Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(5): 2179-2182, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34580868

RESUMO

BACKGROUND: The use of rapeseed protein for human nutrition is primarily limited by its strong bitterness, which is why the key bitter compound, kaempferol 3-O-(2‴-O-sinapoyl-ß-sophoroside), is enzymatically degraded. RESULTS: Mass spectrometry analyses of an extract from an untreated rapeseed protein isolate gave three signals for m/z 815 [M-H]. The predominant compound among the three compounds was confirmed as kaempferol-3-O-(2‴-O-sinapoyl-ß-sophoroside). Enzymatic hydrolysis of this key bitter compound was achieved using a sinapyl ester cleaving side activity of a ferulic acid esterase (FAE) from the basidiomycete Schizophyllum commune (ScoFAE). Recombinant ferulic acid esterases from Streptomyces werraensis (SwFAE) and from Pleurotus eryngii (PeFAE) possessed better cleavage activity towards methyl sinapate but did not hydrolyze the sinapyl ester linkage of the bitter kaempferol sophoroside. CONCLUSION: Kaempferol-3-O-(2‴-O-sinapoyl-ß-sophoroside) was successfully degraded by enzymatic treatment with ScoFAE, which may provide a means to move the status of rapeseed protein from feed additive to food ingredient. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica napus , Brassica rapa , Humanos , Hidrólise , Quempferóis , Paladar
2.
Foods ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34441551

RESUMO

The vegetable watercress (Nasturtium officinale R.Br.) is, besides being a generally nutritious food, a rich source of glucosinolates. Gluconasturtiin, the predominant glucosinolate in watercress, has been shown to have several health beneficial properties through its bioactive breakdown product phenethyl isothiocyanate. Little is known about the immunoregulatory effects of watercress. Moreover, anti-inflammatory effects have mostly been shown in in vitro or in animal models. Hence, we conducted a proof-of-concept study to investigate the effects of watercress on the human immune system. In a cross-over intervention study, 19 healthy subjects (26.5 ± 4.3 years; 14 males, 5 females) were given a single dose (85 g) of fresh self-grown watercress or a control meal. Two hours later, a 30 min high-intensity workout was conducted to promote exercise-induced inflammation. Blood samples were drawn before, 5 min after, and 3 h after the exercise unit. Inflammatory blood markers (IL-1ß, IL-6, IL-10, TNF-α, MCP-1, MMP-9) were analyzed in whole blood cultures after ex vivo immune cell stimulation via lipopolysaccharides. A mild pro-inflammatory reaction was observed after watercress consumption indicated by an increase in IL-1ß, IL-6, and TNF-α, whereas the immune response was more pronounced for both pro-inflammatory and anti-inflammatory markers (IL-1ß, IL-6, IL-10, TNF-α) after the exercise unit compared to the control meal. During the recovery phase, watercress consumption led to a stronger anti-inflammatory downregulation of the pro-inflammatory cytokines IL-6 and TNF-α. In conclusion, we propose that watercress causes a stronger pro-inflammatory response and anti-inflammatory counter-regulation during and after exercise. The clinical relevance of these changes should be verified in future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA