Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunity ; 53(3): 548-563.e8, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32857950

RESUMO

How antigen valency affects B cells in vivo during immune responses is not well understood. Here, using HIV immunogens with defined valencies ranging from 1 to 60, we investigated the role of antigen valency during different phases of B cell responses in vivo. Highly multimerized immunogens preferentially rapidly activated cognate B cells, with little affinity discrimination. This led to strong early induction of the transcription factors IRF4 (interferon regulatory factor 4) and Bcl6, driving both early extrafollicular plasma cell and germinal center responses, in a CD4+ T-cell-dependent manner, involving B cells with a broad range of affinities. Low-valency antigens induced smaller effector B cell responses, with preferential recruitment of high-affinity B cells. Thus, antigen valency has multifaceted effects on B cell responses and can dictate affinity thresholds and competitive landscapes for B cells in vivo, with implications for vaccine design.


Assuntos
Afinidade de Anticorpos/imunologia , Antígenos/imunologia , Linfócitos B/imunologia , Sítios de Ligação de Anticorpos/imunologia , Centro Germinativo/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/fisiologia , Fatores Reguladores de Interferon/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/imunologia , Multimerização Proteica/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia
2.
J Immunol ; 210(11): 1752-1760, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074193

RESUMO

T follicular helper (TFH) cells are essential for developing protective Ab responses following vaccination. Greater understanding of the genetic program leading to TFH differentiation is needed. Chromatin modifications are central in the control of gene expression. However, detailed knowledge of how chromatin regulators (CRs) regulate differentiation of TFH cells is limited. We screened a large short hairpin RNA library targeting all known CRs in mice and identified the histone methyltransferase mixed lineage leukemia 1 (Mll1) as a positive regulator of TFH differentiation. Loss of Mll1 expression reduced formation of TFH cells following acute viral infection or protein immunization. In addition, expression of the TFH lineage-defining transcription factor Bcl6 was reduced in the absence of Mll1. Transcriptomics analysis identified Lef1 and Tcf7 as genes dependent on Mll1 for their expression, which provides one mechanism for the regulation of TFH differentiation by Mll1. Taken together, CRs such as Mll1 substantially influence TFH differentiation.


Assuntos
Cromatina , Células T Auxiliares Foliculares , Animais , Camundongos , Diferenciação Celular , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células T Auxiliares Foliculares/metabolismo , Linfócitos T Auxiliares-Indutores
3.
J Immunol ; 209(8): 1566-1573, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096645

RESUMO

T follicular helper (TFH) cells are a specialized subset of CD4 T cells that deliver critical help signals to B cells for the production of high-affinity Abs. Understanding the genetic program regulating TFH differentiation is critical if one wants to manipulate TFH cells during vaccination. A large number of transcription factor (TFs) involved in the regulation of TFH differentiation have been characterized. However, there are likely additional unknown TFs required for this process. To identify new TFs, we screened a large short hairpin RNA library targeting 353 TFs in mice using an in vivo RNA interference screen. Yin Yang 1 (YY-1) was identified as a novel positive regulator of TFH differentiation. Ablation of YY-1 severely impaired TFH differentiation following acute viral infection and protein immunization. We found that the zinc fingers of YY-1 are critical to support TFH differentiation. Thus, we discovered a novel TF involved in the regulation of TFH cells.


Assuntos
Centro Germinativo , Linfócitos T Auxiliares-Indutores , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Ativação Linfocitária , Camundongos , RNA Interferente Pequeno/metabolismo , Células T Auxiliares Foliculares
4.
Mol Ther ; 29(5): 1729-1743, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484965

RESUMO

Extracellular vesicles (EVs) are an important intercellular communication system facilitating the transfer of macromolecules between cells. Delivery of exogenous cargo tethered to the EV surface or packaged inside the lumen are key strategies for generating therapeutic EVs. We identified two "scaffold" proteins, PTGFRN and BASP1, that are preferentially sorted into EVs and enable high-density surface display and luminal loading of a wide range of molecules, including cytokines, antibody fragments, RNA binding proteins, vaccine antigens, Cas9, and members of the TNF superfamily. Molecules were loaded into EVs at high density and exhibited potent in vitro activity when fused to full-length or truncated forms of PTGFRN or BASP1. Furthermore, these engineered EVs retained pharmacodynamic activity in a variety of animal models. This engineering platform provides a simple approach to functionalize EVs with topologically diverse macromolecules and represents a significant advance toward unlocking the therapeutic potential of EVs.


Assuntos
Vesículas Extracelulares/transplante , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas/administração & dosagem , Proteínas Repressoras/metabolismo , Animais , Comunicação Celular , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética
5.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408181

RESUMO

Understanding immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics and vaccines and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Memória Imunológica , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , Estados Unidos , Adulto Jovem
6.
Mol Cancer Ther ; 20(3): 523-534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33443094

RESUMO

The promise of IL12 as a cancer treatment has yet to be fulfilled with multiple tested approaches being limited by unwanted systemic exposure and unpredictable pharmacology. To address these limitations, we generated exoIL12, a novel, engineered exosome therapeutic that displays functional IL12 on the surface of an exosome. IL12 exosomal surface expression was achieved via fusion to the abundant exosomal surface protein PTGFRN resulting in equivalent potency in vitro to recombinant IL12 (rIL12) as demonstrated by IFNγ production. Following intratumoral injection, exoIL12 exhibited prolonged tumor retention and greater antitumor activity than rIL12. Moreover, exoIL12 was significantly more potent than rIL12 in tumor growth inhibition. In the MC38 model, complete responses were observed in 63% of mice treated with exoIL12; in contrast, rIL12 resulted in 0% complete responses at an equivalent IL12 dose. This correlated with dose-dependent increases in tumor antigen-specific CD8+ T cells. Rechallenge studies of exoIL12 complete responder mice showed no tumor regrowth, and depletion of CD8+ T cells completely abrogated antitumor activity of exoIL12. Following intratumoral administration, exoIL12 exhibited 10-fold higher intratumoral exposure than rIL12 and prolonged IFNγ production up to 48 hours. Retained local pharmacology of exoIL12 was further confirmed using subcutaneous injections in nonhuman primates. This work demonstrates that tumor-restricted pharmacology of exoIL12 results in superior in vivo efficacy and immune memory without systemic IL12 exposure and related toxicity. ExoIL12 is a novel cancer therapeutic candidate that overcomes key limitations of rIL12 and thereby creates a therapeutic window for this potent cytokine.


Assuntos
Exossomos/metabolismo , Interleucina-12/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Camundongos
7.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860581

RESUMO

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Linfa/efeitos dos fármacos , Saponinas/farmacologia , Receptores Toll-Like/agonistas , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Linfa/fisiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas , Ratos , Ratos Wistar
8.
bioRxiv ; 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33442687

RESUMO

Understanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4 + T cells and CD8 + T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4 + T cell, and CD8 + T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA