Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38197288

RESUMO

We are launching a series to celebrate the 40th anniversary of the first issue of Molecular Biology and Evolution. In 2024, we will publish virtual issues containing selected papers published in the Society for Molecular Biology and Evolution journals, Molecular Biology and Evolution and Genome Biology and Evolution. Each virtual issue will be accompanied by a perspective that highlights the historic and contemporary contributions of our journals to a specific topic in molecular evolution. This perspective, the first in the series, presents an account of the broad array of methods that have been published in the Society for Molecular Biology and Evolution journals, including methods to infer phylogenies, to test hypotheses in a phylogenetic framework, and to infer population genetic processes. We also mention many of the software implementations that make methods tractable for empiricists. In short, the Society for Molecular Biology and Evolution community has much to celebrate after four decades of publishing high-quality science including numerous important inferential methods.


Assuntos
Publicações Periódicas como Assunto , Filogenia , Biologia Molecular , Evolução Molecular , Software
2.
PLoS Biol ; 20(6): e3001645, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653351

RESUMO

The role that balancing selection plays in the maintenance of genetic diversity remains unresolved. Here, we introduce a new test, based on the McDonald-Kreitman test, in which the number of polymorphisms that are shared between populations is contrasted to those that are private at selected and neutral sites. We show that this simple test is robust to a variety of demographic changes, and that it can also give a direct estimate of the number of shared polymorphisms that are directly maintained by balancing selection. We apply our method to population genomic data from humans and provide some evidence that hundreds of nonsynonymous polymorphisms are subject to balancing selection.


Assuntos
Aminoácidos , Seleção Genética , Humanos , Polimorfismo Genético
3.
PLoS Biol ; 20(9): e3001775, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36099311

RESUMO

Understanding the dynamics of species adaptation to their environments has long been a central focus of the study of evolution. Theories of adaptation propose that populations evolve by "walking" in a fitness landscape. This "adaptive walk" is characterised by a pattern of diminishing returns, where populations further away from their fitness optimum take larger steps than those closer to their optimal conditions. Hence, we expect young genes to evolve faster and experience mutations with stronger fitness effects than older genes because they are further away from their fitness optimum. Testing this hypothesis, however, constitutes an arduous task. Young genes are small, encode proteins with a higher degree of intrinsic disorder, are expressed at lower levels, and are involved in species-specific adaptations. Since all these factors lead to increased protein evolutionary rates, they could be masking the effect of gene age. While controlling for these factors, we used population genomic data sets of Arabidopsis and Drosophila and estimated the rate of adaptive substitutions across genes from different phylostrata. We found that a gene's evolutionary age significantly impacts the molecular rate of adaptation. Moreover, we observed that substitutions in young genes tend to have larger physicochemical effects. Our study, therefore, provides strong evidence that molecular evolution follows an adaptive walk model across a large evolutionary timescale.


Assuntos
Arabidopsis , Drosophila , Adaptação Fisiológica/genética , Animais , Arabidopsis/genética , Drosophila/genética , Evolução Molecular , Modelos Genéticos
4.
PLoS Biol ; 20(5): e3001669, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639797

RESUMO

The field of population genomics has grown rapidly in response to the recent advent of affordable, large-scale sequencing technologies. As opposed to the situation during the majority of the 20th century, in which the development of theoretical and statistical population genetic insights outpaced the generation of data to which they could be applied, genomic data are now being produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) models to data, at the expense of a careful exploration of the range of possible underlying evolutionary processes. For example, the approach of directly investigating models of adaptive evolution in each newly sequenced population or species often neglects the fact that a thorough characterization of ubiquitous nonadaptive processes is a prerequisite for accurate inference. We here describe the perils of these tendencies, present our consensus views on current best practices in population genomic data analysis, and highlight areas of statistical inference and theory that are in need of further attention. Thereby, we argue for the importance of defining a biologically relevant baseline model tuned to the details of each new analysis, of skepticism and scrutiny in interpreting model fitting results, and of carefully defining addressable hypotheses and underlying uncertainties.


Assuntos
Genômica , Metagenômica , Genômica/métodos
5.
PLoS Genet ; 14(3): e1007254, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29590096

RESUMO

It has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. However, it is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We investigate a number of questions pertaining to the distribution of mutations using more than 130,000 DNMs from three large datasets. We demonstrate that the amount and pattern of variation differs between datasets at the 1MB and 100KB scales probably as a consequence of differences in sequencing technology and processing. In particular, datasets show different patterns of correlation to genomic variables such as replication time. Never-the-less there are many commonalities between datasets, which likely represent true patterns. We show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that cannot be explained by variation at smaller scales, however the level of this variation is modest at large scales-at the 1MB scale we infer that ~90% of regions have a mutation rate within 50% of the mean. Different types of mutation show similar levels of variation and appear to vary in concert which suggests the pattern of mutation is relatively constant across the genome. We demonstrate that variation in the mutation rate does not generate large-scale variation in GC-content, and hence that mutation bias does not maintain the isochore structure of the human genome. We find that genomic features explain less than 40% of the explainable variance in the rate of DNM. As expected the rate of divergence between species is correlated to the rate of DNM. However, the correlations are weaker than expected if all the variation in divergence was due to variation in the mutation rate. We provide evidence that this is due the effect of biased gene conversion on the probability that a mutation will become fixed. In contrast to divergence, we find that most of the variation in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between divergence and DNM density declines as increasingly divergent species are considered.


Assuntos
Variação Genética , Animais , Composição de Bases , Conjuntos de Dados como Assunto , Conversão Gênica , Genoma Humano , Mutação em Linhagem Germinativa , Humanos
6.
Mol Biol Evol ; 36(5): 990-998, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30903659

RESUMO

A long-standing question in evolutionary biology is the relative contribution of large and small effect mutations to the adaptive process. We have investigated this question in proteins by estimating the rate of adaptive evolution between all pairs of amino acids separated by one mutational step using a McDonald-Kreitman type approach and genome-wide data from several Drosophila species. We find that the rate of adaptive evolution is highest among amino acids that are more similar. This is partly due to the fact that the proportion of mutations that are adaptive is higher among more similar amino acids. We also find that the rate of neutral evolution between amino acids is higher among more similar amino acids. Overall our results suggest that both the adaptive and nonadaptive evolution of proteins are dominated by substitutions between similar amino acids.


Assuntos
Adaptação Biológica/genética , Substituição de Aminoácidos , Evolução Molecular , Proteínas de Insetos/genética , Mutação , Aminoácidos/química , Aminoácidos/genética , Animais , Drosophila melanogaster
7.
Mol Biol Evol ; 35(11): 2685-2694, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418639

RESUMO

Under the nearly neutral theory of molecular evolution, the proportion of effectively neutral mutations is expected to depend upon the effective population size (Ne). Here, we investigate whether this is the case across the genome of Drosophila melanogaster using polymorphism data from North American and African lines. We show that the ratio of the number of nonsynonymous and synonymous polymorphisms is negatively correlated to the number of synonymous polymorphisms, even when the nonindependence is accounted for. The relationship is such that the proportion of effectively neutral nonsynonymous mutations increases by ∼45% as Ne is halved. However, we also show that this relationship is steeper than expected from an independent estimate of the distribution of fitness effects from the site frequency spectrum. We investigate a number of potential explanations for this and show, using simulation, that this is consistent with a model of genetic hitchhiking: Genetic hitchhiking depresses diversity at neutral and weakly selected sites, but has little effect on the diversity of strongly selected sites.


Assuntos
Drosophila melanogaster/genética , Deriva Genética , Genoma de Inseto , Animais
8.
J Mol Evol ; 87(9-10): 317-326, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570957

RESUMO

Rates of molecular evolution are known to vary between species and across all kingdoms of life. Here, we explore variation in the rate at which bacteria accumulate mutations (accumulation rates) in their natural environments over short periods of time. We have compiled estimates of the accumulation rate for over 34 species of bacteria, the majority of which are pathogens evolving either within an individual host or during outbreaks. Across species, we find that accumulation rates vary by over 3700-fold. We investigate whether accumulation rates are associated to a number potential correlates including genome size, GC content, measures of the natural selection and the time frame over which the accumulation rates were estimated. After controlling for phylogenetic non-independence, we find that the accumulation rate is not significantly correlated to any factor. Furthermore, contrary to previous results, we find that it is not impacted by the time frame of which the estimate was made. However, our study, with only 34 species, is likely to lack power to detect anything but large effects. We suggest that much of the rate variation may be explained by differences between species in the generation time in the wild.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Taxa de Mutação , Composição de Bases/genética , Evolução Biológica , Evolução Molecular , Tamanho do Genoma/genética , Modelos Genéticos , Mutação/genética , Filogenia , Seleção Genética/genética
9.
Mol Biol Evol ; 34(7): 1770-1779, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379581

RESUMO

Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from µ = 4.4 × 10-10 to 9.8 × 10-10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates.


Assuntos
Clorófitas/genética , Fotossíntese/genética , Composição de Bases/genética , DNA Intergênico/genética , Eucariotos/genética , Evolução Molecular , Variação Genética , Genoma/genética , Mutação , Taxa de Mutação
10.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899074

RESUMO

Generation time varies widely across organisms and is an important factor in the life cycle, life history and evolution of organisms. Although the doubling time (DT) has been estimated for many bacteria in the laboratory, it is nearly impossible to directly measure it in the natural environment. However, an estimate can be obtained by measuring the rate at which bacteria accumulate mutations per year in the wild and the rate at which they mutate per generation in the laboratory. If we assume the mutation rate per generation is the same in the wild and in the laboratory, and that all mutations in the wild are neutral, an assumption that we show is not very important, then an estimate of the DT can be obtained by dividing the latter by the former. We estimate the DT for five species of bacteria for which we have both an accumulation and a mutation rate estimate. We also infer the distribution of DTs across all bacteria from the distribution of the accumulation and mutation rates. Both analyses suggest that DTs for bacteria in the wild are substantially greater than those in the laboratory, that they vary by orders of magnitude between different species of bacteria and that a substantial fraction of bacteria double very slowly in the wild.


Assuntos
Fenômenos Fisiológicos Bacterianos , Taxa de Mutação , Fenômenos Fisiológicos Bacterianos/genética , Modelos Biológicos , Dinâmica Populacional
11.
Mol Biol Evol ; 33(2): 442-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26494843

RESUMO

Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect.


Assuntos
Adaptação Biológica , Evolução Biológica , Drosophila/genética , Seleção Genética , Animais , Drosophila melanogaster/genética , Genoma de Inseto , Modelos Genéticos , Mutação , Fases de Leitura Aberta , Polimorfismo Genético , Recombinação Genética
12.
Nat Rev Genet ; 12(11): 756-66, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21969038

RESUMO

It has been known for many years that the mutation rate varies across the genome. However, only with the advent of large genomic data sets is the full extent of this variation becoming apparent. The mutation rate varies over many different scales, from adjacent sites to whole chromosomes, with the strongest variation seen at the smallest scales. Some of these patterns have clear mechanistic bases, but much of the rate variation remains unexplained, and some of it is deeply perplexing. Variation in the mutation rate has important implications in evolutionary biology and underexplored implications for our understanding of hereditary disease and cancer.


Assuntos
Ilhas de CpG , Mamíferos/genética , Taxa de Mutação , Animais , Humanos , Polimorfismo de Nucleotídeo Único , Cromossomos Sexuais
13.
Hum Mutat ; 37(5): 488-94, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26857394

RESUMO

We have investigated whether the mutation rate varies between genes and sites using de novo mutations (DNMs) from three genes associated with Mendelian diseases (RB1, NF1, and MECP2). We show that the relative frequency of mutations at CpG dinucleotides relative to non-CpG sites varies between genes and relative to the genomic average. In particular we show that the rate of transition mutation at CpG sites relative to the rate of non-CpG transversion is substantially higher in our disease genes than amongst DNMs in general; the rate of CpG transition can be several hundred-fold greater than the rate of non-CpG transversion. We also show that the mutation rate varies significantly between sites of a particular mutational type, such as non-CpG transversion, within a gene. We estimate that for all categories of sites, except CpG transitions, there is at least a 30-fold difference in the mutation rate between the 10% of sites with the highest and lowest mutation rates. However, our best estimate is that the mutation rate varies by several hundred-fold variation. We suggest that the presence of hypermutable sites may be one reason certain genes are associated with disease.


Assuntos
Predisposição Genética para Doença/genética , Proteína 2 de Ligação a Metil-CpG/genética , Taxa de Mutação , Neurofibromina 1/genética , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Algoritmos , Códon sem Sentido , Ilhas de CpG , Heterogeneidade Genética , Humanos
14.
Mol Ecol ; 25(1): 67-78, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26578312

RESUMO

We have investigated whether there is adaptive evolution in mitochondrial DNA, using an extensive data set containing over 500 animal species from a wide range of taxonomic groups. We apply a variety of McDonald-Kreitman style methods to the data. We find that the evolution of mitochondrial DNA is dominated by slightly deleterious mutations, a finding which is supported by a number of previous studies. However, when we control for the presence of deleterious mutations using a new method, we find that mitochondria undergo a significant amount of adaptive evolution, with an estimated 26% (95% confidence intervals: 5.7-45%) of nonsynonymous substitutions fixed by adaptive evolution. We further find some weak evidence that the rate of adaptive evolution is correlated to synonymous diversity. We interpret this as evidence that at least some adaptive evolution is limited by the supply of mutations.


Assuntos
Adaptação Biológica/genética , Evolução Molecular , Mitocôndrias/genética , Animais , DNA Mitocondrial/genética , Modelos Genéticos , Taxa de Mutação , Polimorfismo Genético
15.
PLoS Biol ; 11(10): e1001675, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24115908

RESUMO

The assessment of scientific publications is an integral part of the scientific process. Here we investigate three methods of assessing the merit of a scientific paper: subjective post-publication peer review, the number of citations gained by a paper, and the impact factor of the journal in which the article was published. We investigate these methods using two datasets in which subjective post-publication assessments of scientific publications have been made by experts. We find that there are moderate, but statistically significant, correlations between assessor scores, when two assessors have rated the same paper, and between assessor score and the number of citations a paper accrues. However, we show that assessor score depends strongly on the journal in which the paper is published, and that assessors tend to over-rate papers published in journals with high impact factors. If we control for this bias, we find that the correlation between assessor scores and between assessor score and the number of citations is weak, suggesting that scientists have little ability to judge either the intrinsic merit of a paper or its likely impact. We also show that the number of citations a paper receives is an extremely error-prone measure of scientific merit. Finally, we argue that the impact factor is likely to be a poor measure of merit, since it depends on subjective assessment. We conclude that the three measures of scientific merit considered here are poor; in particular subjective assessments are an error-prone, biased, and expensive method by which to assess merit. We argue that the impact factor may be the most satisfactory of the methods we have considered, since it is a form of pre-publication review. However, we emphasise that it is likely to be a very error-prone measure of merit that is qualitative, not quantitative.


Assuntos
Fator de Impacto de Revistas , Revisão da Pesquisa por Pares , Publicações Periódicas como Assunto , Ciência , Bases de Dados como Assunto , Humanos
17.
BMC Genomics ; 15: 1103, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25494611

RESUMO

BACKGROUND: Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired-end reads from Ostreococcus tauri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture. RESULTS: The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq Illumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate-receptor like gene. CONCLUSION: High coverage (>80 fold) paired-end Illumina sequencing enables a high quality 95% complete genome assembly of a compact ~13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture.


Assuntos
Clorófitas/genética , Genoma de Planta , Genômica , Biologia Computacional , Evolução Molecular , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Dados de Sequência Molecular
18.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149940

RESUMO

Bias in synonymous codon usage has been reported across all kingdoms of life. Evidence suggests that codon usage bias is often driven by selective pressures, typically for translational efficiency. These selective pressures have been shown to depress the rate at which synonymous sites evolve. We hypothesize that selection on synonymous codon use could also slow the rate of protein evolution if a non-synonymous mutation changes the codon from being preferred to unpreferred. We test this hypothesis by looking at patterns of protein evolution using polymorphism and substitution data in two bacterial species, Escherichia coli and Streptococcus pneumoniae. We find no evidence that non-synonymous mutations that change a codon from being unpreferred to preferred are more common than the opposite. Overall, selection on codon bias seems to have little influence over non-synonymous polymorphism or substitution patterns.


Assuntos
Uso do Códon , Polimorfismo Genético , Códon/genética , Escherichia coli/genética , Seleção Genética , Evolução Molecular , Mutação
19.
Am J Hum Genet ; 87(3): 316-24, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20797689

RESUMO

The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or complete genomes of families via resequencing. We hypothesized that deleterious DNMs may play a role in cases of autism spectrum disorders (ASD) and schizophrenia (SCZ), two etiologically heterogeneous disorders with significantly reduced reproductive fitness. We present a direct measure of the de novo mutation rate (µ) and selective constraints from DNMs estimated from a deep resequencing data set generated from a large cohort of ASD and SCZ cases (n = 285) and population control individuals (n = 285) with available parental DNA. A survey of ∼430 Mb of DNA from 401 synapse-expressed genes across all cases and 25 Mb of DNA in controls found 28 candidate DNMs, 13 of which were cell line artifacts. Our calculated direct neutral mutation rate (1.36 × 10(-8)) is similar to previous indirect estimates, but we observed a significant excess of potentially deleterious DNMs in ASD and SCZ individuals. Our results emphasize the importance of DNMs as genetic mechanisms in ASD and SCZ and the limitations of using DNA from archived cell lines to identify functional variants.


Assuntos
Transtorno Autístico/genética , Análise Mutacional de DNA/métodos , Mutagênese/genética , Mutação/genética , Esquizofrenia/genética , Pareamento de Bases/genética , Linhagem Celular , Segregação de Cromossomos/genética , Estudos de Coortes , Família , Feminino , Regulação da Expressão Gênica , Humanos , Masculino
20.
Proc Natl Acad Sci U S A ; 107 Suppl 1: 1752-6, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20133822

RESUMO

A model is investigated in which mutations that affect a complex trait (e.g., heart disease) also affect fitness because the trait is a component of fitness or because the mutations have pleiotropic effects on fitness. The model predicts that the genetic variance, and hence the heritability, in the trait is contributed by mutations at low frequency in the population, unless the mean strength of selection of mutations that affect the trait is very small or weakly selected mutations tend to contribute disproportionately to the trait compared with strongly selected mutations. Furthermore, it is shown that each rare mutation tends to contribute more to the variance than each common mutation. These results may explain why most genome-wide association studies have failed to find associations that explain much of the variance. It is also shown that most of the variance in fitness contributed by new nonsynonymous mutations is caused by mutations at very low frequency in the population. This implies that most low-frequency SNPs, which are observed in current resequencing studies of, for example, 100 chromosomes, probably have little impact on the variance in fitness or traits. Finally, it is shown that the variance contributed by a category of mutations (e.g., coding or regulatory) depends largely upon the mean strength of selection; this has implications for understanding which types of mutations are likely to be responsible for the variance in fitness and inherited disease.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Mutação , Seleção Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA