Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Psychiatry ; 28(3): 1303-1311, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36474000

RESUMO

Brain network dysfunction is increasingly recognised in Alzheimer's disease (AD). However, the causes of brain connectivity disruption are still poorly understood. Recently, neuroinflammation has been identified as an important factor in AD pathogenesis. Microglia participate in the construction and maintenance of healthy neuronal networks, but pro-inflammatory microglia can also damage these circuits. We hypothesised that microglial activation is independently associated with brain connectivity disruption in AD. We performed a cross-sectional multimodal imaging study and interrogated the relationship between imaging biomarkers of neuroinflammation, Aß deposition, brain connectivity and cognition. 42 participants (12 Aß-positive MCI, 14 Aß-positive AD and 16 Aß-negative healthy controls) were recruited. Participants had 11C-PBR28 and 18F-flutemetamol PET to quantify Aß deposition and microglial activation, T1-weighted, diffusion tensor and resting-state functional MRI to assess structural network and functional network. 11C-PBR28 uptake, structural network integrity and functional network orgnisation were compared across diagnostic groups and the relationship between neuroinflammation and brain network was tested in 26 Aß-positive patients. Increased 11C-PBR28 uptake, decreased FA, network small-worldness and local efficiency were observed in AD patients. Cortical 11C-PBR28 uptake correlated negatively with structural integrity (standardised ß = -0.375, p = 0.037) and network local efficiency (standardised ß = -0.468, p < 0.001), independent of cortical thickness and Aß deposition, while Aß was not. Network structural integrity, small-worldness and local efficiency, and cortical thickness were positively associated with cognition. Our findings suggest cortical neuroinflammation coincide with structural and functional network disruption independent of Aß and cortical atrophy. These findings link the brain connectivity change and pathological process in Alzheimer's disease, and suggest a pathway from neuroinflammation to systemic brain dysfunction.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo
2.
Mol Psychiatry ; 27(4): 2019-2029, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35125495

RESUMO

Post mortem neuropathology suggests that astrocyte reactivity may play a significant role in neurodegeneration in Alzheimer's disease. We explored this in vivo using multimodal PET and MRI imaging. Twenty subjects (11 older, cognitively impaired patients and 9 age-matched healthy controls) underwent brain scanning using the novel reactive astrocyte PET tracer 11C-BU99008, 18F-FDG and 18F-florbetaben PET, and T1-weighted MRI. Differences between cognitively impaired patients and healthy controls in regional and voxel-wise levels of astrocyte reactivity, glucose metabolism, grey matter volume and amyloid load were explored, and their relationship to each other was assessed using Biological Parametric Mapping (BPM). Amyloid beta (Aß)-positive patients showed greater 11C-BU99008 uptake compared to controls, except in the temporal lobe, whilst further increased 11C-BU99008 uptake was observed in Mild Cognitive Impairment subjects compared to those with Alzheimer's disease in the frontal, temporal and cingulate cortices. BPM correlations revealed that regions which showed reduced 11C-BU99008 uptake in Aß-positive patients compared to controls, such as the temporal lobe, also showed reduced 18F-FDG uptake and grey matter volume, although the correlations with 18F-FDG uptake were not replicated in the ROI analysis. BPM analysis also revealed a regionally-dynamic relationship between astrocyte reactivity and amyloid uptake: increased amyloid load in cortical association areas of the temporal lobe and cingulate cortices was associated with reduced 11C-BU99008 uptake, whilst increased amyloid uptake in primary motor and sensory areas (in which amyloid deposition occurs later) was associated with increased 11C-BU99008 uptake. These novel observations add to the hypothesis that while astrocyte reactivity may be triggered by early Aß-deposition, sustained pro-inflammatory astrocyte reactivity with greater amyloid deposition may lead to astrocyte dystrophy and amyloid-associated neuropathology such as grey matter atrophy and glucose hypometabolism, although the evidence for glucose hypometabolism here is less strong.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Substância Cinzenta/metabolismo , Humanos , Imidazóis , Indóis , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos
3.
J Pathol ; 257(2): 198-217, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35107828

RESUMO

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Megacariócitos , Plexo Mientérico , Neurônios
4.
Acta Neuropathol ; 143(1): 75-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767070

RESUMO

To better define roles that astrocytes and microglia play in Alzheimer's disease (AD), we used single-nuclei RNA-sequencing to comprehensively characterise transcriptomes in astrocyte and microglia nuclei selectively enriched during isolation post-mortem from neuropathologically defined AD and control brains with a range of amyloid-beta and phospho-tau (pTau) pathology. Significant differences in glial gene expression (including AD risk genes expressed in both the astrocytes [CLU, MEF2C, IQCK] and microglia [APOE, MS4A6A, PILRA]) were correlated with tissue amyloid or pTau expression. The differentially expressed genes were distinct between with the two cell types and pathologies, although common (but cell-type specific) gene sets were enriched with both pathologies in each cell type. Astrocytes showed enrichment for proteostatic, inflammatory and metal ion homeostasis pathways. Pathways for phagocytosis, inflammation and proteostasis were enriched in microglia and perivascular macrophages with greater tissue amyloid, but IL1-related pathway enrichment was found specifically in association with pTau. We also found distinguishable sub-clusters in the astrocytes and microglia characterised by transcriptional signatures related to either homeostatic functions or disease pathology. Gene co-expression analyses revealed potential functional associations of soluble biomarkers of AD in astrocytes (CLU) and microglia (GPNMB). Our work highlights responses of both astrocytes and microglia for pathological protein clearance and inflammation, as well as glial transcriptional diversity in AD.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/metabolismo , Encéfalo/patologia , Microglia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Transcriptoma
5.
Mol Psychiatry ; 26(10): 5848-5855, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34267329

RESUMO

11C-BU99008 is a novel positron emission tomography (PET) tracer that enables selective imaging of astrocyte reactivity in vivo. To explore astrocyte reactivity associated with Alzheimer's disease, 11 older, cognitively impaired (CI) subjects and 9 age-matched healthy controls (HC) underwent 3T magnetic resonance imaging (MRI), 18F-florbetaben and 11C-BU99008 PET. The 8 amyloid (Aß)-positive CI subjects had higher 11C-BU99008 uptake relative to HC across the whole brain, but particularly in frontal, temporal, medial temporal and occipital lobes. Biological parametric mapping demonstrated a positive voxel-wise neuroanatomical correlation between 11C-BU99008 and 18F-florbetaben. Autoradiography using 3H-BU99008 with post-mortem Alzheimer's brains confirmed through visual assessment that increased 3H-BU99008 binding localised with the astrocyte protein glial fibrillary acid protein and was not displaced by PiB or florbetaben. This proof-of-concept study provides direct evidence that 11C-BU99008 can measure in vivo astrocyte reactivity in people with late-life cognitive impairment and Alzheimer's disease. Our results confirm that increased astrocyte reactivity is found particularly in cortical regions with high Aß load. Future studies now can explore how clinical expression of disease varies with astrocyte reactivity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Astrócitos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imidazóis , Indóis , Tomografia por Emissão de Pósitrons
6.
J Neuropsychiatry Clin Neurosci ; 34(2): 168-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34961331

RESUMO

OBJECTIVE: Up to one-third of patients with Parkinson's disease (PD) experience visual hallucinations (VHs). Lewy bodies are sparse in the visual cortices and seem unlikely to explain the hallucinations. Some neuroimaging studies have found that perfusion is reduced in the occipital lobe in individuals with VHs. Recent work has suggested that decreased cholinergic input may directly lead to the decreased perfusion. The investigators hypothesized that individuals with PD and VHs would have biochemical evidence of reduced microvascular perfusion and reduced cholinergic activity in areas of the brain that process visual images. METHODS: Tissue from Brodmann's area (BA) 18 and BA 19 was obtained from a well-characterized cohort matched for age, gender, and postmortem interval in 69 individuals (PD without VHs, N=11; PD without dementia plus VHs N=10, N=10; PD with dementia plus VHs, N=16; and control subjects, N=32). Von Willebrand factor, vascular endothelial growth factor A, and myelin-associated glycoprotein:proteolipid protein-1 (MAG:PLP1) ratio-a measure of tissue oxygenation relative to metabolic demand, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), choline acetyltransferase, and α-synuclein-were quantified by enzyme-linked immunosorbent assay. The primary outcome was the MAG:PLP1 ratio. RESULTS: There was no biochemical evidence of chronic hypoperfusion in PD, although microvessel density was decreased in ventral BA 18 and BA 19. There was no between-group difference in BChE in either dorsal BA 18 or BA 19. AChE concentration was reduced in individuals with PD compared with control subjects in dorsal and ventral BA 18 and dorsal BA 19, and it was increased in ventral BA 19. These changes were most marked in the PD plus VHs group. CONCLUSIONS: These results suggest that changes in cholinergic activity rather than chronic hypoperfusion may underlie VHs in PD.


Assuntos
Demência , Doença de Parkinson , Córtex Visual , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Colinérgicos/metabolismo , Alucinações/etiologia , Alucinações/metabolismo , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Córtex Visual/diagnóstico por imagem , Córtex Visual/metabolismo
7.
Brain ; 144(1): 70-91, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33454735

RESUMO

The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomechanical forces and patterns of white matter injuries, associated with persistent diffusion MRI abnormalities, is poorly understood. This limits the ability to predict the severity of head injuries and the design of appropriate protection. Our previously developed human finite element model of head injury predicted the location of post-traumatic neurodegeneration. A similar rat model now allows us to experimentally test whether strain patterns calculated by the model predicts in vivo MRI and histology changes. Using a controlled cortical impact, mild and moderate injuries (1 and 2 mm) were performed. Focal and axonal injuries were quantified with volumetric and diffusion 9.4 T MRI at 2 weeks post injury. Detailed analysis of the corpus callosum was conducted using multi-shell diffusion MRI and histopathology. Microglia and astrocyte density, including process parameters, along with white matter structural integrity and neurofilament expression were determined by quantitative immunohistochemistry. Linear mixed effects regression analyses for strain and strain rate with the employed outcome measures were used to ascertain how well immediate biomechanics could explain MRI and histology changes. The spatial pattern of mechanical strain and strain rate in the injured cortex shows good agreement with the probability maps of focal lesions derived from volumetric MRI. Diffusion metrics showed abnormalities in the corpus callosum, indicating white matter changes in the segments subjected to high strain, as predicted by the model. The same segments also exhibited a severity-dependent increase in glia cell density, white matter thinning and reduced neurofilament expression. Linear mixed effects regression analyses showed that mechanical strain and strain rate were significant predictors of in vivo MRI and histology changes. Specifically, strain and strain rate respectively explained 33% and 28% of the reduction in fractional anisotropy, 51% and 29% of the change in neurofilament expression and 51% and 30% of microglia density changes. The work provides evidence that strain and strain rate in the first milliseconds after injury are important factors in determining patterns of glial and axonal injury and serve as experimental validators of our computational model of traumatic brain injury. Our results provide support for the use of this model in understanding the relationship of biomechanics and neuropathology and can guide the development of head protection systems, such as airbags and helmets.


Assuntos
Axônios/patologia , Fenômenos Biomecânicos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Modelos Neurológicos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Animais , Astrócitos/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Análise de Elementos Finitos , Masculino , Microglia/patologia , Ratos Sprague-Dawley
8.
Brain ; 144(5): 1526-1541, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34148071

RESUMO

Alzheimer's disease, characterized by brain deposits of amyloid-ß plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-ß levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-ß and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-ß load, due to increased clearance and degradation of amyloid-ß by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Anexina A1/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Permeabilidade Capilar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
9.
Neuropathol Appl Neurobiol ; 47(7): 1080-1091, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33969516

RESUMO

AIMS: Growing evidence suggests a shared pathogenesis between Parkinson's disease and diabetes although the underlying mechanisms remain unknown. The aim of this study was to evaluate the effect of type 2 diabetes on Parkinson's disease progression and to correlate neuropathological findings to elucidate pathogenic mechanisms. METHODS: In this cohort study, medical records were retrospectively reviewed of cases with pathologically confirmed Parkinson's disease with and without pre-existing type 2 diabetes. Time to disability milestones (recurrent falls, wheelchair dependence, dementia and care home placement) and survival were compared to assess disease progression and their risk estimated using Cox hazard regression models. Correlation with pathological data was performed, including quantification of α-synuclein in key brain regions and staging of vascular, Lewy and Alzheimer's pathologies. RESULTS: Patients with PD and diabetes (male 76%; age at death 78.6 ± 6.2 years) developed earlier falls (p < 0.001), wheelchair dependence (p = 0.004), dementia (p < 0.001), care home admission (p < 0.001) and had reduced survival (p < 0.001). Predating diabetes was independently associated with a two to three-fold increase in the risk of disability and death. Neuropathological assessment did not show any differences in global or regional vascular pathology, α-synuclein load in key brain areas, staging of Lewy pathology or Alzheimer's disease pathology. CONCLUSIONS: Pre-existing type 2 diabetes contributes to faster disease progression and reduced survival in Parkinson's disease which is not driven by increased vascular, Lewy or Alzheimer's pathologies. Additional non-specific neurodegeneration related to chronic brain insulin resistance may be involved.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Tipo 2/complicações , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Doença de Parkinson/complicações , Doença de Parkinson/patologia
10.
Acta Neuropathol ; 142(3): 449-474, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34309761

RESUMO

Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular "window" of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


Assuntos
Perfilação da Expressão Gênica/métodos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , Patologia Molecular/métodos , Idoso , Processamento Alternativo , Doença de Alzheimer , Bancos de Espécimes Biológicos , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Giro do Cíngulo/patologia , Humanos , Corpos de Lewy/patologia , Microglia/patologia , Microglia/ultraestrutura , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/ultraestrutura , Doença de Parkinson , RNA/genética , Transcriptoma
11.
Acta Neuropathol ; 141(2): 159-172, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33399945

RESUMO

Currently, the neuropathological diagnosis of Lewy body disease (LBD) may be stated according to several staging systems, which include the Braak Lewy body stages (Braak), the consensus criteria by McKeith and colleagues (McKeith), the modified McKeith system by Leverenz and colleagues (Leverenz), and the Unified Staging System by Beach and colleagues (Beach). All of these systems use semi-quantitative scoring (4- or 5-tier scales) of Lewy pathology (LP; i.e., Lewy bodies and Lewy neurites) in defined cortical and subcortical areas. While these systems are widely used, some suffer from low inter-rater reliability and/or an inability to unequivocally classify all cases with LP. To address these limitations, we devised a new system, the LP consensus criteria (LPC), which is based on the McKeith system, but applies a dichotomous approach for the scoring of LP (i.e., "absent" vs. "present") and includes amygdala-predominant and olfactory-only stages. α-Synuclein-stained slides from brainstem, limbic system, neocortex, and olfactory bulb from a total of 34 cases with LP provided by the Newcastle Brain Tissue Resource (NBTR) and the University of Pennsylvania brain bank (UPBB) were scanned and assessed by 16 raters, who provided diagnostic categories for each case according to Braak, McKeith, Leverenz, Beach, and LPC systems. In addition, using LP scores available from neuropathological reports of LP cases from UPBB (n = 202) and NBTR (n = 134), JT (UPBB) and JA (NBTR) assigned categories according to all staging systems to these cases. McKeith, Leverenz, and LPC systems reached good (Krippendorff's α ≈ 0.6), while both Braak and Beach systems had lower (Krippendorff's α ≈ 0.4) inter-rater reliability, respectively. Using the LPC system, all cases could be unequivocally classified by the majority of raters, which was also seen for 97.1% when the Beach system was used. However, a considerable proportion of cases could not be classified when using Leverenz (11.8%), McKeith (26.5%), or Braak (29.4%) systems. The category of neocortical LP according to the LPC system was associated with a 5.9 OR (p < 0.0001) of dementia in the 134 NBTR cases and a 3.14 OR (p = 0.0001) in the 202 UPBB cases. We established that the LPC system has good reproducibility and allows classification of all cases into distinct categories. We expect that it will be reliable and useful in routine diagnostic practice and, therefore, suggest that it should be the standard future approach for the basic post-mortem evaluation of LP.


Assuntos
Encéfalo/patologia , Doença por Corpos de Lewy/patologia , Autopsia , Mapeamento Encefálico , Consenso , Humanos , Corpos de Lewy/patologia , Doença por Corpos de Lewy/classificação , Doença por Corpos de Lewy/diagnóstico , Variações Dependentes do Observador , Reprodutibilidade dos Testes
12.
J Neural Transm (Vienna) ; 128(1): 15-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079260

RESUMO

In these present studies, in vivo and and post-mortem studies have investigated the association between iron and inflammation. Early-stage Parkinson's disease (PD) patients, of less than 5 years disease duration, showed associations of plasmatic ferritin concentrations with both proinflammatory cytokine interleukin-6 and hepcidin, a regulator of iron metabolism as well as clinical measures. In addition ratios of plasmatic ferritin and iron accumulation in deep grey matter nuclei assessed with relaxometry T2* inversely correlated with disease severity and duration of PD. On the hand, post-mortem material of the substantia nigra compacta (SNc) divided according to Braak and Braak scores, III-IV and V-VI staging, exhibited comparable microgliosis, with a variety of phenotypes present. There was an association between the intensity of microgliosis and iron accumulation as assayed by Perl's staining in the SNc sections. In conclusion, markers of inflammation and iron metabolism in both systemic and brain systems are closely linked in PD, thus offering a potential biomarker for progression of the disease.


Assuntos
Doença de Parkinson , Humanos , Inflamação , Ferro , Imageamento por Ressonância Magnética , Substância Negra
13.
Acta Neuropathol ; 139(6): 977-1000, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32356200

RESUMO

Synucleinopathies, such as Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), are defined by the presence of α-synuclein (αSYN) aggregates throughout the nervous system but diverge from one another with regard to their clinical and pathological phenotype. The recent generation of pure fibrillar αSYN polymorphs with noticeable differences in structural and phenotypic traits has led to the hypothesis that different αSYN strains may be in part responsible for the heterogeneous nature of synucleinopathies. To further characterize distinct αSYN strains in the human brain, and establish a structure-pathology relationship, we pursued a detailed comparison of αSYN assemblies derived from well-stratified patients with distinct synucleinopathies. We exploited the capacity of αSYN aggregates found in the brain of patients suffering from PD, MSA or DLB to seed and template monomeric human αSYN in vitro via a protein misfolding cyclic amplification assay. A careful comparison of the properties of total brain homogenates and pure in vitro amplified αSYN fibrillar assemblies upon inoculation in cells and in the rat brain demonstrates that the intrinsic structure of αSYN fibrils dictates synucleinopathies characteristics. We report that MSA strains show several similarities with PD strains, but are significantly more potent in inducing motor deficits, nigrostriatal neurodegeneration, αSYN pathology, spreading, and inflammation, reflecting the aggressive nature of this disease. In contrast, DLB strains display no or only very modest neuropathological features under our experimental conditions. Collectively, our data demonstrate a specific signature for PD, MSA, and DLB-derived strains that differs from previously described recombinant strains, with MSA strains provoking the most aggressive phenotype and more similarities with PD compared to DLB strains.


Assuntos
Demência/patologia , Doença por Corpos de Lewy/patologia , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Acta Neuropathol ; 137(3): 437-454, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30690664

RESUMO

Previously, we reported that intracranial inoculation of brain homogenate from multiple system atrophy (MSA) patient samples produces neurological disease in the transgenic (Tg) mouse model TgM83+/-, which uses the prion protein promoter to express human α-synuclein harboring the A53T mutation found in familial Parkinson's disease (PD). In our studies, we inoculated MSA and control patient samples into Tg mice constructed using a P1 artificial chromosome to express wild-type (WT), A30P, and A53T human α-synuclein on a mouse α-synuclein knockout background [Tg(SNCA+/+)Nbm, Tg(SNCA*A30P+/+)Nbm, and Tg(SNCA*A53T+/+)Nbm]. In contrast to studies using TgM83+/- mice, motor deficits were not observed by 330-400 days in any of the Tg(SNCA)Nbm mice after inoculation with MSA brain homogenates. However, using a cell-based bioassay to measure α-synuclein prions, we found brain homogenates from Tg(SNCA*A53T+/+)Nbm mice inoculated with MSA patient samples contained α-synuclein prions, whereas control mice did not. Moreover, these α-synuclein aggregates retained the biological and biochemical characteristics of the α-synuclein prions in MSA patient samples. Intriguingly, Tg(SNCA*A53T+/+)Nbm mice developed α-synuclein pathology in neurons and astrocytes throughout the limbic system. This finding is in contrast to MSA-inoculated TgM83+/- mice, which develop exclusively neuronal α-synuclein aggregates in the hindbrain that cause motor deficits with advanced disease. In a crossover experiment, we inoculated TgM83+/- mice with brain homogenate from two MSA patient samples or one control sample first inoculated, or passaged, in Tg(SNCA*A53T+/+)Nbm animals. Additionally, we performed the reverse experiment by inoculating Tg(SNCA*A53T+/+)Nbm mice with brain homogenate from the same two MSA samples and one control sample first passaged in TgM83+/- animals. The TgM83+/- mice inoculated with mouse-passaged MSA developed motor dysfunction and α-synuclein prions, whereas the mouse-passaged control sample had no effect. Similarly, the mouse-passaged MSA samples induced α-synuclein prion formation in Tg(SNCA*A53T+/+)Nbm mice, but the mouse-passaged control sample did not. The confirmed transmission of α-synuclein prions to a second synucleinopathy model and the ability to propagate prions between two distinct mouse lines while retaining strain-specific properties provides compelling evidence that MSA is a prion disease.


Assuntos
Atrofia de Múltiplos Sistemas/patologia , Doenças Priônicas/patologia , Doenças Priônicas/transmissão , Príons/metabolismo , alfa-Sinucleína/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos
15.
J Neurol Neurosurg Psychiatry ; 90(11): 1234-1243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444276

RESUMO

BACKGROUND: Dementia is a common, debilitating feature of late Parkinson's disease (PD). PD dementia (PDD) is associated with α-synuclein propagation, but coexistent Alzheimer's disease (AD) pathology may coexist. Other pathologies (cerebrovascular, transactive response DNA-binding protein 43 (TDP-43)) may also influence cognition. We aimed to describe the neuropathology underlying dementia in PD. METHODS: Systematic review of autopsy studies published in English involving PD cases with dementia. Comparison groups included PD without dementia, AD, dementia with Lewy bodies (DLB) and healthy controls. RESULTS: 44 reports involving 2002 cases, 57.2% with dementia, met inclusion criteria. While limbic and neocortical α-synuclein pathology had the strongest association with dementia, between a fifth and a third of all PD cases in the largest studies had comorbid AD. In PD cases with dementia, tau pathology was moderate or severe in around a third, and amyloid-ß pathology was moderate or severe in over half. Amyloid-ß was associated with a more rapid cognitive decline and earlier mortality, and in the striatum, distinguished PDD from DLB. Positive correlations between multiple measures of α-synuclein, tau and amyloid-ß were found. Cerebrovascular and TDP-43 pathologies did not generally contribute to dementia in PD. TDP-43 and amyloid angiopathy correlated with coexistent Alzheimer pathology. CONCLUSIONS: While significant α-synuclein pathology is the main substrate of dementia in PD, coexistent pathologies are common. In particular, tau and amyloid-ß pathologies independently contribute to the development and pattern of cognitive decline in PD. Their presence should be assessed in future clinical trials where dementia is a key outcome measure. TRIAL REGISTRATION NUMBER: CRD42018088691.


Assuntos
Doença de Alzheimer/epidemiologia , Doença de Alzheimer/patologia , Autopsia , Encéfalo/patologia , Demência/epidemiologia , Demência/patologia , Doença de Parkinson/epidemiologia , Doença de Parkinson/patologia , Autopsia/estatística & dados numéricos , Comorbidade , Humanos
16.
Brain ; 141(8): 2419-2431, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917054

RESUMO

The α-synuclein protein, encoded by SNCA, has a key role in the pathogenesis of Parkinson's disease and other synucleinopathies. Although usually sporadic, Parkinson's disease can result from inherited copy number variants in SNCA and other genes. We have hypothesized a role of somatic SNCA mutations, leading to mosaicism, in sporadic synucleinopathies. The evidence for mosaicism in healthy and diseased brain is increasing rapidly, with somatic copy number gains of APP reported in Alzheimer's brain. Here we demonstrate somatic SNCA copy number gains in synucleinopathies (Parkinson's disease and multiple system atrophy), focusing on substantia nigra. We selected sporadic cases with relatively young onset or short disease duration, and first excluded high level copy number variant mosaicism by DNA analysis using digital PCR for SNCA, and/or customized array comparative genomic hybridization. To detect low level SNCA copy number variant mosaicism, we used fluorescent in situ hybridization with oligonucleotide custom-designed probes for SNCA, validated on brain and fibroblasts with known copy number variants. We determined SNCA copy number in nigral dopaminergic neurons and other cells in frozen nigra sections from 40 cases with Parkinson's disease and five with multiple system atrophy, and 25 controls, in a blinded fashion. Parkinson's disease cases were significantly more likely than controls to have any SNCA gains in dopaminergic neurons (P = 0.0036), and overall (P = 0.0052). The average proportion of dopaminergic neurons with gains in each nigra was significantly higher in Parkinson's disease than controls (0.78% versus 0.45%; P = 0.017). There was a negative correlation between the proportion of dopaminergic neurons with gains and onset age in Parkinson's disease (P = 0.013), but not with disease duration, or age of death in cases or controls. Cases with tremor at onset were less likely to have gains (P = 0.035). All multiple system atrophy cases had gains, and the highest levels in dopaminergic neurons were in two of these cases (2.76%, 2.48%). We performed selective validation with different probes after dye swapping. All three control probes used showed minimal or no gains (≤0.1% in dopaminergic neurons). We also found occasional SNCA gains in frontal neurons of cases with Parkinson's disease, and the putamen of one multiple system atrophy case. We present evidence of somatic SNCA gains in brain, more commonly in nigral dopaminergic neurons of Parkinson's disease than controls, negatively correlated with onset age, and possibly commonest in some multiple system atrophy cases. Somatic SNCA gains may be a risk factor for sporadic synucleinopathies, or a result of the disease process.10.1093/brain/awy157_video1awy157media15813519976001.


Assuntos
Atrofia de Múltiplos Sistemas/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Idoso , Encéfalo/fisiopatologia , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA/genética , Neurônios Dopaminérgicos/fisiologia , Feminino , Expressão Gênica/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/fisiopatologia , alfa-Sinucleína/metabolismo
17.
Acta Neuropathol ; 135(1): 49-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28849371

RESUMO

In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Príons/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Encéfalo/patologia , Detergentes/farmacologia , Modelos Animais de Doenças , Fixadores , Formaldeído , Células HEK293 , Humanos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Príons/administração & dosagem , Agregados Proteicos , Estabilidade Proteica/efeitos dos fármacos , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Aço Inoxidável , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/efeitos adversos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
Eur J Nucl Med Mol Imaging ; 45(8): 1432-1441, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29523926

RESUMO

PURPOSE: Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and Alzheimer's disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral analysis (SA) to generate parametric maps and quantify 11C-PBR28 PET, and compared these with compartmental and other kinetic models of quantification. METHODS: Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11C-PBR28 PET scans with arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11C-PBR28 parametric maps. These maps were then compared with regional 11C-PBR28 VT (volume of distribution) using a two-tissue compartment model and Logan graphic analysis. Amyloid load was also assessed with 18F-Flutemetamol PET. RESULTS: With SA, three component peaks were identified in addition to blood volume. The 11C-PBR28 impulse response function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11C-PBR28 uptake revealed a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical association areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11C-PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well. CONCLUSIONS: This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11C-PBR28 uptake, and is able to detect microglial activation in amyloid-positive MCI subjects. IRF parametric maps of 11C-PBR28 uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Pirimidinas , Idoso , Doença de Alzheimer/imunologia , Radioisótopos de Carbono , Disfunção Cognitiva/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Receptores de GABA
19.
Proc Natl Acad Sci U S A ; 112(38): E5308-17, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26324905

RESUMO

Prions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T-YFP) and TgM83(+/-) mice expressing α-synuclein (A53T). The TgM83(+/-) mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83(+/+) mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83(+/-) mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T-YFP in cultured cells, whereas none of six Parkinson's disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83(+/+) mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Transtornos Parkinsonianos/metabolismo , Príons/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Animais , Encéfalo/patologia , Éxons , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/genética , Doenças Neurodegenerativas/metabolismo , Fosforilação , Polimorfismo de Nucleotídeo Único , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , alfa-Sinucleína/genética
20.
Proc Natl Acad Sci U S A ; 112(35): E4949-58, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286986

RESUMO

Increasingly, evidence argues that many neurodegenerative diseases, including progressive supranuclear palsy (PSP), are caused by prions, which are alternatively folded proteins undergoing self-propagation. In earlier studies, PSP prions were detected by infecting human embryonic kidney (HEK) cells expressing a tau fragment [TauRD(LM)] fused to yellow fluorescent protein (YFP). Here, we report on an improved bioassay using selective precipitation of tau prions from human PSP brain homogenates before infection of the HEK cells. Tau prions were measured by counting the number of cells with TauRD(LM)-YFP aggregates using confocal fluorescence microscopy. In parallel studies, we fused α-synuclein to YFP to bioassay α-synuclein prions in the brains of patients who died of multiple system atrophy (MSA). Previously, MSA prion detection required ∼120 d for transmission into transgenic mice, whereas our cultured cell assay needed only 4 d. Variation in MSA prion levels in four different brain regions from three patients provided evidence for three different MSA prion strains. Attempts to demonstrate α-synuclein prions in brain homogenates from Parkinson's disease patients were unsuccessful, identifying an important biological difference between the two synucleinopathies. Partial purification of tau and α-synuclein prions facilitated measuring the levels of these protein pathogens in human brains. Our studies should facilitate investigations of the pathogenesis of both tau and α-synuclein prion disorders as well as help decipher the basic biology of those prions that attack the CNS.


Assuntos
Doenças Neurodegenerativas/metabolismo , Príons/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA