Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 295(20): 6849-6860, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209653

RESUMO

There are a number of riboswitches that utilize the same ligand-binding domain to regulate transcription or translation. S-box (SAM-I) riboswitches, including the riboswitch present in the Bacillus subtilis metI gene, which encodes cystathionine γ-synthase, regulate the expression of genes involved in methionine metabolism in response to SAM, primarily at the level of transcriptional attenuation. A rarer class of S-box riboswitches is predicted to regulate translation initiation. Here we identified and characterized a translational S-box riboswitch in the metI gene from Desulfurispirillum indicum The regulatory mechanisms of riboswitches are influenced by the kinetics of ligand interaction. The half-life of the translational D. indicum metI RNA-SAM complex is significantly shorter than that of the transcriptional B. subtilis metI RNA. This finding suggests that, unlike the transcriptional RNA, the translational metI riboswitch can make multiple reversible regulatory decisions. Comparison of both RNAs revealed that the second internal loop of helix P3 in the transcriptional RNA usually contains an A residue, whereas the translational RNA contains a C residue that is conserved in other S-box RNAs that are predicted to regulate translation. Mutational analysis indicated that the presence of an A or C residue correlates with RNA-SAM complex stability. Biochemical analyses indicate that the internal loop sequence critically determines the stability of the RNA-SAM complex by influencing the flexibility of residues involved in SAM binding and thereby affects the molecular mechanism of riboswitch function.


Assuntos
Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Transcrição Gênica , Bactérias/genética , Clostridium/genética , Clostridium/metabolismo , Ligantes , RNA Bacteriano/genética , Riboswitch
2.
Proc Natl Acad Sci U S A ; 115(15): 3894-3899, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581302

RESUMO

T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNAIle ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNAIle and the other between the Stem IIA/B pseudoknot and the D loop of tRNAIle These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.


Assuntos
Isoleucina-tRNA Ligase/genética , Mycobacterium smegmatis/genética , RNA Bacteriano/química , RNA de Transferência/química , Elementos Reguladores de Transcrição , Riboswitch , Regulação Bacteriana da Expressão Gênica , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(4): 1113-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583497

RESUMO

The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5' untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine-Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNA(Ile) and tRNA(Ile)-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch.


Assuntos
Actinobacteria , Proteínas de Bactérias , Isoleucina-tRNA Ligase , Iniciação Traducional da Cadeia Peptídica/fisiologia , RNA Bacteriano , RNA de Transferência , Riboswitch/fisiologia , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Isoleucina-tRNA Ligase/biossíntese , Isoleucina-tRNA Ligase/genética , Conformação de Ácido Nucleico , Estabilidade de RNA/fisiologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
J Biol Chem ; 290(38): 23336-47, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26229106

RESUMO

Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.


Assuntos
Anticódon/química , Bacillus subtilis/química , Códon/química , RNA Bacteriano/química , RNA de Transferência de Glicina/química , Riboswitch/fisiologia , Anticódon/genética , Anticódon/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Códon/genética , Códon/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(18): 7240-5, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589841

RESUMO

The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.


Assuntos
Regulação da Expressão Gênica , RNA de Transferência/química , RNA de Transferência/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Sequência de Bases , Cromatografia em Gel , Biologia Computacional , Reagentes de Ligações Cruzadas , Cristalografia por Raios X , Primers do DNA/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Hidroxilação/efeitos da radiação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese/genética , Mutagênese/efeitos da radiação , Conformação de Ácido Nucleico , Ribonuclease P/metabolismo , Espalhamento a Baixo Ângulo , Raios Ultravioleta
6.
J Bacteriol ; 197(9): 1624-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733610

RESUMO

UNLABELLED: Misincorporation of D-tyrosine (D-Tyr) into cellular proteins due to mischarging of tRNA(Tyr) with D-Tyr by tyrosyl-tRNA synthetase inhibits growth and biofilm formation of Bacillus subtilis. Furthermore, many B. subtilis strains lack a functional gene encoding D-aminoacyl-tRNA deacylase, which prevents misincorporation of D-Tyr in most organisms. B. subtilis has two genes that encode tyrosyl-tRNA synthetase: tyrS is expressed under normal growth conditions, and tyrZ is known to be expressed only when tyrS is inactivated by mutation. We hypothesized that tyrZ encodes an alternate tyrosyl-tRNA synthetase, expression of which allows the cell to grow when D-Tyr is present. We show that TyrZ is more selective for L-Tyr over D-Tyr than is TyrS; however, TyrZ is less efficient overall. We also show that expression of tyrZ is required for growth and biofilm formation in the presence of D-Tyr. Both tyrS and tyrZ are preceded by a T box riboswitch, but tyrZ is found in an operon with ywaE, which is predicted to encode a MarR family transcriptional regulator. Expression of tyrZ is repressed by YwaE and also is regulated at the level of transcription attenuation by the T box riboswitch. We conclude that expression of tyrZ may allow growth when excess D-Tyr is present. IMPORTANCE: Accurate protein synthesis requires correct aminoacylation of each tRNA with the cognate amino acid and discrimination against related compounds. Bacillus subtilis produces D-Tyr, an analog of L-Tyr that is toxic when incorporated into protein, during stationary phase. Most organisms utilize a D-aminoacyl-tRNA deacylase to prevent misincorporation of D-Tyr. This work demonstrates that the increased selectivity of the TyrZ form of tyrosyl-tRNA synthetase may provide a mechanism by which B. subtilis prevents misincorporation of D-Tyr in the absence of a functional D-aminoacyl-tRNA deacylase gene.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica , Riboswitch , Fatores de Transcrição/metabolismo , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Especificidade por Substrato , Tirosina/metabolismo
7.
Nucleic Acids Res ; 40(12): 5706-17, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22416067

RESUMO

The ever-changing environment of a bacterial cell requires sophisticated mechanisms to adjust gene expression in response to changes in nutrient availability. L box riboswitch RNAs regulate gene expression in response to cellular lysine (lys) concentrations in the absence of additional regulatory factors. In Bacillus subtilis, binding of lysine (lys) to the L box RNA causes premature transcription termination in the leader region upstream of the lysC coding sequence. To date, little is known about the specific RNA-lys interactions required for transcription termination. In this study, we characterize features of the B. subtilis lysC leader RNA responsible for lys specificity, and structural elements of the lys molecule required for recognition. The wild-type lysC leader RNA can recognize and discriminate between lys and lys analogs. We identified leader RNA variants with mutations in the lys-binding pocket that exhibit changes in the specificity of ligand recognition. These data demonstrate that lysC leader RNA specificity is the result of recognition of ligand features through a series of distinct interactions between lys and nucleotides that comprise the lys-binding pocket, and provide insight into the molecular mechanisms employed by L box riboswitch RNAs to bind and recognize lys.


Assuntos
Bacillus subtilis/genética , Lisina/farmacologia , RNA Bacteriano/química , Riboswitch , Regiões 5' não Traduzidas , Aspartato Quinase/biossíntese , Aspartato Quinase/genética , Bacillus subtilis/enzimologia , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Ligantes , Lisina/análogos & derivados , Lisina/química , Dados de Sequência Molecular , Mutação , Potássio/química , Transcrição Gênica
8.
J Bacteriol ; 194(13): 3386-94, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544272

RESUMO

Expression of conjugative transfer and virulence functions of the Enterococcus faecalis antibiotic resistance plasmid pCF10 is regulated by the interaction of the pheromone receptor protein PrgX with two DNA binding operator sites (XBS1 and XBS2) upstream from the transcription start site of the prgQ operon (encoding the pCF10 transfer machinery) and by posttranscriptional mechanisms. Occupancy of both binding sites by PrgX dimers results in repression of the prgQ promoter. Structural and genetic studies suggest that the peptide pheromone cCF10 functions by binding to PrgX and altering its oligomerization state, resulting in reduced occupancy of XBSs and increased prgQ transcription. The DNA binding activity of PrgX has additional indirect regulatory effects on prgQ transcript levels related to the position of the convergently transcribed prgX operon. This has complicated interpretation of previous analyses of the control of prgQ expression by PrgX. We report here the results of in vivo and in vitro experiments examining the direct effects of PrgX on transcription from the prgQ promoter, as well as quantitative correlation between the concentrations of XBSs, PrgX protein, and prgQ promoter activity in vivo. The results of electrophoretic mobility shift assays and quantitative analysis of prgQ transcription in vitro and in vivo support the predicted roles of the PrgX DNA binding sites in prgQ transcription regulation. The results also suggest the existence of other factors that impede PrgX repression or enhance its antagonism by cCF10 in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Feromônios/farmacologia , Regiões Promotoras Genéticas/fisiologia , Receptores de Feromônios/metabolismo , Proteínas de Bactérias/genética , Conjugação Genética , Ensaio de Desvio de Mobilidade Eletroforética , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Feromônios/fisiologia , Regiões Promotoras Genéticas/genética , Sinais Direcionadores de Proteínas/genética , Receptores de Feromônios/genética , Transcrição Gênica/efeitos dos fármacos
9.
Mol Microbiol ; 78(6): 1393-402, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21143313

RESUMO

The S(MK) (SAM-III) box is an S-adenosylmethionine (SAM)-responsive riboswitch found in the 5' untranslated region of metK genes, encoding SAM synthetase, in many members of the Lactobacillales. SAM binding causes a structural rearrangement in the RNA that sequesters the Shine-Dalgarno (SD) sequence by pairing with a complementary anti-SD (ASD) sequence; sequestration of the SD sequence inhibits binding of the 30S ribosomal subunit and prevents translation initiation. We observed a slight increase in the half-life of the metK transcript in vivo when Enterococcus faecalis cells were depleted for SAM, but no significant change in overall transcript abundance, consistent with the model that this riboswitch regulates at the level of translation initiation. The half-life of the SAM-S(MK) box RNA complex in vitro is shorter than that of the metK transcript in vivo, raising the possibility of reversible binding of SAM. We used a fluorescence assay to directly visualize reversible switching between the SAM-free and SAM-bound conformations. We propose that the S(MK) box riboswitch can make multiple SAM-dependent regulatory decisions during the lifetime of the transcript in vivo, acting as a reversible switch that allows the cell to respond rapidly to fluctuations in SAM pools by modulating expression of the SAM synthetase gene.


Assuntos
Proteínas de Bactérias/genética , Enterococcus faecalis/enzimologia , Regulação Enzimológica da Expressão Gênica , Metionina Adenosiltransferase/genética , Elementos de Resposta , Riboswitch , Regiões 5' não Traduzidas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/química , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , S-Adenosilmetionina/metabolismo
10.
Nat Struct Mol Biol ; 13(3): 226-33, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16491091

RESUMO

We have identified the S(MK) box as a conserved RNA motif in the 5' untranslated leader region of metK (SAM synthetase) genes in lactic acid bacteria, including Enterococcus, Streptococcus and Lactococcus species. This RNA element bound SAM in vitro, and binding of SAM caused an RNA structural rearrangement that resulted in sequestration of the Shine-Dalgarno (SD) sequence. Mutations that disrupted pairing between the SD region and a sequence complementary to the SD blocked SAM binding, whereas compensatory mutations that restored pairing restored SAM binding. The Enterococcus faecalis S(MK) box conferred translational repression of a lacZ reporter when cells were grown under conditions where SAM pools are elevated, and mutations that blocked SAM binding resulted in loss of repression, demonstrating that the S(MK) box is functional in vivo. The S(MK) box therefore represents a new SAM-binding riboswitch distinct from the previously identified S box RNAs.


Assuntos
Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/metabolismo , Regulação Bacteriana da Expressão Gênica , Metionina Adenosiltransferase/biossíntese , Metionina Adenosiltransferase/genética , Biossíntese de Proteínas/genética , S-Adenosilmetionina/metabolismo , Bacillus subtilis/genética , Sequência de Bases , Análise Mutacional de DNA , Enterococcus faecalis/genética , Genes Reporter/genética , Metionina Adenosiltransferase/química , Modelos Genéticos , Dados de Sequência Molecular , Mutação/genética , Ribonuclease H/metabolismo
11.
RNA Biol ; 7(1): 104-10, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20061810

RESUMO

Riboswitches are cis-encoded, cis-acting RNA elements that directly sense a physiological signal. Signal response results in a change in RNA structure that impacts gene expression. Elements of this type play an important role in bacteria, where they regulate a variety of fundamental cellular pathways. Riboswitch-mediated gene regulation most commonly occurs by effects on transcription attenuation, to control whether a full-length transcript is synthesized, or on translation initiation, in which case the transcript is constitutively synthesized but binding of the translation initiation complex is modulated. An overview of the role of riboswitch RNAs in bacterial gene expression will be provided, and a few examples are described in more detail to illustrate the types of mechanisms that have been uncovered.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Sequências Reguladoras de Ácido Ribonucleico/genética , Transdução de Sinais/genética
12.
J Bacteriol ; 190(3): 823-33, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18039762

RESUMO

Riboswitches are regulatory systems in which changes in structural elements in the 5' region of the nascent RNA transcript (the "leader region") control expression of the downstream coding sequence in response to a regulatory signal in the absence of a trans-acting protein factor. The S-box riboswitch, found primarily in low-G+C gram-positive bacteria, is the paradigm for riboswitches that sense S-adenosylmethionine (SAM). Genes in the S-box family are involved in methionine metabolism, and their expression is induced in response to starvation for methionine. S-box genes exhibit conserved primary sequence and secondary structural elements in their leader regions. We previously demonstrated that SAM binds directly to S-box leader RNA, causing a structural rearrangement that results in premature termination of transcription at S-box leader region terminators. S-box genes have a variety of physiological roles, and natural variability in S-box structure and regulatory response could provide additional insight into the role of conserved S-box leader elements in SAM-directed transcription termination. In the current study, in vivo and in vitro assays were employed to analyze the differential regulation of S-box genes in response to SAM. A wide range of responses to SAM were observed for the 11 S-box-regulated transcriptional units in Bacillus subtilis, demonstrating that S-box riboswitches can be calibrated to different physiological requirements.


Assuntos
Regiões 5' não Traduzidas/química , Regiões 5' não Traduzidas/metabolismo , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , S-Adenosilmetionina/farmacologia , Regiões 5' não Traduzidas/genética , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , S-Adenosilmetionina/metabolismo , Transcrição Gênica
13.
Bioorg Med Chem Lett ; 18(12): 3541-4, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18502126

RESUMO

The T box transcription antitermination system is a riboswitch found primarily in Gram-positive bacteria which monitors the aminoacylation of the cognate tRNA and regulates a variety of amino acid-related genes. Novel 4,5-disubstituted oxazolidinones were identified as high affinity RNA molecular effectors that modulate the transcription antitermination function of the T box riboswitch.


Assuntos
Oxazolidinonas/química , RNA Bacteriano/efeitos dos fármacos , RNA de Transferência/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/genética , Desenho de Fármacos , Conformação Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/farmacologia , RNA Bacteriano/genética , RNA de Transferência/genética , Estereoisomerismo , Regiões Terminadoras Genéticas/efeitos dos fármacos , Regiões Terminadoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
14.
J Mol Biol ; 349(2): 273-87, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15890195

RESUMO

The T box system regulates expression of amino acid-related genes in Gram-positive bacteria through premature termination of transcription. Synthesis of the full-length mRNA requires stabilization of an antiterminator element in the 5' untranslated leader RNA by the cognate uncharged tRNA. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS gene (encoding glycyl-tRNA synthetase) can be reproduced in a purified in vitro transcription system, indicating that the nascent transcript is sufficient for interaction with the tRNA. Genetic analyses previously demonstrated base pairing of a single codon in the leader RNA with the tRNA anticodon, and between the antiterminator and the tRNA acceptor end. In this study, we established conditions for specific binding of tRNA(Gly) to glyQS leader RNA generated by phage T7 RNA polymerase. Structural mapping studies revealed tRNA(Gly)-induced protection in the glyQS leader RNA at the two known sites of interaction with the tRNA, as well as at other regions between these sites. The proposed tRNA-dependent structural switch between the competing terminator and antiterminator forms of the leader RNA was demonstrated directly. Changes in tRNA(Gly) upon binding to glyQS leader RNA were detected in the anticodon loop, consistent with pairing with the specifier sequence, and in the highly conserved G19 in the D-loop, similar to effects induced by codon-anticodon interaction in the ribosome. This study provides biochemical evidence for direct interaction of tRNA(Gly) with full-length in vitro transcribed glyQS leader RNA, and an initial view of structural modulations of both RNA partners within the complex.


Assuntos
Regiões 5' não Traduzidas/metabolismo , Bacillus subtilis/genética , Glicina-tRNA Ligase/genética , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA de Transferência de Glicina/química , RNA de Transferência de Glicina/metabolismo , Regiões 5' não Traduzidas/química , Regiões 5' não Traduzidas/genética , Magnésio/farmacologia , Conformação de Ácido Nucleico , Terminação Traducional da Cadeia Peptídica/genética , RNA Bacteriano/genética , RNA de Transferência de Glicina/genética , Ribonuclease H/metabolismo
15.
J Mol Biol ; 346(1): 73-81, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15663928

RESUMO

Expression of the Bacillus subtilis glyQS gene, encoding glycyl-tRNA synthetase, depends on stabilization of an antiterminator element during transcription of the 5' region of the mRNA by binding of uncharged tRNA(Gly). The glyQS gene is a member of the T box family of genes, all of which are involved in generation of charged tRNA. Each gene in this family exhibits an increase in readthrough of a termination signal located upstream of the start of the coding sequence in response to a decrease in the ratio of charged to uncharged tRNA. Many structural features of T box RNAs that are necessary for tRNA-dependent antitermination have been defined, but little is known about the timing or sequence of events that lead to a productive interaction with uncharged tRNA and discrimination against charged tRNA. To investigate these issues, transcription complexes were blocked artificially at specific positions along the leader sequence and tested for the ability to recognize tRNA. Although the sequence element that binds the tRNA anticodon is located more than 100 nt before the termination signal, complexes with nascent transcripts extending to just upstream of the termination site were still competent for antitermination. This result indicates that the transcript can fold into a receptive structure in the absence of the tRNA, and that tRNA is not necessary prior to this point. A mimic of charged tRNA(Gly) inhibited antitermination by uncharged tRNA unless the leader RNA-tRNA(Gly) complexes contained the complete antiterminator. These results suggest that the transcription complex can interact with either uncharged or charged tRNA until it approaches the termination point, allowing maximal flexibility in monitoring the ratio of charged to uncharged tRNA.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , RNA de Transferência de Glicina/metabolismo , Transcrição Gênica/genética , Bacillus subtilis/enzimologia , Pareamento de Bases , Sequência de Bases , Glicina-tRNA Ligase/antagonistas & inibidores , Cinética , Dados de Sequência Molecular , Mutação/genética , RNA de Transferência de Glicina/genética , Moldes Genéticos
16.
Curr Opin Microbiol ; 7(2): 126-31, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15063848

RESUMO

Recent studies have revealed several genetic systems in bacteria that use complex RNA structural elements to monitor regulatory signals and control expression of downstream genes. These include RNA thermosensors, in which an inhibitory structure melts at high temperature, and systems where binding of small RNAs or cellular metabolites modulates the structure of the RNA. The remarkable feature of these systems is the ability of the regulatory RNA elements to specifically sense the regulatory signal, without accessory components, and convey that information to the gene expression machinery via a structural change in the nascent RNA.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Conformação de Ácido Nucleico
17.
Nucleic Acids Res ; 30(7): 1646-55, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11917026

RESUMO

The T box transcription termination control system is used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase and other amino acid-related genes. Readthrough of a transcriptional terminator located in the leader region of the target gene is dependent on a specific interaction between the nascent leader transcript and the cognate uncharged tRNA. This interaction is required for formation of an antiterminator structure in the leader, which prevents formation of a competing transcriptional terminator stem-loop. The antiterminators and terminators of genes in this family are highly conserved in both secondary structure and primary sequence; the antiterminator contains the T box sequence, which is the most highly conserved leader element. These conserved features were investigated by phylogenetic and mutational analysis. Changes at highly conserved positions in the bulge and in the helix above the bulge reduced function, while alteration of other positions that were as much as 96% conserved did not have a major effect. The disparity between sequence conservation and function may be due to the requirement for maintaining base pairing in both the antiterminator and terminator structures.


Assuntos
Regiões Terminadoras Genéticas/genética , Transcrição Gênica/genética , Bacillus subtilis/genética , Sequência de Bases , Sequência Conservada , Genes Bacterianos/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico , Filogenia , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/genética
18.
Life (Basel) ; 5(4): 1567-82, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26426057

RESUMO

The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNA(Ala) directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNA(Ala) (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNA(Ala) species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNA(Ala) may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.

19.
Front Biosci ; 8: d20-31, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12456320

RESUMO

The T box and S box transcription termination control systems are widely used for control of gene expression in Gram-positive bacteria, but are rare in Gram-negative organisms. Both of these systems can be recognized in genomic data because of high conservation of primary sequence and structural elements. The T box system regulates a variety of amino acid-related genes, while the S box system is dedicated to genes involved in methionine metabolism. While both systems involve gene regulation at the level of premature termination of transcription, the molecular mechanisms employed are very different. In the T box system, expression is induced by stabilization of an antiterminator structure in the leader by interaction with the cognate uncharged tRNA; this prevents formation of the competing terminator helix, allowing synthesis of the full-length mRNA. Disruption of conserved leader features results in loss of readthrough. In the S box system, the antiterminator form of the leader is the more stable form. A competing anti-antiterminator must be stabilized by an unknown factor during growth in methionine to prevent formation of the antiterminator, thereby allowing formation of the terminator helix. Disruption of conserved leader elements results in constitutive expression.


Assuntos
Regiões Terminadoras Genéticas/genética , Transcrição Gênica/fisiologia , Sequência de Bases/genética , Sequência de Bases/fisiologia , Dados de Sequência Molecular , RNA Bacteriano/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Transcrição Gênica/genética , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/genética
20.
FEBS Lett ; 584(2): 318-24, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19932103

RESUMO

The T box mechanism is widely used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase genes and genes involved in amino acid biosynthesis and uptake. Binding of a specific uncharged tRNA to a riboswitch element in the nascent transcript causes a structural change in the transcript that promotes expression of the downstream coding sequence. In most cases, this occurs by stabilization of an antiterminator element that competes with formation of a terminator helix. Specific tRNA recognition by the nascent transcript results in increased expression of genes important for tRNA aminoacylation in response to decreased pools of charged tRNA.


Assuntos
Aminoacil-tRNA Sintetases/genética , Bacillus subtilis/enzimologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , RNA de Transferência/metabolismo , Bacillus subtilis/genética , RNA de Transferência/química , RNA de Transferência/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA