Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32454024

RESUMO

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular , DNA/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Animais , Anticorpos Antinucleares/imunologia , Autoantígenos/imunologia , Autoimunidade , Biomarcadores , Ligante de CD40/deficiência , Comunicação Celular/genética , Comunicação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endodesoxirribonucleases/deficiência , Imunofluorescência , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Knockout , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
2.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919820

RESUMO

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Assuntos
Mamíferos/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Humanos , Mamíferos/imunologia , Ligação Proteica/genética , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
3.
Commun Biol ; 6(1): 1250, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082099

RESUMO

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has provided unprecedented insight into mutations enabling immune escape. Understanding how these mutations affect the dynamics of antibody-antigen interactions is crucial to the development of broadly protective antibodies and vaccines. Here we report the characterization of a potent neutralizing antibody (N3-1) identified from a COVID-19 patient during the first disease wave. Cryogenic electron microscopy revealed a quaternary binding mode that enables direct interactions with all three receptor-binding domains of the spike protein trimer, resulting in extraordinary avidity and potent neutralization of all major variants of concern until the emergence of Omicron. Structure-based rational design of N3-1 mutants improved binding to all Omicron variants but only partially restored neutralization of the conformationally distinct Omicron BA.1. This study provides new insights into immune evasion through changes in spike protein dynamics and highlights considerations for future conformationally biased multivalent vaccine designs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
4.
bioRxiv ; 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33851158

RESUMO

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform. Antibodies were identified from unpaired donor B-cell and serum repertoires using yeast surface display, proteomics, and public light chain screening. Cryo-EM and functional characterization of the antibodies identified N3-1, an antibody that binds avidly (Kd,app = 68 pM) to the receptor binding domain (RBD) of the spike protein and robustly neutralizes the virus in vitro. This antibody likely binds all three RBDs of the trimeric spike protein with a single IgG. Importantly, N3-1 equivalently binds spike proteins from emerging SARS-CoV-2 variants of concern, neutralizes UK variant B.1.1.7, and binds SARS-CoV spike with nanomolar affinity. Taken together, the strategies described herein will prove broadly applicable in interrogating adaptive immunity and developing rapid response biological countermeasures to emerging pathogens.

5.
Science ; 372(6546): 1108-1112, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947773

RESUMO

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Afinidade de Anticorpos , COVID-19/prevenção & controle , Epitopos/imunologia , Humanos , Evasão da Resposta Imune , Imunoglobulina G/sangue , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Domínios Proteicos , Proteômica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
6.
medRxiv ; 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33024977

RESUMO

We sequenced the genomes of 5,085 SARS-CoV-2 strains causing two COVID-19 disease waves in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston, and an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotypes and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein - the primary target of global vaccine efforts - are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR30022. Our study is the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves, and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.

7.
mBio ; 11(6)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127862

RESUMO

We sequenced the genomes of 5,085 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains causing two coronavirus disease 2019 (COVID-19) disease waves in metropolitan Houston, TX, an ethnically diverse region with 7 million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston and from viruses recovered in an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotype and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein-the primary target of global vaccine efforts-are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR3022. Our report represents the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.IMPORTANCE There is concern about second and subsequent waves of COVID-19 caused by the SARS-CoV-2 coronavirus occurring in communities globally that had an initial disease wave. Metropolitan Houston, TX, with a population of 7 million, is experiencing a massive second disease wave that began in late May 2020. To understand SARS-CoV-2 molecular population genomic architecture and evolution and the relationship between virus genotypes and patient features, we sequenced the genomes of 5,085 SARS-CoV-2 strains from these two waves. Our report provides the first molecular characterization of SARS-CoV-2 strains causing two distinct COVID-19 disease waves.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Neutralizantes/imunologia , Sequência de Bases , Betacoronavirus/imunologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , RNA-Polimerase RNA-Dependente de Coronavírus , Genoma Viral , Genótipo , Humanos , Aprendizado de Máquina , Modelos Moleculares , Técnicas de Diagnóstico Molecular , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Análise de Sequência de Proteína , Glicoproteína da Espícula de Coronavírus/imunologia , Texas/epidemiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
8.
bioRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33398269

RESUMO

Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq 1 ) to the spike ectodomain (S-ECD 2 ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å 2 ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning 3,4 our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA