RESUMO
ABSTRACT: The purpose of this article is to provide a comprehensive review of the imaging findings along with histopathologic correlation of mature (benign) teratomas and malignant ovarian teratomas, which include both immature teratomas and malignant degeneration of mature teratomas. The radiologist's ability to provide an accurate diagnosis plays an essential role in guiding the interdisciplinary care of patients with malignant teratomas and improving their outcomes.
Assuntos
Neoplasias Ovarianas , Teratoma , Feminino , Humanos , Imagem Multimodal , Teratoma/diagnóstico por imagem , Teratoma/patologia , Neoplasias Ovarianas/diagnóstico por imagemRESUMO
Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.
Assuntos
Neoplasias da Mama , Metionina , Humanos , Feminino , Quinase 4 Dependente de Ciclina/metabolismo , Ligantes , Fosforilação , Oxirredução , Racemetionina/metabolismoRESUMO
BACKGROUND: Periventricular leukoaraiosis may be an important pathological change in postural instability gait disorder (PIGD), a motor subtype of Parkinson's disease (PD). Clinical diagnosis of PIGD may be challenging for the general neurologist. PURPOSE: To evaluate 1) the utility of a fully automated volume-based morphometry (Vol-BM) in characterizing imaging diagnostic markers in PD and PIGD, including, 2) novel deep gray nuclear lesion load (GMab), and 3) discriminatory performance of a Vol-BM model construct in classifying the PIGD subtype. STUDY TYPE: Prospective. SUBJECTS: In all, 23 PIGD, 21 PD, and 20 age-matched healthy controls (HC) underwent MRI brain scans and clinical assessments. FIELD STRENGTH/SEQUENCE: 3.0T, sagittal 3D-magnetization-prepared rapid gradient echo (MPRAGE), and fluid-attenuated inversion recovery imaging (FLAIR) sequences. ASSESSMENT: Clinical assessment was conducted by a movement disorder neurologist. The MR brain images were then segmented using an automated multimodal Vol-BM algorithm (MorphoBox) and reviewed by two authors independently. STATISTICAL TESTING: Brain segmentation and clinical parameter differences and dependence were assessed using analysis of variance (ANOVA) and regression analysis, respectively. Logistic regression was performed to differentiate PIGD from PD, and discriminative reliability was evaluated using receiver operating characteristic (ROC) analysis. RESULTS: Significantly higher white matter lesion load (WMab) (P < 0.01), caudate GMab (P < 0.05), and lateral and third ventricular (P < 0.05) volumetry were found in PIGD, compared with PD and HC. WMab, caudate and putamen GMab, and caudate, lateral, and third ventricular volumetry showed significant coefficients (P < 0.005) in linear regressions with balance and gait assessments in both patient groups. A model incorporating WMab, caudate GMab, and caudate GM discriminated PIGD from PD and HC with a sensitivity = 0.83 and specificity = 0.76 (AUC = 0.84). DATA CONCLUSION: Fast, unbiased quantification of microstructural brain changes in PD and PIGD is feasible using automated Vol-BM. Composite lesion load in the white matter and caudate, and caudate volumetry discriminated PIGD from PD and HC, and showed potential in classification of these disorders using supervised machine learning. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:748-756.
Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Substância Branca , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Doença de Parkinson/diagnóstico por imagem , Estudos Prospectivos , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagemRESUMO
Glycogen synthase kinase-3 plays an essential role in multiple biochemical pathways in the cell, particularly in regards to energy regulation. As such, Glycogen synthase kinase-3 is an attractive target for pharmacological intervention in a variety of disease states, particularly non-insulin dependent diabetes mellitus. However, due to homology with other crucial kinases, such as the cyclin-dependent protein kinase CDC2, developing compounds that are both potent and selective is challenging. A novel series of derivatives of 5-nitro-N2-(2-(pyridine-2ylamino)ethyl)pyridine-2,6-diamine were synthesized and have been shown to potently inhibit glycogen synthase kinase-3 (GSK3). Potency in the low nanomolar range was obtained along with remarkable selectivity. The compounds activate glycogen synthase in insulin receptor-expressing CHO-IR cells and in primary rat hepatocytes, and have acceptable pharmacokinetics and pharmacodynamics to allow for oral dosing. The X-ray co-crystal structure of human GSK3-ß in complex with compound 2 is reported and provides insights into the structural determinants of the series responsible for its potency and selectivity.
Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Piridinas/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Quinase 3 da Glicogênio Sintase/metabolismo , Meia-Vida , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Piridinas/metabolismo , Piridinas/farmacocinética , Ratos , Relação Estrutura-AtividadeRESUMO
JAK3 kinase plays a critical role in several cytokine signaling pathways involved in immune cell development and function. The studies presented in this report were undertaken to elucidate the kinetic mechanism of the JAK3 kinase domain, investigate the role of activation loop phosphorylation in regulating its catalytic activity, and examine its inhibition by the anti-rheumatoid arthritis drug, tofacitinib. Phosphorylation of two Tyr residues in JAK3's activation loop has been reported to impact its kinase activity. The recombinant JAK3 kinase domain used in our studies was heterogeneous in its activation loop phosphorylation, with the non-phosphorylated protein being the dominant species. Kinetic analysis revealed similar kinetic parameters for the heterogeneously phosphorylated JAK3, JAK3 mono-phosphorylated on Tyr 980, and the activation loop mutant YY980/981FF. Bisubstrate and product inhibition kinetic results were consistent with both sequential random and sequential ordered kinetic mechanisms. Solvent viscosometric experiments showed perturbation of kcat, suggesting the phosphoryl transfer step is not likely rate limiting. This was supported by results from quench-flow experiments, where a rapid burst of product formation was observed. Kinetic analysis of JAK3 inhibition by tofacitinib indicated inhibition is time dependent, characterized by on- and off-rate constants of 1.4 ± 0.1 µM-1s-1 and 0.0016 ± 0.0005 s-1, respectively.
Assuntos
Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Piperidinas/química , Pirimidinas/química , Pirróis/química , Adenosina Trifosfatases/química , Animais , Catálise , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Insetos , Cinética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/química , Células Sf9 , Transdução de Sinais , Solventes , ViscosidadeRESUMO
In this pilot study, we investigated the utility of handheld ultrasound-guided photoacoustic (US-PA) imaging probe for analyzing ex-vivo breast specimens obtained from female patients who underwent breast-conserving surgery (BCS). We aimed to assess the potential of US-PA in detecting biochemical markers such as collagen, lipids, and hemoglobin, and compare these findings with routine imaging modalities (mammography, ultrasound) and histopathology results, particularly across various breast densities. Twelve ex-vivo breast specimens were obtained from female patients with a mean age of 59.7 ± 9.5 years who underwent BCS. The tissues were illuminated using handheld US-PA probe between 700 and 1100 nm across all margins and analyzed for collagen, lipids, and hemoglobin distribution. The obtained results were compared with routine imaging and histopathological assessments. Our findings revealed that lipid intensity and distribution decreased with increasing breast density, while collagen exhibited an opposite trend. These observations were consistent with routine imaging and histopathological analyses. Moreover, collagen intensity significantly differed (P < 0.001) between cancerous and normal breast tissue, indicating its potential as an additional biomarker for risk stratification across various breast conditions. The study results suggest that a combined assessment of PA biochemical information, such as collagen and lipid content, superimposed on grey-scale ultrasound findings could aid in distinguishing between normal and malignant breast conditions, as well as assist in BCS margin assessment. This underscores the potential of US-PA imaging as a valuable tool for enhancing breast cancer diagnosis and management, offering complementary information to existing imaging modalities and histopathology.
Assuntos
Neoplasias da Mama , Colágeno , Hemoglobinas , Lipídeos , Técnicas Fotoacústicas , Humanos , Feminino , Técnicas Fotoacústicas/métodos , Pessoa de Meia-Idade , Hemoglobinas/análise , Hemoglobinas/metabolismo , Colágeno/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Idoso , Lipídeos/análise , Lipídeos/química , Mama/patologia , Mama/diagnóstico por imagem , Projetos Piloto , Ultrassonografia Mamária/métodos , Tomografia/métodos , BiomarcadoresRESUMO
The COVID-19 pandemic highlights the ongoing risk of zoonotic transmission of coronaviruses to global health. To prepare for future pandemics, it is essential to develop effective antivirals targeting a broad range of coronaviruses. Targeting the essential and clinically validated coronavirus main protease (Mpro), we constructed a structurally diverse Mpro panel by clustering all known coronavirus sequences by Mpro active site sequence similarity. Through screening, we identified a potent covalent inhibitor that engaged the catalytic cysteine of SARS-CoV-2 Mpro and used structure-based medicinal chemistry to develop compounds in the pyrazolopyrimidine sulfone series that exhibit submicromolar activity against multiple Mpro homologues. Additionally, we solved the first X-ray cocrystal structure of Mpro from the human-infecting OC43 coronavirus, providing insights into potency differences among compound-target pairs. Overall, the chemical compounds described in this study serve as starting points for the development of antivirals with broad-spectrum activity, enhancing our preparedness for emerging human-infecting coronaviruses.
Assuntos
Antivirais , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Cristalografia por Raios X , Tratamento Farmacológico da COVID-19 , Relação Estrutura-Atividade , COVID-19/virologia , COVID-19/epidemiologia , Inibidores de Protease de Coronavírus/farmacologia , Inibidores de Protease de Coronavírus/química , Coronavirus Humano OC43/efeitos dos fármacos , Domínio Catalítico , Modelos Moleculares , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Pandemias , Preparação para PandemiaRESUMO
To date, studies which utilized ultrasound (US) and optoacoustic tomography (OT) fusion (US-OT) in biochemical differentiation of malignant and benign breast conditions have relied on limited biochemical data such as oxyhaemoglobin (OH) and deoxyhaemoglobin (DH) only. There has been no data of the largest biochemical components of breast fibroglandular tissue: lipid and collagen. Here, the authors believe the ability to image collagen and lipids within the breast tissue could serve as an important milestone in breast US-OT imaging with many potential downstream clinical applications. Hence, we would like to present the first-in-human US-OT demonstration of lipid and collagen differentiation in an excised breast tissue from a 38-year-old female.
RESUMO
A 50-year-old woman with no past medical history presented with a left anterior chest wall mass that was clinically soft, mobile, and non-tender. A targeted ultrasound (US) showed findings suggestive of a lipoma. However, focal "mass-like" nodules seen within the inferior portion suggested malignant transformation of a lipomatous lesion called for cross sectional imaging, such as MRI or invasive biopsy or excision for histological confirmation. A T1-weighted image demonstrated a large lipoma that has a central fat-containing region surrounded by an irregular hypointense rim in the inferior portion, confirming the benignity of the lipoma. An ultrasound-guided photoacoustic imaging (PA) of the excised specimen to derive the biochemical distribution demonstrated the "mass-like" hypoechoic regions on US as fat-containing, suggestive of benignity of lesion, rather than fat-replacing suggestive of malignancy. The case showed the potential of PA as an adjunct to US in improving the diagnostic confidence in lesion characterization.
RESUMO
A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of INE963 (1), which demonstrates potent cellular activity against Pf 3D7 (EC50 = 0.006 µM) and achieves "artemisinin-like" kill kinetics in vitro with a parasite clearance time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant potential for INE963 (1) to provide a curative therapy for uncomplicated malaria with short dosing regimens. For these reasons, INE963 (1) was progressed through GLP toxicology studies and is now undergoing Ph1 clinical trials.
Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antagonistas do Ácido Fólico/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Camundongos , Camundongos SCID , Plasmodium falciparumRESUMO
BACKGROUND: Age-related white matter lesions (WML) are common, impact neuronal connectivity, and affect motor function and cognition. In addition to pathological nigrostriatal losses, WML are also common co-morbidities in Parkinson's disease (PD) that affect postural stability and gait. Automated brain volume measures are increasingly incorporated into the clinical reporting workflow to facilitate precision in medicine. Recently, multi-modal segmentation algorithms have been developed to overcome challenges with WML quantification based on single-modality input. OBJECTIVE: We evaluated WML volumes and their distribution in a case-control cohort of PD patients to predict the domain-specific clinical severity using a fully automated multi-modal segmentation algorithm. METHODS: Fifty-five subjects comprising of twenty PD patients and thirty-five age- and gender-matched control subjects underwent standardized motor/gait and cognitive assessments and brain MRI. Spatially differentiated WML obtained using automated segmentation algorithms on multi-modal MPRAGE and FLAIR images were used to predict domain-specific clinical severity. Preliminary statistical analysis focused on describing the relationship between WML and clinical scores, and the distribution of WML by brain regions. Subsequent stepwise regressions were performed to predict each clinical score using WML volumes in different brain regions, while controlling for age. RESULTS: WML volume strongly correlates with both motor and cognitive dysfunctions in PD patients (p < 0.05), with differential impact in the frontal lobe and periventricular regions on cognitive domains (p < 0.01) and severity of motor deficits (p < 0.01), respectively. CONCLUSION: Automated multi-modal segmentation algorithms may facilitate precision medicine through regional WML load quantification, which show potential as imaging biomarkers for predicting domain-specific disease severity in PD.
Assuntos
Disfunção Cognitiva , Doença de Parkinson , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.
Assuntos
Cinetocoros/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunofenotipagem , Cinetocoros/química , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/química , Relação Estrutura-AtividadeRESUMO
INTRODUCTION: Road traffic accidents (RTAs) in Singapore involving children were evaluated, with particular focus on the epidemiology, surrounding circumstances and outcomes of these accidents. Key factors associated with worse prognosis were identified. We proposed some measures that may be implemented to reduce the frequency and severity of such accidents. METHODS: This was a retrospective study of RTAs involving children aged 0-16 years who presented to the Children's Emergency at KK Women's and Children's Hospital, Singapore, from January 2011 to June 2014. Data was obtained from the National Trauma Registry and analysed in tiers based on the Injury Severity Score (ISS). RESULTS: A total of 1,243 accidents were reviewed. RTA victims included motor vehicle passengers (60.4%), pedestrians (28.5%), cyclists (9.9%) and motorcycle pillion riders (1.2%). The disposition of emergency department (ED) patients was consistent with RTA severity. For serious RTAs, pedestrians accounted for 63.6% and 57.7% of Tier 1 (ISS > 15) and Tier 2 (ISS 9-15) presentations, respectively. Overall use of restraints was worryingly low (36.7%). Not restraining increased the risk of serious RTAs by 8.4 times. Young age, high ISS and low Glasgow Coma Scale score predicted a longer duration of intensive care unit stay. CONCLUSION: The importance of restraints for motor vehicle passengers or helmets for motorcycle pillion riders and cyclists in reducing morbidity requires emphasis. Suggestions for future prevention and intervention include road safety education, regulation of protective restraints, use of speed enforcement devices and creation of transport policies that minimise kerbside parking.
Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Ferimentos e Lesões/epidemiologia , Adolescente , Automóveis , Ciclismo , Criança , Pré-Escolar , Feminino , Dispositivos de Proteção da Cabeça , Humanos , Lactente , Recém-Nascido , Escala de Gravidade do Ferimento , Masculino , Motocicletas , Pedestres , Prognóstico , Sistema de Registros , Estudos Retrospectivos , Índice de Gravidade de Doença , Singapura/epidemiologiaRESUMO
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
RESUMO
Phosphorylation of Pseudomonas aeruginosa lipopolysaccharide (LPS) is important for maintaining outer membrane integrity and intrinsic antibiotic resistance. We solved the crystal structure of the LPS heptose kinase WaaP, which is essential for growth of P. aeruginosa. WaaP was structurally similar to eukaryotic protein kinases and, intriguingly, was complexed with acylated-acyl carrier protein (acyl-ACP). WaaP produced by in vitro transcription-translation was insoluble unless acyl-ACP was present. WaaP variants designed to perturb the acyl-ACP interaction were less stable in cells and exhibited reduced kinase function. Mass spectrometry identified myristyl-ACP as the likely physiological binding partner for WaaP in P. aeruginosa. Together, these results demonstrate that acyl-ACP is required for WaaP protein solubility and kinase function. To the best of our knowledge, this is the first report describing acyl-ACP in the role of a cofactor necessary for the production and stability of a protein partner.
Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , AcilaçãoRESUMO
Dividing attention across two tasks performed simultaneously usually results in impaired performance on one or both tasks. Most studies have found no difference in the dual-task cost of dividing attention in rested and sleep-deprived states. We hypothesized that, for a divided attention task that is highly cognitively-demanding, performance would show greater impairment during exposure to sleep deprivation. A group of 30 healthy males aged 21-30 years was exposed to 40 h of continuous wakefulness in a laboratory setting. Every 2 h, subjects completed a divided attention task comprising 3 blocks in which an auditory Go/No-Go task was 1) performed alone (single task); 2) performed simultaneously with a visual Go/No-Go task (dual task); and 3) performed simultaneously with both a visual Go/No-Go task and a visually-guided motor tracking task (triple task). Performance on all tasks showed substantial deterioration during exposure to sleep deprivation. A significant interaction was observed between task load and time since wake on auditory Go/No-Go task performance, with greater impairment in response times and accuracy during extended wakefulness. Our results suggest that the ability to divide attention between multiple tasks is impaired during exposure to sleep deprivation. These findings have potential implications for occupations that require multi-tasking combined with long work hours and exposure to sleep loss.
Assuntos
Atenção/fisiologia , Privação do Sono/fisiopatologia , Estimulação Acústica , Adulto , Humanos , Masculino , Atividade Motora , Análise e Desempenho de Tarefas , Adulto JovemRESUMO
OBJECTIVE: Delirium is a common post-operative complication associated with significant costs, morbidity, and mortality. We sought sleep/EEG predictors of delirium present prior to delirium symptoms to facilitate developing and targeting therapies. METHODS: Continuous EEG data were obtained in 12 patients post-orthopedic surgery from the day of surgery until delirium assessment on post-operative day 2 (POD2). RESULTS: Diminished total sleep time (r=-0.68; p<0.05) and longer latency to sleep onset (r=0.67; p<0.05) on the first night in the hospital were associated with greater POD2 delirium severity. Patients experiencing delirium slept 2.4h less and took 2h longer to fall asleep. Greater waking EEG delta power (r=0.84; p<0.05) on POD1 and less non-REM sleep EEG delta power (r=-0.72; p<0.05) on night 2 also predicted POD2 delirium severity. CONCLUSIONS: Loss of sleep on night1 post-surgery is an early predictor of subsequent delirium. EEG Delta Power alterations in waking and sleep appear to be later indicators of impending delirium. Further work is needed to evaluate reproducibility/generalizability and assess whether sleep loss contributes to causing delirium. SIGNIFICANCE: This first study to prospectively collect continuous EEG data for an extended period prior to delirium onset identified EEG-derived indices that predict subsequent delirium that could aid in developing and targeting therapies.
Assuntos
Delírio/fisiopatologia , Eletroencefalografia/tendências , Complicações Pós-Operatórias/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Fases do Sono/fisiologia , Idoso , Idoso de 80 Anos ou mais , Delírio/diagnóstico , Delírio/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Ortopédicos/efeitos adversos , Procedimentos Ortopédicos/tendências , Projetos Piloto , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Valor Preditivo dos Testes , Estudos Prospectivos , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Distúrbios do Início e da Manutenção do Sono/epidemiologiaRESUMO
In an effort to identify new antidiabetic agents, we have discovered a novel family of (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine analogues which are inhibitors of human glycogen synthase kinase 3 (GSK3). We developed efficient synthetic routes to explore a wide variety of substitution patterns and convergently access a diverse array of analogues. Compound 1 (CHIR-911, CT-99021, or CHIR-73911) emerged from an exploration of heterocycles at the C-5 position, phenyl groups at C-4, and a variety of differently substituted linker and aminopyridine moieties attached at the C-2 position. These compounds exhibited GSK3 IC50s in the low nanomolar range and excellent selectivity. They activate glycogen synthase in insulin receptor-expressing CHO-IR cells and primary rat hepatocytes. Evaluation of lead compounds 1 and 2 (CHIR-611 or CT-98014) in rodent models of type 2 diabetes revealed that single oral doses lowered hyperglycemia within 60 min, enhanced insulin-stimulated glucose transport, and improved glucose disposal without increasing insulin levels.
Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Quinases da Glicogênio Sintase/antagonistas & inibidores , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Pirimidinas/farmacologia , Animais , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetulus , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinas/química , Pirimidinas/metabolismo , Ratos , Relação Estrutura-AtividadeRESUMO
RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.
Assuntos
Lipídeos/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , PrenilaçãoRESUMO
BACKGROUND: Protein synthesis is tightly regulated and alterations to translation are characteristic of many cancers.Translation regulation is largely exerted at initiation through the eukaryotic translation initiation factor 4 F (eIF4F). eIF4F is pivotal for oncogenic signaling as it integrates mitogenic signals to amplify production of pro-growth and pro-survival factors. Convergence of these signals on eIF4F positions this factor as a gatekeeper of malignant fate. While the oncogenic properties of eIF4F have been characterized, genome-wide evaluation of eIF4F translational output is incomplete yet critical for developing novel translation-targeted therapies. RESULTS: To understand the impact of eIF4F on malignancy, we utilized a genome-wide ribosome profiling approach to identify eIF4F-driven mRNAs in MDA-MB-231 breast cancer cells. Using Silvestrol, a selective eIF4A inhibitor, we identify 284 genes that rely on eIF4A for efficient translation. Our screen confirmed several known eIF4F-dependent genes and identified many unrecognized targets of translation regulation. We show that 5'UTR complexity determines Silvestrol-sensitivity and altering 5'UTR structure modifies translational output. We highlight physiological implications of eIF4A inhibition, providing mechanistic insight into eIF4F pro-oncogenic activity. CONCLUSIONS: Here we describe the transcriptome-wide consequence of eIF4A inhibition in malignant cells, define mRNA features that confer eIF4A dependence, and provide genetic support for Silvestrol's anti-oncogenic properties. Importantly, our results show that eIF4A inhibition alters translation of an mRNA subset distinct from those affected by mTOR-mediated eIF4E inhibition. These results have significant implications for therapeutically targeting translation and underscore a dynamic role for eIF4F in remodeling the proteome toward malignancy.