Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(12): e0065222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35652665

RESUMO

Chitin is a biopolymer of N-acetyl-d-glucosamine with ß-1,4-bond and is the main component of arthropod exoskeletons and the cell walls of many fungi. Chitinase (EC 3.2.1.14) is an enzyme that hydrolyzes the ß-1,4-bond in chitin and degrades chitin into oligomers. It has been found in a wide range of organisms. Chitinase from Gazyumaru (Ficus microcarpa) latex exhibits antifungal activity by degrading chitin in the cell wall of fungi and is expected to be used in medical and agricultural fields. However, the enzyme's thermostability is an important factor; chitinase is not thermostable enough to maintain its activity under the actual application conditions. In addition to the fact that thermostable chitinases exhibiting antifungal activity can be used under various conditions, they have some advantages for the production process and long-term preservation, which are highly demanded in industrial use. We solved the crystal structure of chitinase to explore the target sites to improve its thermostability. We rationally introduced proline residues, a disulfide bond, and salt bridges in the chitinase using protein-engineering methods based on the crystal structure and sequence alignment among other chitinases. As a result, we successfully constructed the thermostable mutant chitinases rationally with high antifungal and specific activities. The results provide a useful strategy to enhance the thermostability of this enzyme family. IMPORTANCE We solved the crystal structure of the chitinase from Gazyumaru (Ficus microcarpa) latex exhibiting antifungal activity. Furthermore, we demonstrated that the thermostable mutant enzyme with a melting temperature (Tm) 6.9°C higher than wild type (WT) and a half-life at 60°C that is 15 times longer than WT was constructed through 10 amino acid substitutions, including 5 proline residues substitutions, making disulfide bonding, and building a salt bridge network in the enzyme. These mutations do not affect its high antifungal activity and chitinase activity, and the principle for the construction of the thermostable chitinase was well explained by its crystal structure. Our results provide a useful strategy to enhance the thermostability of this enzyme family and to use the thermostable mutant as a seed for antifungal agents for practical use.


Assuntos
Antifúngicos , Quitinases , Antifúngicos/química , Quitina/química , Quitinases/química , Dissulfetos , Estabilidade Enzimática , Ficus/enzimologia , Fungos , Látex , Prolina
2.
Biochem Biophys Res Commun ; 521(1): 106-112, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635803

RESUMO

Mitogen-activated protein kinase kinase 4 (MAP2K4) plays a critical role in regulating the stress-activated protein kinase signaling cascade. A small angle X-ray scattering experiment, a powerful technique for analyzing a solution structure cleared from the structural artifacts due to crystal packing, provided the ensemble structures of human non-phosphorylated MAP2K4 in three states involving the apo form, the binary complex with an ATP analogue, and the ternary complex with the ATP analogue and substrate peptide. These ensemble structures provided more detailed mechanisms for regulating MAP2K4 in addition to those delineated only by the crystal structures in three states.


Assuntos
MAP Quinase Quinase 4/análise , MAP Quinase Quinase 4/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Biochem Biophys Res Commun ; 493(1): 313-317, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28890347

RESUMO

Mitogen-activated protein kinase kinase 7 (MAP2K7) regulates stress and inflammatory responses, and is an attractive drug discovery target for several diseases including arthritis and cardiac hypertrophy. Intracellular proteins such as MAP2K7 are prone to aggregation due to cysteine-driven oxidation in in vitro experiments. MAP2K7 instability due to the four free cysteine residues on the molecular surface abrogated the crystal growth and led to a low-resolution structure with large residual errors. To acquire a higher resolution structure for promoting rational drug discovery, we explored stable mutants of MAP2K7 by replacing the surface cysteine residues, Cys147, Cys218, Cys276 and Cys296. Single-site mutations, except for Cys147, maintained the specific activity and increased the protein yield, while all the multi-site mutations massively reduced the activity. The C218S mutation drastically augmented the protein production and crystallographic resolution. Furthermore, the C218S crystals grown under microgravity in a space environment yielded a 1.3 Å resolution structure, providing novel insights for drug discovery: the precisely assigned water molecules in the active site, the double conformations in the flexible region and the C-terminal extension bound to the N-terminal region of the adjacent molecules. The latter insight is likely to promote the production of allosteric MAP2K7 inhibitors.


Assuntos
MAP Quinase Quinase 7/química , MAP Quinase Quinase 7/ultraestrutura , Regulação Alostérica , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
4.
Biochemistry ; 55(31): 4399-409, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27410423

RESUMO

The glycoside hydrolase family 11 xylanase has been utilized in a wide variety of industrial applications, from food processing to kraft pulp bleaching. Thermostability enhances the economic value of industrial enzymes by making them more robust. Recently, we determined the crystal structure of an endo-ß-1,4-xylanase (GH11) from mesophilic Talaromyces cellulolyticus, named XylC. Ligand-free XylC exists to two conformations (open and closed forms). We found that the "closed" structure possessed an unstable region within the N-terminal region far from the active site. In this study, we designed the thermostable xylanase by the structure-based site-directed mutagenesis on the N-terminal region. In total, nine mutations (S35C, N44H, Y61M, T62C, N63L, D65P, N66G, T101P, and S102N) and an introduced disulfide bond of the enzyme contributed to the improvement in thermostability. By combining the mutations, we succeeded in constructing a mutant for which the melting temperature was partially additively increased by >20 °C (measured by differential scanning calorimetry) and the activity was additively enhanced at elevated temperatures, without loss of the original specific activity. The crystal structure of the most thermostable mutant was determined at 2.0 Å resolution to elucidate the structural basis of thermostability. From the crystal structure of the mutant, it was revealed that the formation of a disulfide bond induces new C-C contacts and a conformational change in the N-terminus. The resulting induced conformational change in the N-terminus is key for stabilizing this region and for constructing thermostable mutants without compromising the activity.


Assuntos
Endo-1,4-beta-Xilanases/química , Proteínas Fúngicas/química , Talaromyces/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Temperatura Alta , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Termodinâmica
5.
Biochemistry ; 55(4): 724-32, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26739254

RESUMO

Bacillus sp. TB-90 urate oxidase (BTUO) is one of the most thermostable homotetrameric enzymes. We previously reported [Hibi, T., et al. (2014) Biochemistry 53, 3879-3888] that specific binding of a sulfate anion induced thermostabilization of the enzyme, because the bound sulfate formed a salt bridge with two Arg298 residues, which stabilized the packing between two ß-barrel dimers. To extensively characterize the sulfate-binding site, Arg298 was substituted with cysteine by site-directed mutagenesis. This substitution markedly increased the protein melting temperature by ∼ 20 °C compared with that of the wild-type enzyme, which was canceled by reduction with dithiothreitol. Calorimetric analysis of the thermal denaturation suggested that the hyperstabilization resulted from suppression of the dissociation of the tetramer into the two homodimers. The crystal structure of R298C at 2.05 Å resolution revealed distinct disulfide bond formation between the symmetrically related subunits via Cys298, although the Cß distance between Arg298 residues of the wild-type enzyme (5.4 Å apart) was too large to predict stable formation of an engineered disulfide cross-link. Disulfide bonding was associated with local disordering of interface loop II (residues 277-300), which suggested that the structural plasticity of the loop allowed hyperstabilization by disulfide formation. Another conformational change in the C-terminal region led to intersubunit hydrogen bonding between Arg7 and Asp312, which probably promoted mutant thermostability. Knowledge of the disulfide linkage of flexible loops at the subunit interface will help in the development of new strategies for enhancing the thermostabilization of multimeric proteins.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Dissulfetos/química , Multimerização Proteica , Urato Oxidase/química , Substituição de Aminoácidos , Bacillus/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Estabilidade Enzimática , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Urato Oxidase/genética
6.
Mol Microbiol ; 95(2): 245-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25388514

RESUMO

MocR/GabR family proteins are widely distributed prokaryotic transcriptional regulators containing pyridoxal 5'-phosphate (PLP), a coenzyme form of vitamin B6. The Bacillus subtilis GabR, probably the most extensively studied MocR/GabR family protein, consists of an N-terminal DNA-binding domain and a PLP-binding C-terminal domain that has a structure homologous to aminotransferases. GabR suppresses transcription of gabR and activates transcription of gabT and gabD, which encode γ-aminobutyrate (GΑΒΑ) aminotransferase and succinate semialdehyde dehydrogenase, respectively, in the presence of PLP and GABA. In this study, we examined the mechanism underlying GabR-mediated gabTD transcription with spectroscopic, crystallographic and thermodynamic studies, focusing on the function of the aminotransferase domain. Spectroscopic studies revealed that GABA forms an external aldimine with the PLP in the aminotransferase domain. Isothermal calorimetry demonstrated that two GabR molecules bind to the 51-bp DNA fragment that contains the GabR-binding region. GABA minimally affected ΔG(binding) upon binding of GabR to the DNA fragment but greatly affected the contributions of ΔH and ΔS to ΔG(binding). GABA forms an external aldimine with PLP and causes a conformational change in the aminotransferase domain, and this change likely rearranges GabR binding to the promoter and thus activates gabTD transcription.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transaminases/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Fosfato de Piridoxal/metabolismo , Transaminases/química , Fatores de Transcrição/genética , Transcrição Gênica , Ácido gama-Aminobutírico/metabolismo
7.
Biosci Biotechnol Biochem ; 79(10): 1603-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011511

RESUMO

We extracted collagen from moon jellyfish under neutral pH conditions and analyzed its amino acid composition, secondary structure, and thermal stability. The content of hydroxyproline was 4.3%, which is lower than that of other collagens. Secondary structure analysis using circular dichroism (CD) showed a typical collagen helix. The thermal stability of this collagen at pH 3.0 was lower than those from fish scale and pig skin, which also correlates closely with jellyfish collagen having lower hydroxyproline content. Because the solubility of jellyfish collagen used in this study at neutral pH was quite high, it was possible to analyze its structural and physical properties under physiological conditions. Thermodynamic analysis using CD and differential scanning calorimetry showed that the thermal stability at pH 7.5 was higher than at pH 3.0, possibly due to electrostatic interactions. During the process of unfolding, fibrillation would occur only at neutral pH.


Assuntos
Aminoácidos/análise , Colágeno/química , Hidroxiprolina/análise , Cifozoários/química , Animais , Colágeno/isolamento & purificação , Temperatura Alta , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Solubilidade , Eletricidade Estática , Termodinâmica
8.
Biochemistry ; 53(24): 3879-888, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24897238

RESUMO

The optimal activity of Bacillus sp. TB-90 urate oxidase (BTUO) is 45 °C, but this enzyme is one of the most thermostable urate oxidases. A marked increase (>10 °C) in its thermal stability is induced by high concentrations (0.8­1.2 M) of sodium sulfate. Calorimetric measurements and size exclusion chromatographic analyses suggested that sulfate-induced thermal stabilization is related to the binding of a sulfate anion that repressed the dissociation of BTUO tetramers into dimers. To determine the sulfate binding site, the crystal structure was determined at 1.75 Å resolution. The bound sulfate anion was found at the subunit interface of the symmetrical related subunits and formed a salt bridge with two Arg298 residues in the flexible loop that is involved in subunit assembly. Site-directed mutagenesis of Arg298 to Glu was used to extensively characterize the sulfate binding site at the subunit interface. The network of charged hydrogen bonds via the bound sulfate is suggested to contribute significantly to the thermal stabilization of both subunit dimers and the tetrameric assembly of BTUO. Knowledge of the mechanism of salt-induced stabilization will help to develop new strategies for enhancing protein thermal stabilization.


Assuntos
Sulfatos/farmacologia , Urato Oxidase/química , Arginina/química , Bacillus/enzimologia , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Cristalografia por Raios X , Estabilidade Enzimática , Cinética , Modelos Moleculares , Urato Oxidase/genética , Urato Oxidase/isolamento & purificação
9.
J Biomol NMR ; 55(1): 19-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23224986

RESUMO

Chemical modification is an easy way for stable isotope labeling of non-labeled proteins. The reductive (13)C-methylation of the amino group of the lysine side-chain by (13)C-formaldehyde is a post-modification and is applicable to most proteins since this chemical modification specifically and quickly proceeds under mild conditions such as 4 °C, pH 6.8, overnight. (13)C-methylation has been used for NMR to study the interactions between the methylated proteins and various molecules, such as small ligands, nucleic acids and peptides. Here we applied lysine (13)C-methylation NMR to monitor protein-protein interactions. The affinity and the intermolecular interaction sites of methylated ubiquitin with three ubiquitin-interacting proteins were successfully determined using chemical-shift perturbation experiments via the (1)H-(13)C HSQC spectra of the (13)C-methylated-lysine methyl groups. The lysine (13)C-methylation NMR results also emphasized the importance of the usage of side-chain signals to monitor the intermolecular interaction sites, and was applicable to studying samples with concentrations in the low sub-micromolar range.


Assuntos
Isótopos de Carbono/química , Lisina/química , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Endopeptidases/química , Endopeptidases/metabolismo , Humanos , Metilação , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo
10.
Arch Biochem Biophys ; 537(2): 225-32, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23896514

RESUMO

The side-chain conformations of amino acids in the hydrophobic core are important for protein folding and function. A previous NMR study has shown that a mutant protein of transcriptional activator c-Myb, I155L/I181L R3, has multiple conformations and increased fluctuation in comparison with the wild type. To elucidate the quantitative correlation of structural fluctuation with stability and function, we analyzed the thermodynamic effects of I155L and I181L mutations, using R2R3 that encompasses the minimum specific DNA-binding region. Circular dichroism and differential scanning calorimetry measurements showed that the mutation of I155L had little effect on stability, while the I181L mutation significantly destabilized the protein. It is noteworthy that the decreased stability resulting from the I181L mutation was mainly due to decreased enthalpy change, which is partially compensated by decreased entropy change. Isothermal titration calorimetry measurements showed that the specific DNA-binding affinity was decreased owing to the I181L mutation, which was due to decreased binding entropy change. Entropy in the folded state, which corresponds to the DNA-free state, increases due to the I181L mutation because of the increased conformational fluctuation observed in I155L/I181L mutant of R2R3 by CLEANEX-PM NMR analysis, which in turn results in decreased folding entropy and DNA-binding entropy changes.


Assuntos
DNA/química , DNA/ultraestrutura , Proteínas Proto-Oncogênicas c-myb/química , Proteínas Proto-Oncogênicas c-myb/ultraestrutura , Sítios de Ligação , Transferência de Energia , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-myb/genética , Relação Estrutura-Atividade , Termodinâmica
11.
Biochem J ; 446(2): 279-89, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22677050

RESUMO

L-PGDS [lipocalin-type PG (prostaglandin) D synthase] is a multi-functional protein, acting as a PGD2-producing enzyme and a lipid-transporter. In the present study, we focus on the function of L-PGDS as an extracellular transporter for small lipophilic molecules. We characterize the binding mechanism of human L-PGDS for the molecules, especially binding affinity stoichiometry and driving force, using tryptophan fluorescence quenching, ICD (induced circular dichroism) and ITC (isothermal titration calorimetry). The tryptophan fluorescence quenching measurements revealed that haem metabolites such as haemin, biliverdin and bilirubin bind to L-PGDS with significantly higher affinities than the other small lipophilic ligands examined, showing dissociation constant (K(d)) values from 17.0 to 20.9 nM. We focused particularly on the extra-specificities of haem metabolites and L-PGDS. The ITC and ICD data revealed that two molecules of the haem metabolites bind to L-PGDS with high and low affinities, showing K(d) values from 2.8 to 18.1 nM and from 0.209 to 1.63 µM respectively. The thermodynamic parameters for the interactions revealed that the contributions of enthalpy and entropy change were considerably different for each haem metabolite even when the Gibbs energy change was the same. Thus we believe that the binding energy of haem metabolites to L-PGDS is optimized by balancing enthalpy and entropy change.


Assuntos
Bilirrubina/metabolismo , Biliverdina/metabolismo , Hemina/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Modelos Moleculares , Substituição de Aminoácidos , Bilirrubina/química , Biliverdina/química , Hemina/química , Temperatura Alta , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxirredutases Intramoleculares/genética , Cinética , Ligantes , Lipocalinas/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Termodinâmica
12.
Biochemistry ; 51(42): 8410-21, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23020677

RESUMO

Intracellular proteins can have free cysteines that may contribute to their structure, function, and stability; however, free cysteines can lead to chemical instabilities in solution because of oxidation-driven aggregation. The MAP kinase, c-Jun N-terminal kinase 1 (JNK1), possesses seven free cysteines and is an important drug target for autoimmune diseases, cancers, and apoptosis-related diseases. To characterize the role of cysteine residues in the structure, function, and stability of JNK1, we prepared and evaluated wild-type JNK1 and seven cysteine-deficient JNK1 proteins. The nonreduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments showed that the chemical stability of JNK1 increased as the number of cysteines decreased. The contribution of each cysteine residue to biological function and thermal stability was highly susceptible to the environment surrounding the particular cysteine mutation. The mutations of solvent-exposed cysteine to serine did not influence biological function and increased the thermal stability. The mutation of the accessible cysteine involved in the hydrophobic pocket did not affect biological function, although a moderate thermal destabilization was observed. Cysteines in the loosely assembled hydrophobic environment moderately contributed to thermal stability, and the mutations of these cysteines had a negligible effect on enzyme activity. The other cysteines are involved in the tightly filled hydrophobic core, and mutation of these residues was found to correlate with thermal stability and enzyme activity. These findings about the role of cysteine residues should allow us to obtain a stable JNK1 and thus promote the discovery of potent JNK1 inhibitors.


Assuntos
Cisteína/deficiência , Estabilidade Enzimática/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/genética , Sequência de Aminoácidos , Cristalização , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Humanos , Proteína Quinase 8 Ativada por Mitógeno/química , Conformação Proteica , Relação Estrutura-Atividade
13.
J Biol Chem ; 285(17): 12961-70, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20178991

RESUMO

Oxysterol-binding protein (OSBP), a cytosolic receptor of cholesterol and oxysterols, is recruited to the endoplasmic reticulum by binding to the cytoplasmic major sperm protein (MSP) domain of integral endoplasmic reticulum protein VAMP-associated protein-A (VAP-A), a process essential for the stimulation of sphingomyelin synthesis by 25-hydroxycholesterol. To delineate the interaction mechanism between VAP-A and OSBP, we determined the complex structure between the VAP-A MSP domain (VAP-A(MSP)) and the OSBP fragment containing a VAP-A binding motif FFAT (OSBP(F)) by NMR. This solution structure explained that five of six conserved residues in the FFAT motif are required for the stable complex formation, and three of five, including three critical intermolecular electrostatic interactions, were not explained before. By combining NMR relaxation and titration, isothermal titration calorimetry, and mutagenesis experiments with structural information, we further elucidated the detailed roles of the FFAT motif and underlying motions of VAP-A(MSP), OSBP(F), and the complex. Our results show that OSBP(F) is disordered in the free state, and VAP-A(MSP) and OSBP(F) form a final complex by means of intermediates, where electrostatic interactions through acidic residues, including an acid patch preceding the FFAT motif, probably play a collective role. Additionally, we report that the mutation that causes the familial motor neuron disease decreases the stability of the MSP domain.


Assuntos
Complexos Multiproteicos/química , Peptídeos/química , Receptores de Esteroides/química , Proteínas de Transporte Vesicular/química , Motivos de Aminoácidos , Humanos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese , Mutação , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Eletricidade Estática , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Mol Cell Biochem ; 356(1-2): 97-105, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21735094

RESUMO

The detailed understanding of the molecular features of a ligand binding to a target protein, facilitates the successful design of potent and selective inhibitors. We present a case study of ATP-competitive kinase inhibitors that include a pyradine moiety. These compounds have similar chemical structure, except for distinct terminal hydrophobic cyclopentyl or isopropyl groups, and block kinase activity of casein kinase 2 subunit α (CK2α), which is a target for several diseases, such as cancer and glomerulonephritis. Although these compounds display similar inhibitory potency against CK2α, the crystal structures reveal that the cyclopentyl derivative gains more favorable interactions compared with the isopropyl derivative, because of the additional ethylene moiety. The structural observations and biological data are consistent with the thermodynamic profiles of these inhibitors in binding to CK2α, revealing that the enthalpic advantage of the cyclopentyl derivative is accompanied with a lower entropic loss. Computational analyses indicated that the relative enthalpic gain of the cyclopentyl derivative arises from an enhancement of a wide range of van der Waals interactions from the whole complex. Conversely, the relative entropy loss of the cyclopentyl derivative arises from a decrease in the molecular fluctuation and higher conformational restriction in the active site of CK2α. These structural insights, in combination with thermodynamic and computational observations, should be helpful in developing potent and selective CK2α inhibitors.


Assuntos
Caseína Quinase II/metabolismo , Ciclopentanos/química , Pentanos/química , Inibidores de Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Colorimetria , Cristalografia por Raios X , Descoberta de Drogas , Entropia , Humanos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
15.
Bioorg Med Chem Lett ; 21(10): 3021-4, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21463942

RESUMO

Bimolecular fluorescence complementation (BiFC) assay has been used widely to visualize protein-protein interactions in cells. However, there is a problem that fluorescent protein fragments have an ability to associate with each other independent of an interaction between proteins fused to the fragments. To facilitate the BiFC assay, we have attempted to determine the structure and characteristics of reassembled fluorescent protein, Venus. The anion-exchange chromatography showed an oligomer and a monomer of reassembled Venus. Our results suggested that the oligomer was formed by ß-strands swapping without any serious steric clashes and was converted to the monomer. Crystal structure of reassembled Venus had an 11-stranded ß-barrel fold, typical of GFP-derived fluorescent proteins. Based on the structural features, we have mutated to ß-strand 7 and measured T(m) values. The results have revealed that the mutation influences the thermal stability of reassembled fluorescent complex.


Assuntos
Corantes Fluorescentes/química , Proteínas Luminescentes/química , Cristalografia por Raios X , Modelos Moleculares
16.
Biochemistry ; 48(42): 10129-35, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19780551

RESUMO

The P2 phage virion has tail spike proteins beneath the baseplate and uses them to adsorb to the outer membrane of Escherichia coli during the infection process. Previous immunoelectron microscopic studies suggested that the tail spikes are composed of the gene V product (gpV); however, experimental evidence of its membrane binding activity has yet to be reported. In this study, we purified and characterized recombinant full-length gpV and its C-terminal domain. Limited chymotrypsin proteolysis of gpV produced a C-terminal domain composed of Ser86-Leu211. Our experiments demonstrated that the N- and C-terminal domains have very different melting temperatures: 50 and 74 degrees C, respectively. We also found that gpV binds the E. coli membrane via its C-terminal domain. We conclude that the C-terminal domain of gpV is a stable trimer and serves as the receptor-binding domain for the second step in the phage adsorption process.


Assuntos
Bacteriófago P2/metabolismo , Proteínas Estruturais Virais/química , Proteínas da Cauda Viral/química , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peso Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Temperatura , Proteínas Estruturais Virais/metabolismo , Proteínas da Cauda Viral/metabolismo
17.
J Pharm Sci ; 107(11): 2965-2967, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30017886

RESUMO

We have here observed that the differential scanning calorimetry profiles and melting temperatures of a humanized antibody were unchanged over a 10-year span when stored at 4°C and at different pH values, even at pH 2.7. This is somewhat surprising, as this particular antibody undergoes conformational changes below pH 4.0. Differential scanning calorimetry analysis showed that melting of the antibody at pH 2.7 was highly reversible, suggesting a possibility that the observed reversibility is at least in part responsible for a 10-year stability at low pH. Conversely, it showed thermal unfolding followed by aggregation at higher pH.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos/química , Desdobramento de Proteína , Animais , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Agregados Proteicos , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Temperatura
18.
Proteins ; 66(4): 954-62, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17154421

RESUMO

Exposure of antibodies to low pH is often unavoidable for purification and viral clearance. The conformation and stability of two humanized monoclonal antibodies (hIgG4-A and -B) directed against different antigens and a mouse monoclonal antibody (mIgG1) in 0.1M citrate at acidic pH were studied using circular dichroism (CD), differential scanning calorimetry (DSC), and sedimentation velocity. Near- and far-UV CD spectra showed that exposure of these antibodies to pH 2.7-3.9 induced only limited conformational changes, although the changes were greater at the lower pH. However, the acid conformation is far from unfolded or so-called molten globule structure. Incubation of hIgG4-A at pH 2.7 and 3.5 at 4 degrees C over the course of 24 h caused little change in the near-UV CD spectra, indicating that the acid conformation is stable. Sedimentation velocity showed that the hIgG4-A is largely monomeric at pH 2.7 and 3.5 as well as at pH 6.0. No time-dependent changes in sedimentation profile occurred upon incubation at these low pHs, consistent with the conformational stability observed by CD. The sedimentation coefficient of the monomer at pH 2.7 or 3.5 again suggested that no gross conformational changes occur at these pHs. DSC analysis of the antibodies showed thermal unfolding at pH 2.7-3.9 as well as at pH 6.0, but with decreased melting temperatures at the lower pH. These results are consistent with the view that the antibodies undergo limited conformational change, and that incubation at 4 degrees C at low pH results in no time-dependent conformational changes. Titration of hIgG4-A from pH 3.5 to 6.0 resulted in recovery of native monomeric proteins whose CD and DSC profiles resembled those of the original sample. However, titration from pH 2.7 resulted in lower recovery of monomeric antibody, indicating that the greater conformational changes observed at this pH cannot be fully reversed to the native structure by a simple pH titration.


Assuntos
Ácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Animais , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Conformação Proteica , Temperatura , Titulometria
19.
Comp Biochem Physiol B Biochem Mol Biol ; 146(3): 427-37, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17258918

RESUMO

The lengths of simple repeat sequences are generally unstable or polymorphic (highly variable with respect to the numbers of tandem repeats). Previously we have isolated a family of minisatellite DNA (GenBank accession AF422186) that appears specifically and abundantly in the genome of yellow fin sea bream Acanthopagrus latus but not in closely-related red sea bream Pagrus major, and found that the numbers of tandem arrays in the homologous loci are polymorphic. This means that the minisatellite sequence has appeared and propagated in A. latus genome after speciation. In order to understand what makes the minisatellite widespread within the A. latus genome and what causes the polymorphic nature of the number of tandem repeats, the structural features of single-stranded polynucleotides were analyzed by electrophoresis, chemical modification, circular dichroism (CD), differential scanning calorimetry (DSC) and electron microscopy. The results suggest that a portion of the repeat unit forms a stable minihairpin structure, and it can cause polymerase pausing within the minisatellite DNA.


Assuntos
DNA Satélite/química , Repetições Minissatélites , Dourada/genética , Animais , Sequência de Bases , Dicroísmo Circular , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , Instabilidade de Microssatélites , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Reação em Cadeia da Polimerase , Taq Polimerase , Temperatura
20.
Mol Immunol ; 85: 130-136, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28249223

RESUMO

Immune response to T-cell-dependent antigens is highly dynamic; several B-cell clones responsible for antibody production appear alternately during immunization. It was previously shown that at least two-types of antibodies are secreted after immunization with (4-hydroxy-3-nitrophenyl)acetyl (NP); one has Tyr and another has Gly at position 95 of the heavy chain (referred to as Tyr95- and Gly95-type). The former appeared at an early stage, while the latter appeared at a late stage, i.e., after secondary immunization, although Fv domains of these antibodies were encoded by same genes of variable heavy and light chains. We examined whether any biophysical properties of antigen-combing sites relate to this shift in B-cell clones by preparing single-chain Fv (scFv). Thermodynamic and kinetic parameters of the interaction of scFv with various haptens are in accordance with those of intact antibodies, indicating that scFvs are appropriate models for the study on structure and function of antibodies. Next, we measured thermal stability of scFvs using differential scanning calorimetry and found that the apparent melting temperature of free Tyr95-type was 64-66°C,while that of Gly95-type was 47-48°C, indicating that the latter was highly unstable. However, Gly95-type greatly gained thermal stability because of hapten binding. We discussed the relationship between thermal stability resulted by hapten binding and dynamism of antibody response during immunization.


Assuntos
Afinidade de Anticorpos/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Receptores de Antígenos de Linfócitos B/química , Anticorpos de Cadeia Única/química , Animais , Sítios de Ligação de Anticorpos/imunologia , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Glicina/química , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cinética , Nitrofenóis/imunologia , Fenilacetatos/imunologia , Estabilidade Proteica , Receptores de Antígenos de Linfócitos B/imunologia , Anticorpos de Cadeia Única/imunologia , Ressonância de Plasmônio de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA