Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 120: 101807, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709566

RESUMO

Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.


Assuntos
Prótons , Anisotropia
2.
J Chem Phys ; 154(9): 094710, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685166

RESUMO

Heterogeneous single-metal-site catalyst or single-atom catalyst research has grown rapidly due to the accessibility of modern characterization techniques that can provide invaluable information at the atomic-scale. Herein, we study the structural evolution of isolated single Pt sites incorporated in a metal-organic framework containing bipyridine functional groups using in situ diffuse reflectance infrared Fourier transform spectroscopy with CO as the probe molecule. The structure and electronic properties of the isolated Pt sites are further corroborated by x-ray photoelectron spectroscopy and aberration-corrected scanning transmission electron microscopy. We find the prerequisite of high temperature He treatment for Pt activation and CO insertion and inquire into the structural transformation of Pt site process by dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy.

3.
Solid State Nucl Magn Reson ; 98: 12-18, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30669006

RESUMO

The sensitivity of solid-state NMR experiments that utilize 1H zero-quantum heteronuclear dipolar recoupling, such as D-HMQC, is compromised by poor homonuclear decoupling. This leads to a rapid decay of recoupled magnetization and an inefficient recoupling of long-range dipolar interactions, especially for nuclides with low gyromagnetic ratios. We investigated the use, in symmetry-based 1H heteronuclear recoupling sequences, of a basic R element that was principally designed for efficient homonuclear decoupling. By shortening the time required to suppress the effects of homonuclear dipolar interactions to the duration of a single inversion pulse, spin diffusion was effectively quenched and long-lived recoupled coherence lifetimes could be obtained. We show, both theoretically and experimentally, that these modified sequences can yield considerable sensitivity improvements over the current state-of-the-art methods and applied them to the indirect detection of 89Y in a metal-organic framework.

4.
Angew Chem Int Ed Engl ; 57(8): 2110-2114, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29266678

RESUMO

A bio-inspired design of using metal-organic framework (MOF) microcrystals with well-defined multi-shelled hollow structures was used as a matrix to host multiple guests including molecules and nanoparticles at separated locations to form a hierarchical material, mimicking biological structures. The interactions such as energy transfer (ET) between different guests are regulated by precisely fixing them in the MOF shells or encapsulating them in the cavities between the MOF shells. The proof-of-concept design is demonstrated by hosting chromophore molecules including rhodamine 6G (R6G) and 7-amino-4-(trifluoromethyl)coumarin (C-151), as well as metal nanoparticles (Pd NPs) into the multi-shelled hollow zeolitic imidazolate framework-8 (ZIF-8). We could selectively establish or diminish the guest-to-framework and guest-to-guest ET. This work provides a platform to construct complex multifunctional materials, especially those need precise separation control of multi-components.

5.
J Am Chem Soc ; 139(13): 4762-4768, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28272879

RESUMO

Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO2) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.

6.
Chemistry ; 23(18): 4266-4270, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28188655

RESUMO

The facile pyrolysis of a bipyridyl metal-organic framework, MOF-253, produces N-doped porous carbons (Cz-MOF-253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen-containing MOF-derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz-MOF-253-supported Pd nanoparticles (Pd/Cz-MOF-253-800) show excellent performance in a one-pot sequential Knoevenagel condensation-hydrogenation reaction.

7.
Angew Chem Int Ed Engl ; 56(14): 3925-3929, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28276607

RESUMO

Recently, a facile method for the synthesis of size-monodisperse Pt, Pt3 Sn, and PtSn intermetallic nanoparticles (iNPs) that are confined within a thermally robust mesoporous silica (mSiO2 ) shell was introduced. These nanomaterials offer improved selectivity, activity, and stability for large-scale catalytic applications. Here we present the first study of parahydrogen-induced polarization NMR on these Pt-Sn catalysts. A 3000-fold increase in the pairwise selectivity, relative to the monometallic Pt, was observed using the PtSn@mSiO2 catalyst. The results are explained by the elimination of the three-fold Pt sites on the Pt(111) surface. Furthermore, Pt-Sn iNPs are shown to be a robust catalytic platform for parahydrogen-induced polarization for in vivo magnetic resonance imaging.

8.
Angew Chem Int Ed Engl ; 56(51): 16371-16375, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29065244

RESUMO

Nitrones are key intermediates in organic synthesis and the pharmaceutical industry. The heterogeneous synthesis of nitrones with multifunctional catalysts is extremely attractive but rarely explored. Herein, we report ultrasmall platinum nanoclusters (PtNCs) encapsulated in amine-functionalized Zr metal-organic framework (MOF), UiO-66-NH2 (Pt@UiO-66-NH2 ) as a multifunctional catalyst in the one-pot tandem synthesis of nitrones. By virtue of the cooperative interplay among the selective hydrogenation activity provided by the ultrasmall PtNCs and Lewis acidity/basicity/nanoconfinement endowed by UiO-66-NH2 , Pt@UiO-66-NH2 exhibits remarkable activity and selectivity, in comparison to Pt/carbon, Pt@UiO-66, and Pd@UiO-66-NH2 . Pt@UiO-66-NH2 also outperforms Pt nanoparticles supported on the external surface of the same MOF (Pt/UiO-66-NH2 ). To our knowledge, this work demonstrates the first examples of one-pot synthesis of nitrones using recyclable multifunctional heterogeneous catalysts.

9.
Chemistry ; 20(49): 16308-13, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25297002

RESUMO

The host-guest interaction between metal ions (Pt(2+) and Cu(2+) ) and a zirconium metal-organic framework (UiO-66-NH2 ) was explored using dynamic nuclear polarization-enhanced (15) N{(1) H} CPMAS NMR spectroscopy supported by X-ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt(2+) coordinates with two NH2 groups from the MOF and two Cl(-) from the metal precursor, whereas Cu(2+) do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt(2+) prefers a square-planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.


Assuntos
Cobre/química , Compostos Organometálicos/química , Platina/química , Zircônio/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectroscopia por Absorção de Raios X
10.
ACS Appl Mater Interfaces ; 11(26): 23254-23260, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252478

RESUMO

Research and development in bimetallic nanoparticles have gained great interest over their monometallic counterparts because of their distinct and unique properties in a wide range of applications such as catalysis, energy storage, and bio/plasmonic imaging. Identification and characterization of these bimetallic surfaces for application in heterogeneous catalysis remain a challenge and heavily rely on advanced characterization techniques such as aberration-corrected electron microscopy and synchrotron X-ray absorption studies. In this article, we have reported a strategy to prepare sub-2 nm bimetallic Pt-Sn nanoclusters confined in the pores of a Zr-based metal-organic framework (MOF). The Pt-Sn nanoclusters encapsulated in the Zr-MOF pores show enhanced chemoselectivity from 51 to 93% in an industrially relevant reaction, furfural hydrogenation to furfuryl alcohol. The presence of bimetallic Pt-Sn surfaces was investigated by a surface-sensitive characterization technique utilizing diffuse reflectance infrared Fourier transform spectroscopy of adsorbed CO to probe the bimetallic surface of the encapsulated ultrafine Pt-Sn nanocluster. Complementary techniques such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were also used to characterize the Pt-Sn nanoclusters.

11.
Nanoscale ; 11(12): 5336-5345, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30843547

RESUMO

The outstanding catalytic activity and chemical selectivity of intermetallic compounds make them excellent candidates for heterogeneous catalysis. However, the kinetics of their formation at the nanoscale is poorly understood or characterized, and precise control of their size, shape and composition during synthesis remains challenging. Here, using well-defined Pt nanoparticles (5 nm and 14 nm) encapsulated in mesoporous silica, we study the transformation kinetics from monometallic Pt to intermetallic PtSn at different temperatures by a series of time-evolution X-ray diffraction studies. Observations indicate an initial transformation stage mediated by Pt surface-controlled intermixing kinetics, followed by a second stage with distinct transformation kinetics corresponding to a Ginstling-Brounstein (G-B) type bulk diffusion mode. Moreover, the activation barrier for both surface intermixing and diffusion stages is obtained through the development of appropriate kinetic models for the analysis of experimental data. Our density-functional-theory (DFT) calculations provide further insights into the atomistic-level processes and associated energetics underlying surface-controlled intermixing.

12.
J Magn Reson ; 276: 95-102, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28157561

RESUMO

Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic "infinite-MAS" spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.

13.
J Phys Chem Lett ; 7(13): 2322-7, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266444

RESUMO

Ultrawideline dynamic nuclear polarization (DNP)-enhanced (195)Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal-organic frameworks (MOFs). The (195)Pt SSNMR spectra, with breadths reaching 10 000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt(2+) species supported on the UiO-66-NH2 MOF. Additionally, the data revealed a dominance of kinetic effects in the formation of Pt(2+) complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt(2+) complex was confirmed in MOF-253.

14.
Nanoscale ; 7(40): 16721-8, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26399612

RESUMO

Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermal stabilities compared with those prepared with organic capping agents. This inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.

15.
J Phys Chem B ; 118(49): 14168-76, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25144330

RESUMO

The interaction of guest Pt(II) ions with UiO-66-X (X = NH2, H, NO2, OMe, F) series metal-organic frameworks (MOFs) in aqueous solution was investigated using in situ X-ray absorption spectroscopy. All of these MOFs were found to be able to coordinate with Pt(II) ions. The Pt(II) ions in UiO-66-X MOFs generally coordinate with 1.6-2.4 Cl and 1.4-2.4 N or O atoms. We also studied the time evolution of the coordination structure and found that Pt(II) maintained a coordination number of 4 throughout the whole process. Furthermore, the kinetic parameters of the interaction of Pt(II) ions with UiO-66-X series MOFs (X = NH2, H, NO2, OMe, F) were determined by combinational linear fitting of extended X-ray absorption fine structure (EXAFS) spectra of the samples. The Pt(II) adsorption rate constants were found to be 0.063 h(-1) for UiO-66-NH2 and 0.011-0.017 h(-1) for other UiO-66-X (X = H, NO2, OMe, F) MOFs, which means that Pt(II) adsorption in UiO-66-NH2 is 4-6 times faster than that in other UiO-66 series MOFs. FTIR studies suggested that the carboxyl groups could be the major host ligands binding with Pt(II) ions in UiO-66 series MOFs, except for UiO-66-NH2, in which amino groups coordinate with Pt(II) ions.

16.
ChemSusChem ; 6(10): 1915-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24039118

RESUMO

We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures.


Assuntos
Nanopartículas Metálicas/química , Platina/química , Dióxido de Silício/química , Temperatura , Catálise , Cicloexanos/química , Etilenos/química , Hidrogenação , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA