Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 42(14): 9195-208, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053844

RESUMO

Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Exossomos/química , Humanos , MicroRNAs/análise , Proteínas Associadas aos Microtúbulos/análise , Proteínas do Tecido Nervoso/análise , Neuritos/química , Neuritos/metabolismo , Neurônios/fisiologia , Biossíntese de Proteínas , Proteoma/química , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica
2.
BMC Genomics ; 15: 777, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25204312

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play a pivotal role in coordinating messenger RNA (mRNA) transcription and stability in almost all known biological processes, including the development of the central nervous system. Despite our broad understanding of their involvement, we still have a very sparse understanding of specifically how miRNA contribute to the strict regional and temporal regulation of brain development. Accordingly, in the current study we have examined the contribution of miRNA in the developing rat telencephalon and mesencephalon from just after neural tube closure till birth using a genome-wide microarray strategy. RESULTS: We identified temporally distinct expression patterns in both the telencephalon and mesencephalon for both miRNAs and their target genes. We demonstrate direct miRNA targeting of several genes involved with the migration, differentiation and maturation of neurons. CONCLUSIONS: Our findings suggest that miRNA have significant implications for the development of neural structure and support important mechanisms that if disrupted, may contribute to or drive neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Organogênese/genética , Animais , Animais Recém-Nascidos , Linhagem Celular , Análise por Conglomerados , Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inativação Gênica , Genes Reporter , Humanos , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Ratos , Transdução de Sinais , Telencéfalo/embriologia , Telencéfalo/metabolismo
3.
Elife ; 102021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232857

RESUMO

Most eukaryotic mRNAs accommodate alternative sites of poly(A) addition in the 3' untranslated region in order to regulate mRNA function. Here, we present a systematic analysis of 3' end formation factors, which revealed 3'UTR lengthening in response to a loss of the core machinery, whereas a loss of the Sen1 helicase resulted in shorter 3'UTRs. We show that the anti-cancer drug cordycepin, 3' deoxyadenosine, caused nucleotide accumulation and the usage of distal poly(A) sites. Mycophenolic acid, a drug which reduces GTP levels and impairs RNA polymerase II (RNAP II) transcription elongation, promoted the usage of proximal sites and reversed the effects of cordycepin on alternative polyadenylation. Moreover, cordycepin-mediated usage of distal sites was associated with a permissive chromatin template and was suppressed in the presence of an rpb1 mutation, which slows RNAP II elongation rate. We propose that alternative polyadenylation is governed by temporal coordination of RNAP II transcription and 3' end processing and controlled by the availability of 3' end factors, nucleotide levels and chromatin landscape.


Assuntos
Poli A/química , Poliadenilação , Saccharomyces cerevisiae/metabolismo , Regiões 3' não Traduzidas , DNA Helicases , Cinética , RNA Helicases , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
4.
Nat Neurosci ; 21(7): 1004-1014, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950670

RESUMO

A localized transcriptome at the synapse facilitates synapse-, stimulus- and transcript-specific local protein synthesis in response to neuronal activity. While enzyme-mediated mRNA modifications are known to regulate cellular mRNA turnover, the role of these modifications in regulating synaptic RNA has not been studied. We established low-input m6A-sequencing of synaptosomal RNA to determine the chemically modified local transcriptome in healthy adult mouse forebrains and identified 4,469 selectively enriched m6A sites in 2,921 genes as the synaptic m6A epitranscriptome (SME). The SME is functionally enriched in synthesis and modulation of tripartite synapses and in pathways implicated in neurodevelopmental and neuropsychiatric diseases. Interrupting m6A-mediated regulation via knockdown of readers in hippocampal neurons altered expression of SME member Apc, resulting in synaptic dysfunction including immature spine morphology and dampened excitatory synaptic transmission concomitant with decreased clusters of postsynaptic density-95 (PSD-95) and decreased surface expression of AMPA receptor subunit GluA1. Our findings indicate that chemical modifications of synaptic mRNAs critically contribute to synaptic function.


Assuntos
Adenosina/análogos & derivados , Prosencéfalo/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Adenosina/genética , Adenosina/metabolismo , Animais , Camundongos , Transcriptoma
5.
Nat Neurosci ; 21(10): 1493, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30097659

RESUMO

In the version of this article initially published, a Supplementary Fig. 6f was cited in the last paragraph of the Results. No such panel exists; the citation has been deleted. The error has been corrected in the HTML and PDF versions of the article.

6.
Oncotarget ; 9(2): 1980-1991, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29416746

RESUMO

Tetraspanin CD9 is generally considered to be a metastasis suppressor, with decreased levels associated with progression and metastasis in many advanced stage cancers. Little is known about the cause of CD9 dysregulation in prostate cancer, however there are several miRNA-binding sites in the 3´UTR of the transcript suggesting it could be post-transcriptionally regulated. Using microarrays and luciferase assays in tumourigenic and non-tumourigenic prostate cell lines we identified miR-518f-5p as a regulator of the CD9 3'UTR gene expression, and decreased expression of endogenous CD9 in non-tumorigenic prostate RWPE1 and prostate cancer DU145 cells. This resulted in differential functional effects, in which RWPE1 cells showed increased migration and decreased adhesion to extracellular matrix substrates, whereas DU145 cells showed decreased migration and increased adhesion. Moreover, overexpression of miR-518f-5p significantly increased proliferation between 48h and 72h in normal RWPE1 cells, with no effect on tumourigenic DU145 cell proliferation. These results show that tetraspanin CD9 is regulated by miRNAs in prostate cell lines and that due to differential functional effects in non-tumourigenic versus tumourigenic prostate cells, miR-518f-5p may be an effective biomarker and/or therapeutic target for prostate cancer progression.

7.
Sci Rep ; 8(1): 8822, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891991

RESUMO

To facilitate intercellular communication, cells release nano-sized, extracellular vesicles (EVs) to transfer biological cargo to both local and distant sites. EVs are enriched in tetraspanins, two of which (CD9 and CD151) have altered expression patterns in many solid tumours, including prostate cancer, as they advance toward metastasis. We aimed to determine whether EVs from prostate cells with altered CD9 and CD151 expression could influence cellular behaviour and increase the metastatic capabilities of non-tumourigenic prostate cells. EVs were isolated by ultrafiltration and characterised for their tetraspanin expression and size distribution. iTRAQ was used to identify differences between RWPE1 and tetraspanin-modified RWPE1 EV proteomes, showing an enrichment in protein degradation pathways. Addition of EVs from RWPE1 cells with reduced CD9 or increased CD151 abundance resulted in increased invasion of RWPE1 cells, and increased migration in the case of high CD151 abundance. We have been able to show that alteration of CD9 and CD151 on prostate cells alters the proteome of their resultant EVs, and that these EVs can enhance the migratory and invasive capabilities of a non-tumourigenic prostate cellular population. This work suggests that cellular tetraspanin levels can alter EVs, potentially acting as a driver of metastasis in prostate cancer.


Assuntos
Movimento Celular , Vesículas Extracelulares/química , Próstata/citologia , Tetraspanina 24/análise , Tetraspanina 29/análise , Linhagem Celular , Humanos , Masculino , Proteoma/análise
8.
Front Mol Neurosci ; 10: 259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878619

RESUMO

While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.

9.
Front Cell Neurosci ; 8: 325, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360083

RESUMO

The SH-SY5Y culture system is a convenient neuronal model with the potential to elaborate human/primate-specific transcription networks and pathways related to human cognitive disorders. While this system allows for the exploration of specialized features in the human genome, there is still significant debate about how this model should be implemented, and its appropriateness for answering complex functional questions related to human neural architecture. In view of these questions we sought to characterize the posttranscriptional regulatory structure of the two-stage ATRA differentiation, BDNF maturation protocol proposed by Encinas et al. (2000) using integrative whole-genome gene and microRNA (miRNA) expression analysis. We report that ATRA-BDNF induced significant increases in expression of key synaptic genes, brain-specific miRNA and miRNA biogenesis machinery, and in AChE activity, compared with ATRA alone. Functional annotation clustering associated BDNF more significantly with neuronal terms, and with synaptic terms not found in ATRA-only clusters. While our results support use of SH-SY5Y as a neuronal model, we advocate considered selection of the differentiation agent/s relative to the system being modeled.

10.
Mol Neurobiol ; 45(1): 99-108, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22167484

RESUMO

Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.


Assuntos
Regulação da Expressão Gênica/genética , Neurônios/metabolismo , Transporte Proteico/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Animais , Humanos , Neurônios/fisiologia , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA