Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Arch Toxicol ; 94(1): 205-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919559

RESUMO

Inflammation has been recognized as essential for restorative regeneration. Here, we analyzed the sequential processes during onset of liver injury and subsequent regeneration based on time-resolved transcriptional regulatory networks (TRNs) to understand the relationship between inflammation, mature organ function, and regeneration. Genome-wide expression and TRN analysis were performed time dependently in mouse liver after acute injury by CCl4 (2 h, 8 h, 1, 2, 4, 6, 8, 16 days), as well as lipopolysaccharide (LPS, 24 h) and compared to publicly available data after tunicamycin exposure (mouse, 6 h), hepatocellular carcinoma (HCC, mouse), and human chronic liver disease (non-alcoholic fatty liver, HBV infection and HCC). Spatiotemporal investigation differentiated lobular zones for signaling and transcription factor expression. Acute CCl4 intoxication induced expression of gene clusters enriched for inflammation and stress signaling that peaked between 2 and 24 h, accompanied by a decrease of mature liver functions, particularly metabolic genes. Metabolism decreased not only in pericentral hepatocytes that underwent CCl4-induced necrosis, but extended to the surviving periportal hepatocytes. Proliferation and tissue restorative TRNs occurred only later reaching a maximum at 48 h. The same upstream regulators (e.g. inhibited RXR function) were implicated in increased inflammation and suppressed metabolism. The concomitant inflammation/metabolism TRN occurred similarly after acute LPS and tunicamycin challenges, in chronic mouse models and also in human liver diseases. Downregulation of metabolic genes occurs concomitantly to induce inflammation-associated genes as an early response and appears to be initiated by similar upstream regulators in acute and chronic liver diseases in humans and mice. In the acute setting, proliferation and restorative regeneration associated TRNs peak only later when metabolism is already suppressed.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/genética , Redes Reguladoras de Genes , Hepatite Crônica/genética , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Hepatite Crônica/fisiopatologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
2.
Mol Cell Proteomics ; 17(6): 1084-1096, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507050

RESUMO

Invasive infections by the human pathogenic fungus Aspergillus fumigatus start with the outgrowth of asexual, airborne spores (conidia) into the lung tissue of immunocompromised patients. The resident alveolar macrophages phagocytose conidia, which end up in phagolysosomes. However, A. fumigatus conidia resist phagocytic degradation to a certain degree. This is mainly attributable to the pigment 1,8-dihydroxynaphthalene (DHN) melanin located in the cell wall of conidia, which manipulates the phagolysosomal maturation and prevents their intracellular killing. To get insight in the underlying molecular mechanisms, we comparatively analyzed proteins of mouse macrophage phagolysosomes containing melanized wild-type (wt) or nonmelanized pksP mutant conidia. For this purpose, a protocol to isolate conidia-containing phagolysosomes was established and a reference protein map of phagolysosomes was generated. We identified 637 host and 22 A. fumigatus proteins that were differentially abundant in the phagolysosome. 472 of the host proteins were overrepresented in the pksP mutant and 165 in the wt conidia-containing phagolysosome. Eight of the fungal proteins were produced only in pksP mutant and 14 proteins in wt conidia-containing phagolysosomes. Bioinformatical analysis compiled a regulatory module, which indicates host processes affected by the fungus. These processes include vATPase-driven phagolysosomal acidification, Rab5 and Vamp8-dependent endocytic trafficking, signaling pathways, as well as recruitment of the Lamp1 phagolysosomal maturation marker and the lysosomal cysteine protease cathepsin Z. Western blotting and immunofluorescence analyses confirmed the proteome data and moreover showed differential abundance of the major metabolic regulator mTOR. Taken together, with the help of a protocol optimized to isolate A. fumigatus conidia-containing phagolysosomes and a potent bioinformatics algorithm, we were able to confirm A. fumigatus conidia-dependent modification of phagolysosomal processes that have been described before and beyond that, identify pathways that have not been implicated in A. fumigatus evasion strategy, yet.Mass spectrometry proteomics data are available via ProteomeXchange with identifiers PXD005724 and PXD006134.


Assuntos
Aspergillus fumigatus/fisiologia , Proteínas Fúngicas/metabolismo , Evasão da Resposta Imune , Fagossomos/metabolismo , Esporos Fúngicos/metabolismo , Animais , Camundongos , Proteômica , Células RAW 264.7
3.
J Hepatol ; 70(6): 1192-1202, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30711403

RESUMO

BACKGROUND & AIMS: The mammalian circadian clock controls various aspects of liver metabolism and integrates nutritional signals. Recently, we described Hedgehog (Hh) signaling as a novel regulator of liver lipid metabolism. Herein, we investigated crosstalk between hepatic Hh signaling and circadian rhythm. METHODS: Diurnal rhythms of Hh signaling were investigated in liver and hepatocytes from mice with ablation of Smoothened (SAC-KO) and crossbreeds with PER2::LUC reporter mice. By using genome-wide screening, qPCR, immunostaining, ELISA and RNAi experiments in vitro we identified relevant transcriptional regulatory steps. Shotgun lipidomics and metabolic cages were used for analysis of metabolic alterations and behavior. RESULTS: Hh signaling showed diurnal oscillations in liver and hepatocytes in vitro. Correspondingly, the level of Indian Hh, oscillated in serum. Depletion of the clock gene Bmal1 in hepatocytes resulted in significant alterations in the expression of Hh genes. Conversely, SAC-KO mice showed altered expression of clock genes, confirmed by RNAi against Gli1 and Gli3. Genome-wide screening revealed that SAC-KO hepatocytes showed time-dependent alterations in various genes, particularly those associated with lipid metabolism. The clock/hedgehog module further plays a role in rhythmicity of steatosis, and in the response of the liver to a high-fat diet or to differently timed starvation. CONCLUSIONS: For the first time, Hh signaling in hepatocytes was found to be time-of-day dependent and to feed back on the circadian clock. Our findings suggest an integrative role of Hh signaling, mediated mainly by GLI factors, in maintaining homeostasis of hepatic lipid metabolism by balancing the circadian clock. LAY SUMMARY: The results of our investigation show for the first time that the Hh signaling in hepatocytes is time-of-day dependent, leading to differences not only in transcript levels but also in the amount of Hh ligands in peripheral blood. Conversely, Hh signaling is able to feed back to the circadian clock.


Assuntos
Relógios Circadianos/fisiologia , Fígado Gorduroso/etiologia , Proteínas Hedgehog/fisiologia , Animais , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Transdução de Sinais/fisiologia , Receptor Smoothened/fisiologia , Proteína GLI1 em Dedos de Zinco/fisiologia , Proteína Gli3 com Dedos de Zinco/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30478162

RESUMO

The opportunistic pathogen Candida glabrata shows a concerning increase in drug resistance. Here, we present the analysis of two serial bloodstream isolates, obtained 12 days apart. Both isolates show pan-azole resistance and echinocandin resistance was acquired during the sampling interval. Genome sequencing identified nine nonsynonymous SNVs between the strains, including a S663P substitution in FKS2 and previously undescribed SNVs in MDE1 and FPR1, offering insight into how C. glabrata acquires drug resistance and adapts to a human host.


Assuntos
Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Equinocandinas/farmacologia , Genômica/métodos , Antifúngicos/farmacologia , Candidíase/microbiologia , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana
5.
Metabolomics ; 14(4): 41, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30830340

RESUMO

INTRODUCTION: Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involved in metal complexing. OBJECTIVE: To introduce a software tool for the identification of isotopologues from mass spectrometry data. METHODS: DeltaMS relies on XCMS peak detection and X13CMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios. It provides pipelines for recognition of isotope patterns in three experiment types commonly used in isotopic labeling studies: (1) search for isotope signatures with a specific mass shift and intensity ratio in one sample set, (2) analyze two sample sets for a specific mass shift and, optionally, the isotope ratio, whereby one sample set is isotope-labeled, and one is not, (3) analyze isotope-guided perturbation experiments with a setup described in X13CMS. RESULTS: To illustrate the versatility of DeltaMS, we analyze data sets from case-studies that commonly pose challenges in evaluation of natural isotopes or isotopic signatures in labeling experiment. In these examples, the untargeted detection of sulfur, bromine and artificial metal isotopic patterns is enabled by the automated search for specific isotopes or isotope signatures. CONCLUSION: DeltaMS provides a platform for the identification of (pre-defined) isotopologues in MS data from single samples or comparative metabolomics data sets.


Assuntos
Marcação por Isótopo , Laccaria/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Metabolômica , Cromatografia Gasosa , Cromatografia Líquida , Humanos , Células K562 , Laccaria/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Espectrometria de Massas
6.
Cell Microbiol ; 18(7): 889-904, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26752615

RESUMO

Intestinal epithelial cells (IEC) form a tight barrier to the gut lumen. Paracellular permeability of the intestinal barrier is regulated by tight junction proteins and can be modulated by microorganisms and other stimuli. The polymorphic fungus Candida albicans, a frequent commensal of the human mucosa, has the capacity of traversing this barrier and establishing systemic disease within the host. Infection of polarized C2BBe1 IEC with wild-type C. albicans led to a transient increase of transepithelial electric resistance (TEER) before subsequent barrier disruption, accompanied by a strong decline of junctional protein levels and substantial, but considerably delayed cytotoxicity. Time-resolved microarray-based transcriptome analysis of C. albicans challenged IEC revealed a prominent role of NF-κB and MAPK signalling pathways in the response to infection. Hence, we inferred a gene regulatory network based on differentially expressed NF-κB and MAPK pathway components and their predicted transcriptional targets. The network model predicted activation of GDF15 by NF-κB was experimentally validated. Furthermore, inhibition of NF-κB activation in C. albicans infected C2BBe1 cells led to enhanced cytotoxicity in the epithelial cells. Taken together our study identifies NF-κB activation as an important protective signalling pathway in the response of epithelial cells to C. albicans.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NF-kappa B/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Linhagem Celular , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade nas Mucosas/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , NF-kappa B/genética , Estresse Fisiológico/fisiologia , Proteínas de Junções Íntimas/metabolismo
7.
Alcohol Clin Exp Res ; 41(5): 883-894, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28226195

RESUMO

BACKGROUND: The liver is the major site for alcohol metabolism in the body and therefore the primary target organ for ethanol (EtOH)-induced toxicity. In this study, we investigated the in vitro response of human liver cells to different EtOH concentrations in a perfused bioartificial liver device that mimics the complex architecture of the natural organ. METHODS: Primary human liver cells were cultured in the bioartificial liver device and treated for 24 hours with medium containing 150 mM (low), 300 mM (medium), or 600 mM (high) EtOH, while a control culture was kept untreated. Gene expression patterns for each EtOH concentration were monitored using Affymetrix Human Gene 1.0 ST Gene chips. Scaled expression profiles of differentially expressed genes (DEGs) were clustered using Fuzzy c-means algorithm. In addition, functional classification methods, KEGG pathway mapping and also a machine learning approach (Random Forest) were utilized. RESULTS: A number of 966 (150 mM EtOH), 1,334 (300 mM EtOH), or 4,132 (600 mM EtOH) genes were found to be differentially expressed. Dose-response relationships of the identified clusters of co-expressed genes showed a monotonic, threshold, or nonmonotonic (hormetic) behavior. Functional classification of DEGs revealed that low or medium EtOH concentrations operate adaptation processes, while alterations observed for the high EtOH concentration reflect the response to cellular damage. The genes displaying a hormetic response were functionally characterized by overrepresented "cellular ketone metabolism" and "carboxylic acid metabolism." Altered expression of the genes BAHD1 and H3F3B was identified as sufficient to classify the samples according to the applied EtOH doses. CONCLUSIONS: Different pathways of metabolic and epigenetic regulation are affected by EtOH exposition and partly undergo hormetic regulation in the bioartificial liver device. Gene expression changes observed at high EtOH concentrations reflect in some aspects the situation of alcoholic hepatitis in humans.


Assuntos
Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Estresse Oxidativo/fisiologia , Transcrição Gênica/fisiologia
8.
Nucleic Acids Res ; 43(3): 1392-406, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25586221

RESUMO

Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host-pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.


Assuntos
Candida glabrata/genética , Genes Fúngicos , Análise de Sequência de RNA/métodos , Transcriptoma , Regiões 3' não Traduzidas , Concentração de Íons de Hidrogênio , Íntrons , Nitrosação , Pseudogenes , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética
9.
PLoS Genet ; 10(12): e1004824, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474009

RESUMO

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Hifas/genética , Macrófagos/microbiologia , Virulência/genética , Animais , Candidíase/microbiologia , Candidíase/mortalidade , Parede Celular/genética , Parede Celular/metabolismo , Células Cultivadas , Evolução Molecular Direcionada , Regulação Fúngica da Expressão Gênica , Variação Genética , Hifas/patogenicidade , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados
10.
J Proteome Res ; 15(5): 1580-91, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974881

RESUMO

Aspergillus fumigatus is the species that most commonly causes the opportunistic infection invasive aspergillosis (IA) in patients being treated for hematological malignancies. Little is known about the A. fumigatus proteins that trigger the production of Aspergillus-specific IgG antibodies during the course of IA. To characterize the serological response to A. fumigatus protein antigens, mycelial proteins were separated by 2-D gel electrophoresis. The gels were immunoblotted with sera from patients with probable and proven IA and control patients without IA. We identified 49 different fungal proteins, which gave a positive IgG antibody signal. Most of these antigens play a role in primary metabolism and stress responses. Overall, our analysis identified 18 novel protein antigens from A. fumigatus. To determine whether these antigens can be used as diagnostic or prognostic markers or exhibit a protective activity, we employed supervised machine learning with decision trees. We identified two candidates for further analysis, the protein antigens CpcB and Shm2. Heterologously produced Shm2 induced a strongly proinflammatory response in human peripheral blood mononuclear cells after in vitro stimulation. In contrast, CpcB did not activate the immune response of PBMCs. These findings could serve as the basis for the development of an immunotherapy of IA.


Assuntos
Antígenos de Fungos/análise , Aspergillus fumigatus/imunologia , Proteômica/métodos , Aspergilose/imunologia , Estudos de Casos e Controles , Células Cultivadas , Proteínas Fúngicas/análise , Proteínas Fúngicas/imunologia , Humanos , Imunoglobulina G/biossíntese , Leucócitos Mononucleares/imunologia , Infecções Oportunistas/imunologia , Aprendizado de Máquina Supervisionado
11.
Bioinformatics ; 31(3): 445-6, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25294921

RESUMO

SUMMARY: Systematically extracting biological meaning from omics data is a major challenge in systems biology. Enrichment analysis is often used to identify characteristic patterns in candidate lists. FungiFun is a user-friendly Web tool for functional enrichment analysis of fungal genes and proteins. The novel tool FungiFun2 uses a completely revised data management system and thus allows enrichment analysis for 298 currently available fungal strains published in standard databases. FungiFun2 offers a modern Web interface and creates interactive tables, charts and figures, which users can directly manipulate to their needs. AVAILABILITY AND IMPLEMENTATION: FungiFun2, examples and tutorials are publicly available at https://elbe.hki-jena.de/fungifun/. CONTACT: steffen.priebe@hki-jena.de or joerg.linde@hki-jena.de.


Assuntos
Bases de Dados Factuais , Genes Fúngicos/genética , Internet , Software , Biologia de Sistemas/métodos
12.
Biotechnol Bioeng ; 113(1): 173-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26134880

RESUMO

More than 80 years after its discovery, penicillin is still a widely used and commercially highly important antibiotic. Here, we analyse the metabolic network of penicillin synthesis in Penicillium chrysogenum based on the concept of elementary flux modes. In particular, we consider the synthesis of the invariant molecular core of the various subtypes of penicillin and the two major ways of incorporating sulfur: transsulfuration and direct sulfhydrylation. 66 elementary modes producing this invariant core are obtained. These show four different yields with respect to glucose, notably ½, 2/5, 1/3, and 2/7, with the highest yield of ½ occurring only when direct sulfhydrylation is used and α-aminoadipate is completely recycled. In the case of no recycling of this intermediate, we find the maximum yield to be 2/7. We compare these values with earlier literature values. Our analysis provides a systematic overview of the redundancy in penicillin synthesis and a detailed insight into the corresponding routes. Moreover, we derive suggestions for potential knockouts that could increase the average yield.


Assuntos
Antibacterianos/biossíntese , Vias Biossintéticas/genética , Penicilinas/biossíntese , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Simulação por Computador , Modelos Biológicos
13.
Arch Toxicol ; 90(10): 2513-29, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27339419

RESUMO

It is well known that isolation and cultivation of primary hepatocytes cause major gene expression alterations. In the present genome-wide, time-resolved study of cultivated human and mouse hepatocytes, we made the observation that expression changes in culture strongly resemble alterations in liver diseases. Hepatocytes of both species were cultivated in collagen sandwich and in monolayer conditions. Genome-wide data were also obtained from human NAFLD, cirrhosis, HCC and hepatitis B virus-infected tissue as well as mouse livers after partial hepatectomy, CCl4 intoxication, obesity, HCC and LPS. A strong similarity between cultivation and disease-induced expression alterations was observed. For example, expression changes in hepatocytes induced by 1-day cultivation and 1-day CCl4 exposure in vivo correlated with R = 0.615 (p < 0.001). Interspecies comparison identified predominantly similar responses in human and mouse hepatocytes but also a set of genes that responded differently. Unsupervised clustering of altered genes identified three main clusters: (1) downregulated genes corresponding to mature liver functions, (2) upregulation of an inflammation/RNA processing cluster and (3) upregulated migration/cell cycle-associated genes. Gene regulatory network analysis highlights overrepresented and deregulated HNF4 and CAR (Cluster 1), Krüppel-like factors MafF and ELK1 (Cluster 2) as well as ETF (Cluster 3) among the interspecies conserved key regulators of expression changes. Interventions ameliorating but not abrogating cultivation-induced responses include removal of non-parenchymal cells, generation of the hepatocytes' own matrix in spheroids, supplementation with bile salts and siRNA-mediated suppression of key transcription factors. In conclusion, this study shows that gene regulatory network alterations of cultivated hepatocytes resemble those of inflammatory liver diseases and should therefore be considered and exploited as disease models.


Assuntos
Redes Reguladoras de Genes , Hepatócitos/metabolismo , Hepatopatias/genética , Cultura Primária de Células , Transcriptoma , Animais , Células Cultivadas , Estudo de Associação Genômica Ampla , Hepatócitos/imunologia , Humanos , Hepatopatias/etiologia , Hepatopatias/imunologia , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie
14.
Biol Res ; 49(1): 34, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464526

RESUMO

BACKGROUND: Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. RESULTS: Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, "Cell cycle" was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, "DNA repair" and "replication" pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. CONCLUSION: We found the pathways associated with "DNA repair" and "replication" less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction.


Assuntos
Senescência Celular/fisiologia , Fibroblastos/efeitos da radiação , Feto Abortado , Análise de Variância , Células Cultivadas , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Fibroblastos/fisiologia , Raios gama , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Pulmão , Masculino , Análise de Sequência de RNA , Fatores de Tempo , Regulação para Cima/efeitos da radiação , beta-Galactosidase/metabolismo
15.
Mol Microbiol ; 93(3): 539-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948085

RESUMO

The human pathogenic fungus Aspergillus fumigatus normally lives as a soil saprophyte. Its environment includes poorly oxygenated substrates that also occur during tissue invasive growth of the fungus in the human host. Up to now, few cellular factors have been identified that allow the fungus to efficiently adapt its energy metabolism to hypoxia. Here, we cultivated A. fumigatus in an O2 -controlled fermenter and analysed its responses to O2 limitation on a minute timescale. Transcriptome sequencing revealed several genes displaying a rapid and highly dynamic regulation. One of these genes was analysed in detail and found to encode fungoglobin, a previously uncharacterized member of the sensor globin protein family widely conserved in filamentous fungi. Besides low O2 , iron limitation also induced transcription, but regulation was not entirely dependent on the two major transcription factors involved in adaptation to iron starvation and hypoxia, HapX and SrbA respectively. The protein was identified as a functional haemoglobin, as binding of this cofactor was detected for the recombinant protein. Gene deletion in A. fumigatus confirmed that haem-binding fungoglobins are important for growth in microaerobic environments with O2 levels far lower than in hypoxic human tissue.


Assuntos
Adaptação Fisiológica , Aspergillus fumigatus/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Globinas/genética , Oxigênio/fisiologia , Aspergillus fumigatus/genética , Fermentação , Proteínas Fúngicas/fisiologia , Deleção de Genes , Globinas/fisiologia , Humanos , Hifas/crescimento & desenvolvimento , Hifas/ultraestrutura , Ferro/metabolismo , Mutação , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Hepatology ; 60(6): 2040-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24677161

RESUMO

UNLABELLED: The impairment of hepatic metabolism due to liver injury has high systemic relevance. However, it is difficult to calculate the impairment of metabolic capacity from a specific pattern of liver damage with conventional techniques. We established an integrated metabolic spatial-temporal model (IM) using hepatic ammonia detoxification as a paradigm. First, a metabolic model (MM) based on mass balancing and mouse liver perfusion data was established to describe ammonia detoxification and its zonation. Next, the MM was combined with a spatial-temporal model simulating liver tissue damage and regeneration after CCl4 intoxication. The resulting IM simulated and visualized whether, where, and to what extent liver damage compromised ammonia detoxification. It allowed us to enter the extent and spatial patterns of liver damage and then calculate the outflow concentrations of ammonia, glutamine, and urea in the hepatic vein. The model was validated through comparisons with (1) published data for isolated, perfused livers with and without CCl4 intoxication and (2) a set of in vivo experiments. Using the experimentally determined portal concentrations of ammonia, the model adequately predicted metabolite concentrations over time in the hepatic vein during toxin-induced liver damage and regeneration in rodents. Further simulations, especially in combination with a simplified model of blood circulation with three ammonia-detoxifying compartments, indicated a yet unidentified process of ammonia consumption during liver regeneration and revealed unexpected concomitant changes in amino acid metabolism in the liver and at extrahepatic sites. CONCLUSION: The IM of hepatic ammonia detoxification considerably improves our understanding of the metabolic impact of liver disease and highlights the importance of integrated modeling approaches on the way toward virtual organisms.


Assuntos
Amônia/metabolismo , Hepatopatias/metabolismo , Regeneração Hepática , Modelos Biológicos , Animais , Técnicas In Vitro , Inativação Metabólica , Masculino , Camundongos Endogâmicos C57BL , Perfusão
17.
Nat Chem Biol ; 9(11): 693-700, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077178

RESUMO

Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD(+) into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Longevidade , Niacinamida/metabolismo , Sirtuínas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Metilação , Niacinamida/química , Sirtuínas/genética
18.
Immun Ageing ; 12: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380578

RESUMO

BACKGROUND: Rotenone inhibits the electron transfer from complex I to ubiquinone, in this way interfering with the electron transport chain in mitochondria. This chain of events induces increased levels of intracellular reactive oxygen species, which in turn can contribute to acceleration of telomere shortening and induction of DNA damage, ultimately resulting in aging. In this study, we investigated the effect of rotenone treatment in human fibroblast strains. RESULTS: For the first time we here describe that rotenone treatment induced a hormetic effect in human fibroblast strains. We identified a number of genes which were commonly differentially regulated due to low dose rotenone treatment in fibroblasts independent of their cell origin. However, these genes were not among the most strongly differentially regulated genes in the fibroblast strains on treatment with rotenone. Thus, if there is a common hormesis regulation, it is superimposed by cell strain specific individual responses. We found the rotenone induced differential regulation of pathways common between the two fibroblast strains, being weaker than the pathways individually regulated in the single fibroblast cell strains. Furthermore, within the common pathways different genes were responsible for this different regulation. Thus, rotenone induced hormesis was related to a weak pathway signal, superimposed by a stronger individual cellular response, a situation as found for the differentially expressed genes. CONCLUSION: We found that the concept of hormesis also applies to in vitro aging of primary human fibroblasts. However, in depth analysis of the genes as well as the pathways differentially regulated due to rotenone treatment revealed cellular hormesis being related to weak signals which are superimposed by stronger individual cell-internal responses. This would explain that in general hormesis is a small effect. Our data indicate that the observed hormetic phenotype does not result from a specific strong well-defined gene or pathway regulation but from weak common cellular processes induced by low levels of reactive oxygen species. This conclusion also holds when comparing our results with those obtained for C. elegans in which the same low dose rotenone level induced a life span extending, thus hormetic effect.

19.
BMC Genomics ; 13: 519, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23031507

RESUMO

BACKGROUND: The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life-threatening infections in immuno-compromised patients. Recently developed high-throughput transcriptome and proteome technologies, such as microarrays, RNA deep-sequencing, and LC-MS/MS of peptide mixtures, are of enormous value for systematically investigating pathogenic organisms. In the field of infection biology, one of the priorities is to collect and standardise data, in order to generate datasets that can be used to investigate and compare pathways and gene responses involved in pathogenicity. The "omics" era provides a multitude of inputs that need to be integrated and assessed. We therefore evaluated the potential of paired-end mRNA-Seq for investigating the regulatory role of the central mitogen activated protein kinase (MpkA). This kinase is involved in the cell wall integrity signalling pathway of A. fumigatus and essential for maintaining an intact cell wall in response to stress. RESULTS: The comparison of the transcriptome and proteome of an A. fumigatus wild-type strain with an mpkA null mutant strain revealed that 70.4% of the genome was found to be expressed and that MpkA plays a significant role in the regulation of many genes involved in cell wall remodelling, oxidative stress and iron starvation response, and secondary metabolite biosynthesis. Moreover, absence of the mpkA gene also strongly affects the expression of genes involved in primary metabolism. The data were further processed to evaluate the potential of the mRNA-Seq technique. We comprehensively matched up our data to published transcriptome studies and were able to show an improved data comparability of mRNA-Seq experiments independently of the technique used. Analysis of transcriptome and proteome data revealed only a weak correlation between mRNA and protein abundance. CONCLUSIONS: High-throughput analysis of MpkA-dependent gene expression confirmed many previous findings that this kinase is important for regulating many genes involved in metabolic pathways. Our analysis showed more than 2000 differentially regulated genes. RNA deep-sequencing is less error-prone than established microarray-based technologies. It also provides additional information in A. fumigatus studies and as a result is more suitable for the creation of extensive datasets.


Assuntos
Aspergillus fumigatus/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteoma/metabolismo , Transcriptoma , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Regiões não Traduzidas
20.
Mol Syst Biol ; 7: 515, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772263

RESUMO

While previous studies have shed light on the link between the structure of metabolism and its transcriptional regulation, the extent to which transcriptional regulation controls metabolism has not yet been fully explored. In this work, we address this problem by integrating a large number of experimental data sets with a model of the metabolism of Escherichia coli. Using a combination of computational tools including the concept of elementary flux patterns, methods from network inference and dynamic optimization, we find that transcriptional regulation of pathways reflects the protein investment into these pathways. While pathways that are associated to a high protein cost are controlled by fine-tuned transcriptional programs, pathways that only require a small protein cost are transcriptionally controlled in a few key reactions. As a reason for the occurrence of these different regulatory strategies, we identify an evolutionary trade-off between the conflicting requirements to reduce protein investment and the requirement to be able to respond rapidly to changes in environmental conditions.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Redes e Vias Metabólicas/genética , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação Bacteriana da Expressão Gênica , Análise em Microsséries , Modelos Biológicos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA