Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ther Drug Monit ; 43(3): 408-415, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32925658

RESUMO

BACKGROUND: High-dose methotrexate is used for treating several types of cancer. However, it is associated with a high risk of acute kidney injury (AKI), especially in patients with high MTX concentrations. Although therapeutic drug monitoring is performed to monitor MTX concentrations, it is unclear what concentration should be considered critical, thus requiring rescue protocols to prevent nephrotoxicity. METHODS: Patients treated with high-dose methotrexate for lymphoma or acute lymphoblastic leukemia and those benefited from therapeutic drug monitoring were included. The relationship between MTX concentrations and the presence or absence of AKI was assessed. MTX concentrations were analyzed using a population pharmacokinetic approach. Specific attention was given to morphological covariates because MTX doses are individualized according to body surface area (BSA). RESULTS: In total, 328 patients and 657 cycles of treatment were analyzed. Higher MTX concentrations were observed in the AKI+ group. For cycle 1, all patients showing an MTX concentration >6 µM at 36 hours or >2 µM at 48 hours after infusion developed nephrotoxicity. The final pharmacokinetic model had 2 compartments and included the effect of age on clearance (CL) and of body weight on peripheral distribution volume. None of the morphological covariates tested on CL led to significant improvement in the model. Higher MTX concentrations were observed in patients with extreme BSA values (≥2 m2) or body mass index (≥25 kg/m2). Patients with AKI who received at least 1 cycle had higher BSA and BMI. CONCLUSIONS: The results from this study provide additional information on the relationship between MTX concentration and nephrotoxicity. Patients with a plasma MTX concentration >6 µM at 36 hours were more likely to manifest AKI. In addition, the results suggest that overweight patients have a high AKI risk and that BSA-based adjustment of MTX dose is not appropriate.


Assuntos
Antimetabólitos Antineoplásicos , Superfície Corporal , Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Injúria Renal Aguda/induzido quimicamente , Adulto , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Humanos , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Sobrepeso , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
2.
Clin Pharmacol Ther ; 110(1): 220-228, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33539551

RESUMO

Ibrutinib is indicated for the treatment of chronic lymphocytic leukemia (CLL). Absolute lymphocyte count (ALC) is a clinical criterion used for the monitoring of CLL. Ibrutinib has several effects on lymphocytes, and has highly variable pharmacokinetics (PK). The objective of this work was to build a PK-pharmacodynamic (PD) model describing ALC dynamics under ibrutinib treatment in patients with CLL. ALC observations before and after ibrutinib treatment initiation in patients with CLL were included in the analysis. A population PK-PD model was developed based on physio-pharmacological knowledge. Individual PK concentrations at each hospital visit were included in the model. The association between PD parameters and lymphocytosis, and between PD parameters and response to treatment were assessed. A total of 94 patients, 658 ALC and 1,501 PK observations were included in model development. The final PK-PD model accurately described ALC dynamics for different patient profiles. It consisted in two compartments (tissues and blood circulation) with ibrutinib plasmatic concentration inducing two drug effects: stimulation of lymphocyte redistribution and death. Patients with hyperlymphocytosis had significantly higher tissues to circulation baseline lymphocyte count ratio, and lower death effect. Patients who progressed under ibrutinib had significantly lower baseline lymphocyte counts in tissues (2-fold lower) and blood (3-fold lower). The first PK-PD model for ALC in patients with CLL under ibrutinib treatment was developed. This model suggests that estimated lymphocyte counts in tissues and blood could be used as an early predictor of response in patients with CLL.


Assuntos
Adenina/análogos & derivados , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Modelos Biológicos , Piperidinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Adenina/administração & dosagem , Adenina/farmacocinética , Adenina/farmacologia , Adulto , Idoso , Feminino , Humanos , Contagem de Linfócitos , Linfócitos/citologia , Linfocitose/etiologia , Masculino , Pessoa de Meia-Idade , Piperidinas/farmacocinética , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento
3.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670575

RESUMO

Therapeutic drug monitoring of ibrutinib is based on the area under the curve of concentration vs. time (AUCIBRU) instead of trough concentration (Cmin,ss) because of a limited accumulation in plasma. Our objective was to identify a limited sampling strategy (LSS) to estimate AUCIBRU associated with Bayesian estimation. The actual AUCIBRU of 85 patients was determined by the Bayesian analysis of the full pharmacokinetic profile of ibrutinib concentrations (pre-dose T0 and 0.5, 1, 2, 4 and 6 h post-dose) and experimental AUCIBRU were derived considering combinations of one to four sampling times. The T0-1-2-4 design was the most accurate LSS (root-mean-square error RMSE = 11.0%), and three-point strategies removing the 1 h or 2 h points (RMSE = 22.7% and 14.5%, respectively) also showed good accuracy. The correlation between the actual AUCIBRU and Cmin,ss was poor (r2 = 0.25). The joint analysis of dihydrodiol-ibrutinib metabolite concentrations did not improve the predictive performance of AUCIBRU. These results were confirmed in a prospective validation cohort (n = 27 patients). At least three samples, within the pre-dose and 4 h post-dose period, are necessary to estimate ibrutinib exposure accurately.

4.
Clin Pharmacokinet ; 59(9): 1171-1183, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32328976

RESUMO

BACKGROUND AND OBJECTIVE: Ibrutinib is used for the treatment of chronic lymphocytic leukemia and other lymphoid malignancies. The aim of this work is to develop a population pharmacokinetic model for ibrutinib and its dihydrodiol metabolite to quantify pharmacokinetic inter- and intra-individual variability, to evaluate the impact of several covariates on ibrutinib pharmacokinetic parameters, and to examine the relationship between exposure and clinical outcome. METHODS: Patients treated with ibrutinib were included in the study and followed up for 2 years. Pharmacokinetic blood samples were taken from months 1 to 12 after inclusion. Ibrutinib and dihydrodiol-ibrutinib concentrations were assessed using ultra-performance liquid chromatography tandem mass spectrometry. A population pharmacokinetic model was developed using NONMEM version 7.4. RESULTS: A total of 89 patients and 1501 plasma concentrations were included in the pharmacokinetic analysis. The best model consisted in two compartments for each molecule. Absorption was described by a sequential zero first-order process and a lag time. Ibrutinib was either metabolised into dihydrodiol-ibrutinib or excreted through other elimination routes. A link between the dosing compartment and the dihydrodiol-ibrutinib central compartment was added to assess for high first-pass hepatic metabolism. Ibrutinib clearance had 67% and 47% inter- and intra-individual variability, respectively, while dihydrodiol-ibrutinib clearance had 51% and 26% inter- and intra-individual variability, respectively. Observed ibrutinib exposure is significantly higher in patients carrying one copy of the cytochrome P450 3A4*22 variant (1167 ng.h/mL vs 743 ng.h/mL, respectively, p = 0.024). However, no covariates with a clinically relevant effect on ibrutinib or dihydrodiol-ibrutinib exposure were identified in the PK model. An external evaluation of the model was performed. Clinical outcome was expressed as the continuation or discontinuation of ibrutinib therapy 1 year after treatment initiation. Patients who had treatment discontinuation because of toxicity had significantly higher ibrutinib area under the curve (p = 0.047). No association was found between cessation of therapy due to disease progression and ibrutinib area under the curve in patients with chronic lymphocytic leukemia. For the seven patients with mantle cell lymphoma studied, an association trend was observed between disease progression and low exposure to ibrutinib. CONCLUSIONS: We present the first population pharmacokinetic model describing ibrutinib and dihydrodiol-ibrutinib concentrations simultaneously. Large inter-individual variability and substantial intra-individual variability were estimated and could not be explained by any covariate. Higher plasma exposure to ibrutinib is associated with cessation of therapy due to the occurrence of adverse events within the first year of treatment. The association between disease progression and ibrutinib exposure in patients with mantle cell lymphoma should be further investigated. TRIAL REGISTRATION: ClinicalTrials.gov no. NCT02824159.


Assuntos
Adenina/análogos & derivados , Leucemia Linfocítica Crônica de Células B , Piperidinas/farmacocinética , Adenina/farmacocinética , Adulto , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Naftalenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA