Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Appl Microbiol Biotechnol ; 103(5): 2033-2051, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30648191

RESUMO

This review focuses on the considerable amount of research that has been directed towards the improvement of efficiency and reliability of malolactic fermentation (MLF), which is important in winemaking. From this large body of work, it is clear that reliable MLF is essential for process efficiency and prevention of spoilage in the final product. Impediments to successful MLF in wine, the impact of grape and wine ecology and how this may affect MLF outcome are discussed. Further focus is given to how MLF success may be enhanced, via alternative inoculation strategies, MLF progress sensing technologies and the use of different bacterial species. An update of how this information may be used to enhance and improve sensory outcomes through metabolite production during MLF and suggestions for future research priorities for the field are also provided.


Assuntos
Fermentação/fisiologia , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Oenococcus/metabolismo , Vinho/microbiologia , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/metabolismo , Vitis/química , Vitis/microbiologia , Vinho/análise
2.
Metab Eng ; 45: 255-264, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29289724

RESUMO

Severe oenological conditions, such as limited assimilable nitrogen and high sugar contents restrict yeast's ability to successfully complete fermentation. In the absence of a comprehensive commercially available deletion collection in a wine yeast background, a screening approach was applied to a transposon library in a wine yeast derivative to identify clones with superior fermentation performance. Five candidate genes, when disrupted by Ty insertion, were identified as enabling yeast to efficiently complete a model oenological fermentation with limited nitrogen availability. Analogous single gene disruptions were subsequently constructed in the haploid wine yeast strain C911D, and the performance of these during fermentation was analysed. Deletion of ECM33 resulted in the shortest fermentation (up to 31% reduction) in both synthetic medium and grape juice. Interestingly, no significant differences were found in nitrogen utilization, cell viability or biomass yield between ∆ecm33 and the wild type. ∆ecm33 did, however, display growth hypersensitivity to the dyes Calcofluor White and Congo Red, suggesting a link to cell wall integrity. Transcriptional profiling of ∆ecm33 during fermentation demonstrated the up-regulation of SLT2 and HOG1, encoding mitogen activated protein kinases involved in the cell wall integrity (CWI) and high osmolarity glycerol (HOG) pathways, respectively. CHS3 a major chitin synthase gene was also found to be upregulated, and the transcript abundance of key genes of central nitrogen metabolism, GLN1, GLT1, GDH1 and GDH2 in mutant ∆ecm33 were also altered. The findings highlight the complexity of the robust fermentation phenotype and provide clues for further improvement of industrial strains.


Assuntos
Parede Celular , Fermentação/genética , Deleção de Genes , Proteínas de Membrana/deficiência , Saccharomyces cerevisiae , Parede Celular/genética , Parede Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
3.
Appl Microbiol Biotechnol ; 102(2): 921-932, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29150706

RESUMO

Malolactic fermentation (MLF) is an important step in winemaking, which can be notoriously unreliable due to the fastidious nature of Oenococcus oeni. This study aimed to use directed evolution (DE) to produce a more robust strain of O. oeni having the ability to withstand high ethanol concentrations. DE involves an organism mutating and potentially adapting to a high stress environment over the course of extended cultivation. A continuous culture of O. oeni was established and exposed to progressively increasing ethanol content such that after approximately 330 generations, an isolate from this culture was able to complete MLF in high ethanol content medium earlier than its parent. The ethanol tolerance of a single isolate, A90, was tested to confirm the phenotype and its fermentation performance in wine. In order to investigate the genotypic differences in the evolved strain that led to the ethanol tolerance phenotype, the relative expression of a number of known stress response genes was compared between SB3 and A90. Notably, there was increase in hsp18 expression in 20% (v/v) ethanol by both strains with A90 exhibiting a higher degree of expression. This study is the first to use directed evolution for O. oeni strain improvement and confirms that this technique can be used successfully for the development of new candidate strains for the wine industry. This study also adds to the current knowledge on the genetic basis of ethanol tolerance in this bacterium.


Assuntos
Evolução Molecular Direcionada , Etanol/farmacologia , Fermentação , Lactatos/metabolismo , Malatos/metabolismo , Oenococcus/genética , Proteínas de Bactérias/genética , Genótipo , Proteínas de Choque Térmico/genética , Oenococcus/efeitos dos fármacos , Estresse Fisiológico , Vinho/microbiologia
4.
Food Microbiol ; 73: 150-159, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29526200

RESUMO

High concentrations of ethanol, low pH, the presence of sulfur dioxide and some polyphenols have been reported to inhibit Oenococcus oeni growth, thereby negatively affecting malolactic fermentation (MLF) of wine. In order to generate superior O. oeni strains that can conduct more efficient MLF, despite these multiple stressors, a continuous culture approach was designed to directly evolve an existing ethanol tolerant O. oeni strain, A90. The strain was grown for ∼350 generations in a red wine-like environment with increasing levels of stressors. Three strains were selected from screening experiments based on their completion of fermentation in a synthetic wine/wine blend with 15.1% (v/v) ethanol, 26 mg/L SO2 at pH 3.35 within 160 h, while the parent strain fermented no more than two thirds of l-malic acid in this medium. These superior strains also fermented faster and/or had a larger population in four different wines. A reduced or equivalent amount of the undesirable volatile, acetic acid, was produced by the optimised strains compared to a commercial strain in Mouvedre and Merlot wines. These findings demonstrate the feasibility of using directed evolution as a tool to generate more efficient MLF starters tailored for wines with multiple stressors.


Assuntos
Malatos/metabolismo , Oenococcus/genética , Oenococcus/metabolismo , Vinho/microbiologia , Evolução Molecular Direcionada , Etanol/análise , Etanol/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Malatos/análise , Vinho/análise
5.
Molecules ; 24(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587796

RESUMO

The colour of red wine is largely determined by the concentration of anthocyanins that are extracted from grape skins during fermentation. Because colour is a key parameter in determining the overall quality of the finished product, understanding the effect of processing variables on anthocyanin extraction is critical for producing a red wine with the desired sensorial characteristics. In this study, the effect of convective conditions (natural and forced) on the mass transfer properties of malvidin-3-glucoside (M3G) from pre-fermentative grape solids was explored at various liquid phase conditions representing stages of fermentation. A mathematical model that separates solid and liquid phase mass transfer parameters was applied to experimental extraction curves, and in all cases, provided a coefficient of determination exceeding 0.97. Calculated mass transfer coefficients indicated that under forced convective conditions, the extraction process was controlled by internal diffusion whereas under natural convection, both internal diffusion and liquid-phase mass transfer were relevant in determining the overall extraction rate. Predictive simulations of M3G extraction during active fermentation were accomplished by incorporating the current results with a previously developed fermentation model, providing insight into the effect of a dynamic liquid phase on anthocyanin extraction.


Assuntos
Antocianinas/química , Antocianinas/isolamento & purificação , Convecção , Fermentação , Vitis/química , Algoritmos , Fracionamento Químico , Simulação por Computador , Modelos Teóricos , Vinho/análise
6.
Molecules ; 23(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150601

RESUMO

Extraction of grape components is a key consideration for red winemaking. The impact of changing process variables on mass transfer properties of anthocyanins from fresh pre-fermentative red grape solids under forced convective conditions was explored using the dominant red grape anthocyanin, malvidin-3-glucoside (M3G) as a model solute. A two level full factorial design was implemented to investigate effects of temperature, sugar and ethanol on mass transfer properties. Factor levels were chosen to simulate conditions found at various points during the maceration and fermentation steps of the red winemaking process. A rigorous mathematical model was developed and applied to experimental extraction curves, allowing the separation of mass transport properties in liquid and solid phases in a wine-like system, for the first time. In all cases, the coefficient of determination exceeded 0.92, indicating good agreement between experimental and mathematically-solved M3G concentrations. For the conditions studied, internal mass transfer was found to limit M3G extraction and changes to the liquid phase composition and temperature influence the distribution constant. Surface response models of mass transfer parameters were developed to allow future simulations of fermentation scenarios aimed at maximising the extraction potential of M3G.


Assuntos
Antocianinas/análise , Antocianinas/química , Glucosídeos/análise , Glucosídeos/química , Extratos Vegetais/análise , Extratos Vegetais/química , Vitis/química , Vinho/análise , Algoritmos , Cromatografia Líquida , Modelos Químicos , Modelos Estatísticos , Compostos Fitoquímicos/química
7.
Appl Microbiol Biotechnol ; 98(19): 8111-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25142694

RESUMO

The initial conversion of grape must to wine is an alcoholic fermentation (AF) largely carried out by one or more strains of yeast, typically Saccharomyces cerevisiae. After the AF, a secondary or malolactic fermentation (MLF) which is carried out by lactic acid bacteria (LAB) is often undertaken. The MLF involves the bioconversion of malic acid to lactic acid and carbon dioxide. The ability to metabolise L-malic acid is strain specific, and both individual Oenococcus oeni strains and other LAB strains vary in their ability to efficiently carry out MLF. Aside from impacts on acidity, LAB can also metabolise other precursors present in wine during fermentation and, therefore, alter the chemical composition of the wine resulting in an increased complexity of wine aroma and flavour. Recent research has focused on three main areas: enzymatic changes during MLF, safety of the final product and mechanisms of stress resistance. This review summarises the latest research and technological advances in the rapidly evolving study of MLF and investigates the directions that future research may take.


Assuntos
Lactobacillaceae/metabolismo , Malatos/metabolismo , Vinho/microbiologia , Proteínas de Bactérias/metabolismo , Fermentação , Lactobacillaceae/enzimologia
8.
Food Microbiol ; 36(2): 241-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010603

RESUMO

Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME-GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium.


Assuntos
Dekkera/crescimento & desenvolvimento , Dekkera/metabolismo , Oxigênio/metabolismo , Compostos Orgânicos Voláteis/análise , Vinho/análise , Vinho/microbiologia , Adulto , Idoso , Austrália , Dekkera/genética , Dekkera/isolamento & purificação , Feminino , Fermentação , Humanos , Masculino , Pessoa de Meia-Idade , Paladar , Compostos Orgânicos Voláteis/metabolismo , Adulto Jovem
9.
Appl Microbiol Biotechnol ; 96(4): 1039-47, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23053071

RESUMO

The study of gene expression and accurate quantitation of target genes in any organism depends on correct normalisation. Due to the increase in studies on Oenococcus oeni gene expression, there is a clear need for alternative reference genes in order to reliably measure expression levels. In this manuscript, we propose the approach of using multiple reference genes to provide a more robust basis for establishing a reference gene set. The identification and evaluation of a panel of nine reference genes, including the commonly used ldhD, for real-time PCR normalisation was performed in O. oeni. Expression levels of these reference genes were then measured by real-time qPCR in an independent set of O. oeni samples (n = 30). The nine genes were ranked according to their stability of gene expression measure (M) using geNorm to identify the most consistently expressed reference genes. This approach resulted in the identification of multiple reference genes that may be used for a screening and more robust normalisation of target gene expression measured by real-time RT-qPCR. Expression of esterase genes was then measured in these O. oeni samples in the presence of known esterase substrates. The results give an indication of how these genes may be involved in ester synthesis and hydrolysis in O. oeni.


Assuntos
Proteínas de Bactérias/genética , Esterases/genética , Oenococcus/enzimologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Oenococcus/genética , Padrões de Referência
10.
Foods ; 11(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563954

RESUMO

Lactic acid bacteria are very important in winemaking. In this study, 108 lactic acid bacteria isolates were obtained from high-ethanol-content (~17% (v/v)) Grenache wines during uninoculated malolactic fermentation (MLF). The 16S rRNA and species-specific PCR showed that 104 of these were Oenococcusoeni, three were Lactobacillus hilgardii, and one was Staphylococcus pasteuri. AFLP of HindIII and MseI digests of the genomic DNA of the O. oeni strains was developed for the first time to discriminate the strains. The results showed that the method was a suitable technique for discriminating the O. oeni strains. Based on the cluster analysis, nine O. oeni strains were chosen for inclusion in an ethanol tolerance assay involving monitoring of optical density (ABS600nm) and viable plating. Several O. oeni strains (G63, G46, G71, G39) survived and grew well in MRS-AJ with 17% (v/v) ethanol, while the commercial O. oeni reference strain did not. Strain G63 could also survive and grow for 168 h after inoculation in MRS-AJ medium with 19% (v/v) ethanol. These results suggest that O. oeni G63, G46, G71, and G39 could potentially be used as MLF starters for high-ethanol-content wines. All three L. hilgardii strains could survive and grow in MRS-AJ with 19% (v/v) ethanol, perhaps also indicating their suitability as next-generation MLF starter cultures.

11.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35628730

RESUMO

Viognier is a warm climate grape variety prone to loss of acidity and accumulation of excessive sugars. The yeast Lachancea thermotolerans can improve the stability and balance of such wines due to the partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in co-inoculations and sequential inoculations with Saccharomyces cerevisiae in high sugar/pH Viognier fermentations. The results highlighted the dichotomy between the non-acidified and the bio-acidified L. thermotolerans treatments, with either comparable or up to 0.5 units lower pH relative to the S. cerevisiae control. Significant differences were detected in a range of flavour-active yeast volatile metabolites. The perceived acidity mirrored the modulations in wine pH/TA, as confirmed via "Rate-All-That-Apply" sensory analysis. Despite major variations in the volatile composition and acidity alike, the varietal aromatic expression (i.e., stone fruit aroma/flavour) remained conserved between the treatments.

12.
Food Chem ; 349: 129015, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545601

RESUMO

Wines from warm(ing) climates often contain excessive ethanol but lack acidity. The yeast Lachancea thermotolerans can ameliorate such wines due to partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in two inoculation modalities (sequential and co-inoculation) to Saccharomyces cerevisiae and un-inoculated treatments in high sugar/low acidity Merlot fermentations. The pH and ethanol levels in mixed-culture dry wines were either comparable, or significantly lower than in controls (decrease of up to 0.5 units and 0.90% v/v, respectively). The analysis of volatile compounds revealed marked differences in major flavour-active yeast metabolites, including up to a thirty-fold increase in ethyl lactate in certain L. thermotolerans modalities. The wines significantly differed in acidity perception, alongside 18 other sensory attributes. Together, these results highlight the potential of some L. thermotolerans strains to produce 'fresher' wines with lower ethanol content and improved flavour/balance.


Assuntos
Saccharomycetales/metabolismo , Paladar , Vitis/química , Vitis/microbiologia , Vinho/análise , Etanol/análise , Fermentação
13.
Appl Microbiol Biotechnol ; 86(2): 721-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19957080

RESUMO

Simple phenolic components of wine, hydroxycinnamic acids (HCAs) are known to have antimicrobial properties. This study sought to determine the potential of ferulic acid as an antifungal agent for the control of Dekkera. Growth was inhibited by all HCAs examined in this study, with ferulic acid being the most potent at all concentrations. In the presence of ethanol, the inhibitory effects of ferulic acid were amplified. Scanning electron microscopy images reveal cellular damage upon exposure to ferulic acid. Thus, manipulation of ferulic acid concentrations could be of industrial significance for control of Dekkera and may be the basis for differences in susceptibility of wines to Dekkera spoilage.


Assuntos
Antifúngicos/farmacologia , Ácidos Cumáricos/farmacologia , Dekkera/efeitos dos fármacos , Dekkera/crescimento & desenvolvimento , Dekkera/ultraestrutura , Sinergismo Farmacológico , Etanol/farmacologia , Microscopia Eletrônica de Varredura
14.
Int J Food Microbiol ; 329: 108651, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32512285

RESUMO

In Latin, 'pulcherrima' is a superlative form of an adjective that translates as beautiful. Apart from being 'the most beautiful' yeast, Metschnikowia pulcherrima has a remarkable potential in production of wines with lower ethanol content. The oenological performance of six M. pulcherrima strains was hereby tested in sequential cultures with Saccharomyces cerevisiae. The best-performing strain MP2 was further characterised in fermentations with different S. cerevisiae inoculation delays in both white grape juice and Chemically Defined Grape Juice Medium (CDGJM). The analysis of main metabolites, undertaken prior to sequential inoculations and upon fermentation completion, highlighted metabolic interactions and carbon sinks other than ethanol in MP2 treatments. Depending on the inoculation delay, MP2 white wines contained between 0.6% and 1.2% (v/v) less ethanol than the S. cerevisiae monoculture, with even larger decreases detected in the CDGJM. The MP2 treatments also contained higher concentrations of TCA cycle by-products (i.e. fumarate and succinate) and glycerol, and lower concentrations of acetic acid. The analysis of volatile compounds showed increased production of acetate esters and higher alcohols in all MP2 wines, alongside other compositional alterations arising from the S. cerevisiae inoculation delay.


Assuntos
Fermentação , Microbiologia de Alimentos/métodos , Metschnikowia/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Ácido Acético/metabolismo , Etanol/metabolismo , Glicerol/metabolismo , Fatores de Tempo , Vitis/metabolismo , Vitis/microbiologia , Vinho/análise
15.
Int J Food Microbiol ; 312: 108373, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31654841

RESUMO

The use of non-Saccharomyces yeast in conjunction with Saccharomyces cerevisiae in wine fermentation is a growing trend in the wine industry. Non-Saccharomyces, through their distinctive production of secondary metabolites, have the potential to positively contribute to wine sensory profile. To discover new candidate strains for development as starter cultures, indigenous non-Saccharomyces were isolated from un-inoculated fermenting Shiraz musts from a South Australian vineyard (McLaren Vale wine region) and characterised. Among the 77 isolates, 7 species belonging to 5 genera (Kazachstania, Aureobasidium, Meyerozyma, Wickerhamomyces and Torulaspora) were identified by sequencing the internal transcribed spacer regions of the 5.8S rRNA gene (ITS1-5.8S-ITS2 region). The indigenous isolates were evaluated for oenological properties, namely, ethanol tolerance, enzyme activity, and H2S production. To determine their potential industrial use as starter cultures, representative isolates of each species were assessed in a sterile chemically defined grape juice and Viognier grape juice to evaluate their contribution to fermentation kinetics and production of key metabolites, including volatile compounds.


Assuntos
Saccharomycetales/genética , Saccharomycetales/metabolismo , Vitis/metabolismo , Vinho/microbiologia , Leveduras/metabolismo , Austrália , DNA Intergênico/genética , Fazendas , Fermentação , RNA Ribossômico 5,8S/genética , Saccharomycetales/classificação , Saccharomycetales/isolamento & purificação , Austrália do Sul , Vinho/análise
16.
Appl Environ Microbiol ; 75(21): 6729-35, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734337

RESUMO

We report the cloning and characterization of EstB28, the first esterase to be so characterized from the wine-associated lactic acid bacterium, Oenococcus oeni. The published sequence for O. oeni strain PSU-1 was used to identify putative esterase genes and design PCR primers in order to amplify the corresponding region from strain Ooeni28, an isolate intended for inoculation of wines. In this way a 912-bp open reading frame (ORF) encoding a putative esterase of 34.5 kDa was obtained. The amino acid sequence indicated that EstB28 is a member of family IV of lipolytic enzymes and contains the GDSAG motif common to other lactic acid bacteria. This ORF was cloned into Escherichia coli using an appropriate expression system, and the recombinant esterase was purified. Characterization of EstB28 revealed that the optimum temperature, pH, and ethanol concentration were 40 degrees C, pH 5.0, and 28% (vol/vol), respectively. EstB28 also retained marked activity under conditions relevant to winemaking (10 to 20 degrees C, pH 3.5, 14% [vol/vol] ethanol). Kinetic constants were determined for EstB28 with p-nitrophenyl (pNP)-linked substrates ranging in chain length from C(2) to C(18). EstB28 exhibited greatest specificity for C(2) to C(4) pNP-linked substrates.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esterases/genética , Esterases/metabolismo , Oenococcus/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , Estabilidade Enzimática , Escherichia coli/genética , Esterases/química , Esterases/isolamento & purificação , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Peso Molecular , Oenococcus/genética , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Temperatura
17.
Appl Microbiol Biotechnol ; 81(6): 1117-27, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18839169

RESUMO

Volatile phenols are produced by Dekkera yeasts and are of organoleptic importance in alcoholic beverages. The key compound in this respect is 4-ethylphenol, responsible for the medicinal and phenolic aromas in spoiled wines. The microbial synthesis of volatile phenols is thought to occur in two steps, beginning with naturally occurring hydroxycinnamic acids (HCAs). The enzyme phenolic acid decarboxylase (PAD) converts HCAs to vinyl derivatives, which are the substrates of a second enzyme, postulated to be a vinylphenol reductase (VPR), whose activity results in the formation of ethylphenols. Here, both steps of the pathway are investigated, using cell extracts from a number of Dekkera and Brettanomyces species. Dekkera species catabolise ferulic, caffeic and p-coumaric acids and possess inducible enzymes with similar pH and temperature optima. Brettanomyces does not decarboxylate HCAs but does metabolise vinylphenols. Dekkera species form ethylphenols but the VPR enzyme appears to be highly unstable in cell extracts. A partial protein sequence for PAD was determined from Dekkera anomala and may indicate the presence of a novel enzyme in this genus.


Assuntos
Brettanomyces/enzimologia , Brettanomyces/metabolismo , Dekkera/enzimologia , Dekkera/metabolismo , Aromatizantes/metabolismo , Fenóis/metabolismo , Sequência de Aminoácidos , Ácidos Cafeicos/metabolismo , Carboxiliases/metabolismo , Ácidos Cumáricos/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Propionatos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Compostos Orgânicos Voláteis/metabolismo
18.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476038

RESUMO

Filamentous cluster III Defluviicoccus (DF3) are known to proliferate and cause bulking issues in industrial wastewater treatment plants. Members of the genus Defluviicoccus are also known to exhibit the glycogen accumulating organism (GAO) phenotype, which is suggested to be detrimental to enhanced biological phosphorus removal (EBPR). Despite the reported negative impact members of the DF3 have on activated sludge wastewater treatment systems, limited research has focused on understanding the physiological traits that allow them to compete in these environments. In this study, a near complete genome of an abundant filamentous DF3 named 'Candidatus Defluviicoccus seviourii' was obtained from a full-scale sequencing batch reactor (SBR) treating winery wastewater. Annotation of the 'Ca. D. seviourii' genome revealed interesting metabolic features that help to understand the abundance of this microorganism in industrial wastewater treatment plants. Their potential for the storage of polyhydroxyalkanoates (PHA) is suggested to favour these organisms with the intermittent availability of carbon in these systems. An ability to fix nitrogen and take up urea may provide them with an additional advantage with the characteristically high carbon to nitrogen content of industrial waste. The genome and preliminary findings of this study provide a foundation for further research into these biotechnologically relevant organisms.


Assuntos
Reatores Biológicos/microbiologia , Resíduos Industriais/análise , Rhodospirillaceae/genética , Rhodospirillaceae/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Carbono/metabolismo , Genoma Bacteriano/genética , Genômica , Glicogênio , Nitrogênio/metabolismo , Fósforo/metabolismo , Rhodospirillaceae/classificação , Esgotos
19.
Food Res Int ; 121: 705-713, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108799

RESUMO

Anthocyanins are polyphenolic compounds present in grapes that are responsible for the initial colour of red wine and their incorporation into derived pigments leads to long term colour stability. The ability to predict the effect of process variables, either controlled by winemakers or that naturally change throughout fermentation, on the extraction of anthocyanins is vital to producing red wine of high quality. A 23 factorial experiment with additional points located at central factor conditions was used to determine the impact of temperature, sugar and ethanol concentrations on the mass transfer properties of anthocyanins from fresh Pinot noir grape solids. Factor conditions were chosen to replicate ethanol and sugar concentrations that would be found in a 14% red wine and its respective unfermented juice. A previously described mathematical model was applied to anthocyanin extraction curves to determine mass transfer coefficients and distribution constants for the generation of response surface models able to predict these mass transfer variables for dynamic fermentation scenarios. The coefficient of determination for the model solution exceeded 0.94 in all cases, demonstrating a good agreement between experimental and mathematically-derived anthocyanin concentrations. Following this, simulations of anthocyanin extraction under fermentation conditions were conducted using a previously developed wine fermentation model allowing for the prediction of extraction rates and anthocyanin concentrations under various winemaking scenarios. The extraction simulations predicted a previously observed but so far undescribed anthocyanin extraction pattern during fermentation.


Assuntos
Antocianinas/análise , Fermentação , Modelos Teóricos , Vinho/análise , Cor , Etanol/análise , Manipulação de Alimentos , Viscosidade , Vitis/química
20.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700153

RESUMO

Here, we report the first sequenced genome of an indigenous Australian wine isolate of Torulaspora delbrueckii using the Oxford Nanopore MinION and Illumina HiSeq sequencing platforms. The genome size is 9.4 Mb and contains 4,831 genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA