RESUMO
We performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo. Results from this work revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. Specifically, we identified many "context-specific" regulators of leukemia development. These included the gene encoding the zinc finger protein Phf6. While inactivating mutations in PHF6 are commonly observed in human myeloid and T-cell malignancies, we found that Phf6 suppression in B-cell malignancies impairs tumor progression. Thus, Phf6 is a "lineage-specific" cancer gene that plays opposing roles in developmentally distinct hematopoietic malignancies.
Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Leucemia/genética , Linhagem da Célula , Proliferação de Células/genética , Genoma Humano/genética , Humanos , Leucemia/fisiopatologia , Mutação/genética , RNA Interferente Pequeno/genética , Proteínas RepressorasRESUMO
Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.
Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Humanos , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proteólise/efeitos dos fármacos , Feminino , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêuticoRESUMO
CPT-11 (irinotecan), the first-line chemotherapy for advanced stage colorectal cancer, remains inactive in about half of patients (primary chemoresistance) and almost all initial responders develop secondary resistance after several courses of treatment (8 months on average). Nude mice bearing HT-29 colon cancer xenografts were treated with CPT-11 and/or an NF-κB inhibitor for two courses. We confirm that NF-κB inhibition potentiated CPT-11 anti-tumoural effect after the first course of treatment. However, tumours grew again at the end of the second course of treatment, generating resistant tumours. We observed an increase in the basal NF-κB activation in resistant tumours and in two resistant sublines, either obtained from resistant HT-29 tumours (HT-29R cells) or generated in vitro (RSN cells). The decrease of NF-κB activation in HT-29R and RSN cells by stable transfections with the super-repressor form of IκBα augmented their sensitivity to CPT-11. Comparing gene expression profiles of HT-29 and HT-29R cells, we identified the S100A10/Annexin A2 complex and calpain 2 as over-expressed potential NF-κB inducers. SiRNA silencing of calpain 2 but not of S100A10 and/or annexin A2, resulted in a decrease in NF-κB activation, an increase in cellular levels of IκBα and a partial restoration of the CPT-11 sensitivity in both HT-29R and RSN cells, suggesting that calpain 2-dependent IκBα degradation mediates CPT-11 secondary resistance. Thus, targeted therapies directed against calpain 2 may represent a novel strategy to enhance the anti-cancer efficacy of CPT-11.
Assuntos
Antineoplásicos/farmacologia , Calpaína/metabolismo , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas I-kappa B/metabolismo , Animais , Anexina A2/genética , Anexina A2/metabolismo , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas I-kappa B/antagonistas & inibidores , Irinotecano , Camundongos , Camundongos Endogâmicos , Camundongos Nus , NF-kappa B/biossíntese , Transplante de Neoplasias , Pirimidinas/farmacologia , Proteínas S100/genética , Proteínas S100/metabolismo , Transfecção , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O2 3%) and mesenchymal stromal cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs, induction of differentiation, and selective impairment of LSCs. We refined our niche-like culture by including plasma-like amino-acid and cytokine concentrations identified by targeted metabolomics and proteomics of primary AML bone marrow plasma samples. Systematic interrogation revealed distinct contributions of each niche-like component to leukemic outgrowth and drug response. Short-term niche-like culture preserved clonal architecture and transcriptional states of primary leukemic cells. In a cohort of 45 AML samples enriched for NPM1c AML, the niche-like multiparametric assay could predict morphologically (p = 0.02) and molecular (NPM1c MRD, p = 0.04) response to anthracycline-cytarabine induction chemotherapy. In this cohort, a 23-drug screen nominated ruxolitinib as a sensitizer to anthracycline-cytarabine. This finding was validated in an NPM1c PDX model.
Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Antraciclinas/metabolismo , Antraciclinas/uso terapêutico , Citarabina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismoRESUMO
Selinexor is a first-in-class inhibitor of the nuclear exportin XPO1 that was recently approved by the US Food and Drug Administration for the treatment of multiple myeloma and diffuse large B-cell lymphoma. In relapsed/refractory acute myeloid leukemia (AML), selinexor has shown promising activity, suggesting that selinexor-based combination therapies may have clinical potential. Here, motivated by the hypothesis that selinexor's nuclear sequestration of diverse substrates imposes pleiotropic fitness effects on AML cells, we systematically catalog the pro- and anti-fitness consequences of selinexor treatment. We discover that selinexor activates PI3Kγ-dependent AKT signaling in AML by upregulating the purinergic receptor P2RY2. Inhibiting this axis potentiates the anti-leukemic effects of selinexor in AML cell lines, patient-derived primary cultures and multiple mouse models of AML. In a syngeneic, MLL-AF9-driven mouse model of AML, treatment with selinexor and ipatasertib outperforms both standard-of-care chemotherapy and chemotherapy with selinexor. Together, these findings establish drug-induced P2RY2-AKT signaling as an actionable consequence of XPO1 inhibition in AML.
Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Carioferinas/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estados Unidos , Proteína Exportina 1RESUMO
By querying metabolic pathways associated with leukemic stemness and survival in multiple AML datasets, we nominated SLC7A11 encoding the xCT cystine importer as a putative AML dependency. Genetic and chemical inhibition of SLC7A11 impaired the viability and clonogenic capacity of AML cell lines in a cysteine-dependent manner. Sulfasalazine, a broadly available drug with xCT inhibitory activity, had anti-leukemic activity against primary AML samples in ex vivo cultures. Multiple metabolic pathways were impacted upon xCT inhibition, resulting in depletion of glutathione pools in leukemic cells and oxidative stress-dependent cell death, only in part through ferroptosis. Higher expression of cysteine metabolism genes and greater cystine dependency was noted in NPM1-mutated AMLs. Among eight anti-leukemic drugs, the anthracycline daunorubicin was identified as the top synergistic agent in combination with sulfasalazine in vitro. Addition of sulfasalazine at a clinically relevant concentration significantly augmented the anti-leukemic activity of a daunorubicin-cytarabine combination in a panel of 45 primary samples enriched in NPM1-mutated AML. These results were confirmed in vivo in a patient-derived xenograft model. Collectively, our results nominate cystine import as a druggable target in AML and raise the possibility to repurpose sulfasalazine for the treatment of AML, notably in combination with chemotherapy.
Assuntos
Cistina , Leucemia Mieloide Aguda , Linhagem Celular Tumoral , Cisteína , Cistina/metabolismo , Cistina/uso terapêutico , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêuticoRESUMO
The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.
Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Adenosina Trifosfatases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Reparo do DNA , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Proteína com ValosinaRESUMO
Deciphering the impact of metabolic intervention on response to anticancer therapy may elucidate a path toward improved clinical responses. Here, we identify amino acid-related pathways connected to the folate cycle whose activation predicts sensitivity to MYC-targeting therapies in acute myeloid leukemia (AML). We establish that folate restriction and deficiency of the rate-limiting folate cycle enzyme MTHFR, which exhibits reduced-function polymorphisms in about 10% of Caucasians, induce resistance to MYC targeting by BET and CDK7 inhibitors in cell lines, primary patient samples, and syngeneic mouse models of AML. Furthermore, this effect is abrogated by supplementation with the MTHFR enzymatic product CH3-THF. Mechanistically, folate cycle disturbance reduces H3K27/K9 histone methylation and activates a SPI1 transcriptional program counteracting the effect of BET inhibition. Our data provide a rationale for screening MTHFR polymorphisms and folate cycle status to nominate patients most likely to benefit from MYC-targeting therapies. SIGNIFICANCE: Although MYC-targeting therapies represent a promising strategy for cancer treatment, evidence of predictors of sensitivity to these agents is limited. We pinpoint that folate cycle disturbance and frequent polymorphisms associated with reduced MTHFR activity promote resistance to BET inhibitors. CH3-THF supplementation thus represents a low-risk intervention to enhance their effects.See related commentary by Marando and Huntly, p. 1791.This article is highlighted in the In This Issue feature, p. 1775.
Assuntos
Ácido Fólico/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/biossíntese , Células U937RESUMO
Although cells are a part of the whole organism, classical dogma emphasizes that individual cells function autonomously. Many physiological and pathological conditions, including cancer, and metabolic and neurodegenerative diseases, have been considered mechanistically as cell-autonomous pathologies, meaning those that damage or defect within a selective population of affected cells suffice to produce disease. It is becoming clear, however, that cells and cellular processes cannot be considered in isolation. Best known for shuttling cytoplasmic content to the lysosome for degradation and repurposing of recycled building blocks such as amino acids, nucleotides, and fatty acids, autophagy serves a housekeeping function in every cell and plays key roles in cell development, immunity, tissue remodeling, and homeostasis with the surrounding environment and the distant organs. In this review, we underscore the importance of taking interactions with the microenvironment into consideration while addressing the cell autonomous and non-autonomous functions of autophagy between cells of the same and different types and in physiological and pathophysiological situations.
Assuntos
Autofagia/fisiologia , Animais , Autofagia/genética , Citoplasma/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Neoplasias/genética , Neoplasias/metabolismoRESUMO
Expression of the MECOM (also known as EVI1) proto-oncogene is deregulated by chromosomal translocations in some cases of acute myeloid leukemia (AML) and is associated with poor clinical outcome. Here, through transcriptomic and metabolomic profiling of hematopoietic cells, we reveal that EVI1 overexpression alters cellular metabolism. A screen using pooled short hairpin RNAs (shRNAs) identified the ATP-buffering, mitochondrial creatine kinase CKMT1 as necessary for survival of EVI1-expressing cells in subjects with EVI1-positive AML. EVI1 promotes CKMT1 expression by repressing the myeloid differentiation regulator RUNX1. Suppression of arginine-creatine metabolism by CKMT1-directed shRNAs or by the small molecule cyclocreatine selectively decreased the viability, promoted the cell cycle arrest and apoptosis of human EVI1-positive cell lines, and prolonged survival in both orthotopic xenograft models and mouse models of primary AML. CKMT1 inhibition altered mitochondrial respiration and ATP production, an effect that was abrogated by phosphocreatine-mediated reactivation of the arginine-creatine pathway. Targeting CKMT1 is thus a promising therapeutic strategy for this EVI1-driven AML subtype that is highly resistant to current treatment regimens.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Creatina Quinase/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Leucemia Mieloide Aguda/genética , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Simulação por Computador , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Creatina Quinase/metabolismo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Leucemia Mieloide Aguda/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1 , Masculino , Redes e Vias Metabólicas , Metabolômica , Pessoa de Meia-Idade , Mitocôndrias , Proto-Oncogene Mas , RNA Interferente PequenoRESUMO
Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML.
Assuntos
Ciclo do Ácido Cítrico , Regulação Enzimológica da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/epidemiologia , Meteniltetra-Hidrofolato Cicloidrolase/biossíntese , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HL-60 , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Meteniltetra-Hidrofolato Cicloidrolase/genética , Camundongos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/genética , Células U937RESUMO
Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM.
Assuntos
Mieloma Múltiplo/etiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Hipergamaglobulinemia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/terapia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Sindecana-1/análise , Proteína bcl-X/fisiologiaRESUMO
Disruption of the endothelial barrier by tumour-derived secreted factors is a critical step in cancer cell extravasation and metastasis. Here, by comparative proteomic analysis of melanoma secretomes, we identify the matricellular protein SPARC as a novel tumour-derived vascular permeability factor. SPARC deficiency abrogates tumour-initiated permeability of lung capillaries and prevents extravasation, whereas SPARC overexpression enhances vascular leakiness, extravasation and lung metastasis. SPARC-induced paracellular permeability is dependent on the endothelial VCAM1 receptor and p38 MAPK signalling. Blocking VCAM1 impedes melanoma-induced endothelial permeability and extravasation. The clinical relevance of our findings is highlighted by high levels of SPARC detected in tumour from human pulmonary melanoma lesions. Our study establishes tumour-produced SPARC and VCAM1 as regulators of cancer extravasation, revealing a novel targetable interaction for prevention of metastasis.
Assuntos
Endotélio Vascular/metabolismo , Melanoma/metabolismo , Metástase Neoplásica , Osteonectina/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Permeabilidade Capilar , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/secundário , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Camundongos Nus , Comunicação ParácrinaRESUMO
Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer pathogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via direct binding. Highly activated SYK is predominantly found in FLT3-ITD positive AML and cooperates with FLT3-ITD to activate MYC transcriptional programs. FLT3-ITD AML cells are more vulnerable to SYK suppression than FLT3 wild-type counterparts. In a FLT3-ITD in vivo model, SYK is indispensable for myeloproliferative disease (MPD) development, and SYK overexpression promotes overt transformation to AML and resistance to FLT3-ITD-targeted therapy.
Assuntos
Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Fluoruracila/farmacologia , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Quinase Syk , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismoRESUMO
Although p62/SQSTM1 was initially identified as an essential mediator of NFκB signaling, several recent studies have also highlighted its important role at the crossroad between the mTOR or MAPK signaling pathways and selective autophagy. The p62 structure containing important interaction domains attests to the ability of this protein to regulate and modulate the activation of these signaling pathways during tumor formation and propagation. The second very important function of this protein is to act as a molecular adaptor between the autophagic machinery and its substrates. Consequently, p62 is degraded following an increase in autophagic flux for which this protein currently serves as an indicator. However, the measurement of p62 expression strictly as a marker of autophagic flux is still controversial and can be misinterpreted mainly because this protein is subject to complex regulation at both the transcriptional and post-translational levels. Finally, because p62 is an autophagic substrate, it acts as a molecular link between cancer and autophagy by conferring a high level of selectivity through the degradation of important signaling molecules.
RESUMO
Chronic myelogenous leukemia (CML) is a cytogenetic disorder resulting from the expression of p210BCR-ABL. Imatinib, an inhibitor of BCR-ABL, has emerged as the leading compound to treat CML patients. Despite encouraging clinical results, resistance to imatinib represents a major drawback for therapy, as a substantial proportion of patients are refractory to this treatment. Recent publications have described the existence of a small cancer cell population with the potential to exhibit the phenotypic switch responsible for chemoresistance. To investigate the existence of such a chemoresistant cellular subpopulation in CML, we used a two-step approach of pulse and continuous selection by imatinib in different CML cell lines that allowed the emergence of a subpopulation of adherent cells (IM-R Adh) displaying an epithelial-mesenchymal transition (EMT)-like phenotype. Overexpression of several EMT markers was observed in this CML subpopulation, as well as in CD34(+) CML primary cells from patients who responded poorly to imatinib treatment. In response to imatinib, this CD44(high)/CD24(low) IM-R Adh subpopulation exhibited increased adhesion, transmigration and invasion in vitro and in vivo through specific overexpression of the αVß3 receptor. FAK/Akt pathway activation following integrin ß3 (ITGß3) engagement mediated the migration and invasion of IM-R Adh cells, whereas persistent activation of ERK counteracted BCR-ABL inhibition by imatinib, promoting cell adhesion-mediated resistance.
Assuntos
Benzamidas/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mesoderma/efeitos dos fármacos , Mesoderma/patologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Integrina alfaVbeta3/metabolismo , Camundongos , FenótipoRESUMO
During progression of melanoma, malignant melanocytes can be reprogrammed into mesenchymal-like cells through a process similar to epithelial-mesenchymal transition (EMT), which is associated with downregulation of the junctional protein E-cadherin and acquisition of a migratory phenotype. Recent evidence supports a role for SLUG, a transcriptional repressor of E-cadherin, as a melanocyte lineage transcription factor that predisposes to melanoma metastasis. However, the signals responsible for SLUG expression in melanoma are unclear and its role in the invasive phenotype is not fully elucidated. Here, we report that SLUG expression and activation is driven by SPARC (also known as osteonectin), a secreted extracellular matrix-associated factor that promotes EMT-like changes. Ectopic expression or knockdown of SPARC resulted in increased or reduced expression of SLUG, respectively. SLUG increase occurred concomitantly with SPARC-mediated downregulation of E-cadherin and P-cadherin, and induction of mesenchymal traits in human melanocytes and melanoma cells. Pharmacological blockade of PI3 kinase/AKT signaling impeded SPARC-induced SLUG levels and cell migration, whereas adenoviral introduction of constitutively active AKT allowed rescue of SLUG and migratory capabilities of SPARC knockdown cells. We also observed that pharmacological inhibition of oncogenic BRAF(V600E) using PLX4720 did not influence SLUG expression in melanoma cells harboring BRAF(V600E). Furthermore, SLUG is a bona fide transcriptional repressor of E-cadherin as well as a regulator of P-cadherin in melanoma cells and its knockdown attenuated invasive behavior and blocked SPARC-enhanced cell migration. Notably, inhibition of cell migration in SPARC-depleted cells was rescued by expression of a SLUG transgene. In freshly isolated metastatic melanoma cells, a positive association between SPARC and SLUG mRNA levels was also found. These findings reveal that autocrine SPARC maintains heightened SLUG expression in melanoma cells and indicate that SPARC may promote EMT-associated tumor invasion by supporting AKT-dependent upregulation of SLUG.
Assuntos
Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Melanócitos/metabolismo , Melanoma/patologia , Invasividade Neoplásica , Osteonectina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição da Família Snail , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genéticaRESUMO
Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, belongs to the family of matricellular proteins that modulate cell-matrix interactions and cellular functions. SPARC is highly expressed in melanoma, and we reported that SPARC promotes epithelial/mesenchymal-like changes and cell migration. Here, we used siRNA and conditional shRNA to investigate the contribution of tumor-derived SPARC to melanoma cell growth in vitro and in vivo. We found that depletion of SPARC induces G2/M cell cycle arrest and tumor growth inhibition with activation of p53 and induction of p21(Cip1/Waf1) acting as a checkpoint, preventing efficient mitotic progression. In addition, we demonstrate that reduced mesenchymal features and the invasive potential of SPARC-silenced cells are independent of p21(Cip1/Waf1) induction and cell cycle arrest. Importantly, overexpression of SPARC reduces p53 protein levels and leads to an increase in cell number during exponential growth. Our findings indicate that in addition to its well-known function as a mediator of melanoma cell migration and tumor-host interactions, SPARC regulates, in a cell-autonomous manner, cell cycle progression and proliferation through the p53/p21(Cip1/Waf1) pathway.
Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Melanoma/patologia , Osteonectina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Fase G2 , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Mitose , Modelos Biológicos , Invasividade Neoplásica , Osteonectina/genética , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mitotic catastrophe (MC) is induced when stressed cells enter prematurely or inappropriately into mitosis and can be caused by ionizing radiation and anticancer drugs. Foretinib is a multikinase inhibitor whose mechanism of action is incompletely understood. We investigated here the effect of Foretinib on chronic myelogenous leukemia (CML) cell lines either sensitive (IM-S) or resistant (IM-R) to the tyrosine kinase inhibitor Imatinib. Foretinib decreased viability and clonogenic potential of IM-S and IM-R CML cells as well. Foretinib-treated cells exhibited increased size, spindle assembly checkpoint anomalies and enhanced ploidy that collectively evoked mitotic catastrophe (MC). Accordingly, Foretinib-stimulated CML cells displayed decreased expression of Cdk1, Cyclin B1 and Plk1. In addition, Foretinib triggered caspase-2 activation that precedes mitochondrial membrane permeabilization. Accordingly, z-VAD-fmk and a caspase-2 siRNA abolished Foretinib-mediated cell death but failed to affect MC, indicating that Foretinib-mediated apoptosis and MC are two independent events. Anisomycin, a JNK activator, impaired Foretinib-induced MC and inhibition or knockdown of JNK phenotyped its effect on MC. Moreover, we found that Foretinib acted as a potent inhibitor of JNK. Importantly, Foretinib exhibited no or very little effect on normal peripheral blood mononuclear cells, monocytes or melanocytes cells but efficiently inhibited the clonogenic potential of CD34+ cell from CML patients. Collectively, our data show that the multikinase inhibitor Foretinib induces MC in CML cells and other cell lines via JNK-dependent inhibition of Plk1 expression and triggered apoptosis by a caspase 2-mediated mechanism. This unusual mechanism of action may have important implications for the treatment of cancer.
Assuntos
Anilidas/farmacologia , Morte Celular , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Anisomicina/farmacologia , Antígenos CD34/metabolismo , Antineoplásicos/farmacologia , Benzamidas , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Inibidores de Caspase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Tamanho Celular , Sobrevivência Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Ativação Enzimática , Ensaios Enzimáticos , Humanos , Mesilato de Imatinib , Células K562/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Mitose/efeitos dos fármacos , Fenótipo , Piperazinas/farmacologia , Ploidias , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção , Quinase 1 Polo-LikeRESUMO
Autophagy that is induced by starvation or cellular stress can enable cancer cell survival by sustaining energy homeostasis and eliminating damaged organelles and proteins. In response to stress, cancer cells have been reported to accumulate the protein p62/SQSTM1 (p62), but its role in the regulation of autophagy is controversial. Here, we report that the plant phytoalexin resveratrol (RSV) triggers autophagy in imatinib-sensitive and imatinib-resistant chronic myelogenous leukemia (CML) cells via JNK-dependent accumulation of p62. JNK inhibition or p62 knockdown prevented RSV-mediated autophagy and antileukemic effects. RSV also stimulated AMPK, thereby inhibiting the mTOR pathway. AMPK knockdown or mTOR overexpression impaired RSV-induced autophagy but not JNK activation. Lastly, p62 expression and autophagy in CD34+ progenitors from patients with CML was induced by RSV, and disrupting autophagy protected CD34+ CML cells from RSV-mediated cell death. We concluded that RSV triggered autophagic cell death in CML cells via both JNK-mediated p62 overexpression and AMPK activation. Our findings show that the JNK and AMPK pathways can cooperate to eliminate CML cells via autophagy.