parasitologia , Parasitos/fisiologia , Plasmodium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA