Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Neurophysiol ; 127(4): 1067-1074, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320023

RESUMO

Alzheimer's disease (AD) is pathologically characterized by senile plaques and neurofibrillary tangles composed of ß-amyloid peptide (Aß) and tau hyperphosphorylation, respectively. Mannosylation, a particular type of posttranslational modification, may be involved in the pathogenesis of AD. However, its underlying mechanism remains unclear. Protein O-linked mannose ß-1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) catalyzes the formation of the N-acetylglucosamine ß-1,2-Man linkage of O-mannosylglycan, which can increase the protein posttranslational mannosylation level. The defective POMGnT1 gene leads to the hypomannosylation of proteins, which may cause cognitive decline in aged people. This study aimed to investigate whether POMGnT1 participated in the pathogenesis of AD and explore its underlying role using AD mouse and cell models. In this study, the expression of POMGnT1 was measured in AD models [ß-amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice, an AD mouse model; N2a cells stably transfected with Swedish mutant APP (N2a/APP), an AD cell model]. The results revealed that the expression of POMGnT1 decreased in AD mouse and cell models. In addition, POMGnT1-overexpressing N2a/APP cells were built by retroviral transfection. POMGnT1 overexpression may lower Aß levels by reducing APP production and downregulating ß- and γ-secretase activities. It also promoted clearance of Aß by upregulating insulin-degrading enzymes and ameliorated tau hyperphosphorylation. Hence, it was concluded that POMGnT1 was involved in the pathogenic process of AD. The decreased expression of POMGnT1 contributes to AD-like pathologies.NEW & NOTEWORTHY This study explored the role of mannosylation in the pathogenesis of AD through a mannosyltransferase-POMGnT1. Results demonstrated that target gene overexpression could ameliorate pathologies of Aß and tau hyperphosphorylation. This study is the first to examine the relationship between mannosylation and AD.


Assuntos
Doença de Alzheimer , Manose , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Acta Biochim Biophys Sin (Shanghai) ; 51(11): 1087-1095, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31609412

RESUMO

Autophagy, a metabolic pathway that plays an important role in maintaining the dynamic balance of cells, has two types, i.e. non-selective autophagy and selective autophagy. The role of non-selective autophagy is primarily to allow cells to circulate nutrients in an energy-limited environment, while selective autophagy primarily cleans up the organelles inside the cells to maintain the cell structure. The NLRP3 inflammasome is an innate immune response produced by the organism that can promote the secretion of interleukin-1ß and interleukin-18 through caspase-1 activation and resist the damage of some pathogens. However, when the NLRP3 inflammasome is overactivated, it can cause various inflammatory diseases, such as inflammatory liver disease and inflammatory bowel disease. Many previous studies have shown that autophagy can inhibit the NLRP3 inflammasome, while in recent years, new studies have found that autophagy can also promote the NLRP3 inflammasome in some cases, and the NLRP3 inflammasome can, in turn, affect autophagy. In this review, the interaction between autophagy and the NLRP3 inflammasome is explored, and then the application of this interaction in disease treatment is discussed.


Assuntos
Autofagia/fisiologia , Hepatite/metabolismo , Inflamassomos/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Ratos
3.
Neurol Sci ; 39(3): 437-443, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29147957

RESUMO

Endothelial progenitor cells (EPCs) have important effect in tissue repair in ischemic organs. The present study was conducted to demonstrate the mobilization of EPCs and its possible mechanism after acute ischemic stroke (AIS). A total of 148 individuals were examined, including 106 patients with ischemic stroke and 42 healthy controls. Seventy-one patients with imaging-confirmed AIS were examined at days 1, 7, 14, and 21 after stroke onset. Circulating EPCs were quantified by flow cytometry using CD133 and KDR surface markers. Serum stromal cell-derived factor-1 (SDF-1) concentrations were determined by enzyme-linked immunosorbent assay. Patients with AIS had significantly lower EPC level than that in the controls (0.022 ± 0.013 vs 0.051 ± 0.020; p < 0.01). This difference did not remain significant after adjusting for risk factors at multivariate analysis. Blood pressure, triglyceride, low-density lipoprotein (LDL), and fasting blood sugar were inversely correlated with EPC levels (p < 0.01). Systolic blood pressure and LDL remained independent predictors of baseline EPC levels. The number of circulating EPCs increased on day 7 after AIS, reached a peak on day 14, and decreased on day 21. The concentration of SDF-1 had similar changes. The increment of EPCs was correlated with the infarct volume (r = 0.708; p = 0.006) and SDF-1 concentration on day 14 (r = 0.714; p < 0.001). Baseline EPC level in patients with AIS reflects the cumulative vascular endothelial damage. EPCs could be mobilized into peripheral circulation in response to stroke stress. This mobilization was associated with the increased expression of SDF-1.


Assuntos
Isquemia Encefálica/sangue , Células Progenitoras Endoteliais/fisiologia , Acidente Vascular Cerebral/sangue , Antígeno AC133/sangue , Idoso , Biomarcadores/sangue , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Quimiocina CXCL12/sangue , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico por imagem , Fatores de Tempo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue
4.
Acta Biochim Biophys Sin (Shanghai) ; 50(5): 447-455, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617703

RESUMO

Epidemiologic studies have demonstrated that women account for two-thirds of Alzheimer's disease (AD) cases, for which the decline in circulating gonadal hormone is considered to be one of the major risk factors. In addition, ovarian hormone deficiency may affect ß-amyloid (Aß) deposition, which has a close relationship with autophagic flux. In this study, we investigated the impact of short-term or long-term ovarian hormone deprivation on two mouse models, the non-transgenic (wild-type) and the APP/PS1 double-transgenic AD (2×TgAD) model. Autophagy-related proteins (Beclin1, LC3, and p62) and lysosome-related proteins were detected to evaluate Aß deposition and autophagy. Our results showed that in the group with short-term depletion of ovarian hormones by ovariectomy (ovx), Beclin1, Cathepsin B (Cath-B), and LAMP1 levels were significantly decreased, while the levels of LC3-II and p62 were increased. In the long-term group, however, there was a sharp decline in Beclin1, LC3-II, Cath-B, and LAMP1 expression but not in p62 expression which is increased. It is worthwhile to note that the occurrence of neuritic plaque-induced ovarian hormone loss increased both the Aß level and neuritic plaque deposition in 2×TgAD mice. Therefore, autophagy may play an important role in the pathogenesis of female AD, which is also expected to help post-menopausal patients with AD.


Assuntos
Autofagia , Encéfalo/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Ovariectomia , Placa Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Transgênicos , Ovário/metabolismo , Ovário/cirurgia , Presenilina-1/genética , Presenilina-1/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 48(10): 930-938, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27614317

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive impairment with gender difference in specific cognitive ability domains, pathology, and risk of AD. Since valproic acid (VPA) is a widely used mood stabilizer and an antiepileptic drug, which exhibits multiple neuroprotective activities on AD, this study intended to investigate the gender difference in the effect of VPA on APP/PS1 double transgenic mice modeling AD. Behavioral experiments showed that VPA reduced the autonomous behaviors, improved learning and memory, and exhibited gender differences in AD mice compared with the control mice. The decrease in senile plaque, amyloid ß (Aß) 40, and Aß42 caused by VPA in the male AD mice was more notable than that in the female AD mice. Meanwhile, VPA protected brain cells from dying notably in the male AD mice but only slightly in the female AD mice, and VPA treatment thickened the postsynaptic density and markedly increased the number and density of presynaptic vesicles in both male and female AD mice. However, the effects of rescuing early synaptic structural and functional deficits by VPA were more obvious in the male mice. Overall, these results supported the hypothesis that gender difference significantly influences AD and indicated that VPA may be a promising remedy for AD if basic biological differences and gender specificity were prudently taken into account.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Encéfalo/efeitos dos fármacos , Presenilina-1/genética , Ácido Valproico/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Presenilina-1/metabolismo , Fatores Sexuais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura
6.
Acta Biochim Biophys Sin (Shanghai) ; 47(4): 258-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25736404

RESUMO

The γ-secretase complex catalyzes the final cleavage step of amyloid ß-protein precursor (APP) to generate amyloid ß (Aß) peptide, a pathogenic component of senile plaques in the brain of Alzheimer's disease (AD) patients. Recent studies have shown that presenilin enhancer-2 (Pen-2), presenilin (PS, including PS1 and PS2), nicastrin, and anterior pharynx-defective 1 are essential components of the γ-secretase. The structure and function of Pen-2 in vitro have been well defined. However, little is known about the neuroanatomical distribution and expression of Pen-2 in the central nervous system (CNS) of AD model mice. We report here, using various methods such as immunohistochemical staining and immunoblotting, that Pen-2 is widely expressed at specific neuronal cells of major areas in AD model mice, including the olfactory bulb, basal forebrain, striatum, cortex, hippocampus, amygdala, thalamus, hypothalamus, cerebellum, brainstem, and spinal cord. It is co-expressed with PS1 in specific neuronal cells in mouse brain. Pen-2 is distributed much more extensively than extracellular amyloid deposits, suggesting the importance of other factors in localized amyloid deposition. Pen-2 is localized predominantly in cell membrane and cytoplasma in adult AD mice, but only distributed at cell membrane in controls. At the early stages of postnatal development, the expression level of Pen-2 is relatively high in CNS, but declines, gradually in adult mice. The present study provides an anatomical basis for Pen-2 as a key component of γ-secretase complex in the brain of developing and adult mice, and Pen-2 might be closely related to Aß burden in aging nervous system.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Sistema Nervoso Central/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Western Blotting , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Masculino , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Presenilina-1/genética , Fatores de Tempo
7.
Biomol Biomed ; 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691557

RESUMO

Neuropathic pain (NPP) remains a clinically challenging condition, driven by the activation of spinal astrocytes and the complex release of inflammatory mediators. This study aimed to examine the roles of Rab8a and SNARE complex proteins in activated astrocytes to uncover the underlying mechanisms of NPP. The research was conducted using a rat model with chronic constriction injury (CCI) of the sciatic nerve and primary astrocytes treated with lipopolysaccharide. Enhanced expression of Rab8a was noted specifically in spinal dorsal horn astrocytes through immunofluorescence. Electron microscopy observations showed increased vesicular transport and exocytic activity in activated astrocytes, which was corroborated by elevated levels of inflammatory cytokines such as interleukin (IL)-1ß and tumor necrosis factor (TNF)-α detected through quantitative PCR. Western blot analyses confirmed significant upregulation of Rab8a, VAMP2, and Syntaxin16 in these cells. Furthermore, the application of botulinum neurotoxin type A (BONT/A) reduced the levels of vesicle transport-associated proteins, inhibiting vesicular transport in activated astrocytes. These findings suggest that the Rab8a/SNARE pathway in astrocytes enhances vesicle transport and anchoring, increasing the secretion of bioactive molecules that may play a crucial role in the pathophysiology of NPP. Inhibiting this pathway with BONT/A offers a novel therapeutic target for managing NPP, highlighting its potential utility in clinical interventions.

8.
CNS Neurosci Ther ; 30(2): e14409, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37602891

RESUMO

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases leading to dementia in elderly people. Microglia-mediated neuroinflammation plays an important role in AD pathogenesis, so modulation of neuroinflammation has emerged as an essential therapeutic method to improve AD. The current study aims to investigate whether MKP-1 can regulate microglia phenotype and inflammatory factor release in AD and explore its possible mechanisms. METHODS: Amyloid precursor protein/PS1 double transgenic mice and wild-type mice were selected to study the locations of microglia and amyloid-ß (Aß) plaques in different regions of mice brains. Changes in MKP-1 of microglia were detected using AD model mice and AD model cells. Changes in phenotype and the release of inflammatory factors within immortalized BV2 murine microglia were investigated by regulating the expression of MKP-1. RESULTS: The distribution of microglia and Aß plaques in the AD brain was region-specific. MKP-1 expression was downregulated in AD mice, and in vitro, with increasing Aß concentrations, MKP-1 expression was reduced. MKP-1 over-expression increased M2 microglia but decreased M1 microglia accompanied by changes in inflammatory factors and inhibition of MKP-1 yielded the opposite result. CONCLUSION: MKP-1 regulated microglia phenotype and inflammatory factor release in AD through modulation of the p38 signaling pathway.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/patologia , Doenças Neuroinflamatórias
9.
Neural Regen Res ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38993141

RESUMO

ABSTRACT: Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-ß in neurons, which is a key step in senile plaque formation. Therefore, restoring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease. Microtubule acetylation/deacetylation plays a central role in lysosomal acidification. Here, we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease. Furthermore, we found that treatment with valproic acid markedly enhanced autophagy, promoted clearance of amyloid-ß aggregates, and ameliorated cognitive deficits in a mouse model of Alzheimer's disease. Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease, in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.

10.
Noncoding RNA Res ; 9(1): 165-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38075201

RESUMO

Long non-coding RNAs (lncRNAs) have attracted significant scientific attention due to their central role in regulating gene expression and their profound impact on the intricate mechanisms of ovarian function. These versatile molecules exert their influence through various mechanisms, including the coordination of transcription processes, modulation of post-transcriptional events, and the shaping of epigenetic landscapes. Furthermore, lncRNAs function as competitive endogenous RNAs (ceRNAs), engaging in intricate interactions with microRNAs (miRNAs) to finely adjust the expression of target genes. The intricate lncRNA-miRNA-mRNA network serves as a crucial determinant in governing the multifaceted physiological functions of the ovaries. It holds substantial potential in unraveling the causes and progression of reproductive disorders and, importantly, in identifying new therapeutic targets and diagnostic markers for these conditions. A comprehensive comprehension of lncRNAs and their ceRNA activities within the domain of ovarian biology could potentially lead to groundbreaking advancements in clinical interventions and management strategies. This exploration of lncRNAs and their intricate involvement in the regulatory framework provides an extensive platform for deciphering the complex nature of ovarian physiology and pathology. The ongoing progress in this field, which encompasses in-depth investigations into the functional roles of specific lncRNAs, the elucidation of their complex interactions with miRNAs, and the comprehensive profiling of their expression patterns, holds the promise of making significant contributions to our understanding of ovarian biology and reproductive disorders. Ultimately, these breakthroughs will have wide-ranging translational implications, paving the way for the development of precision therapies and personalized medicine strategies to address the myriad challenges in the realm of reproductive health.

11.
Acta Pharm Sin B ; 14(2): 635-652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322333

RESUMO

Alzheimer's disease (AD) is a leading cause of dementia in the elderly. Mitogen-activated protein kinase phosphatase 1 (MKP-1) plays a neuroprotective role in AD. However, the molecular mechanisms underlying the effects of MKP-1 on AD have not been extensively studied. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, thereby repressing mRNA translation. Here, we reported that the microRNA-429-3p (miR-429-3p) was significantly increased in the brain of APP23/PS45 AD model mice and N2AAPP AD model cells. We further found that miR-429-3p could downregulate MKP-1 expression by directly binding to its 3'-untranslated region (3' UTR). Inhibition of miR-429-3p by its antagomir (A-miR-429) restored the expression of MKP-1 to a control level and consequently reduced the amyloidogenic processing of APP and Aß accumulation. More importantly, intranasal administration of A-miR-429 successfully ameliorated the deficits of hippocampal CA1 long-term potentiation and spatial learning and memory in AD model mice by suppressing extracellular signal-regulated kinase (ERK1/2)-mediated GluA1 hyperphosphorylation at Ser831 site, thereby increasing the surface expression of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Together, these results demonstrate that inhibiting miR-429-3p to upregulate MKP-1 effectively improves cognitive and synaptic functions in AD model mice, suggesting that miR-429/MKP-1 pathway may be a novel therapeutic target for AD treatment.

12.
Genes Dis ; 10(5): 1908-1919, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492720

RESUMO

Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins. Meanwhile, neurexin-3 modulates the expression of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and γ-aminobutyric acid A receptors by interacting with neuroligins at excitatory and inhibitory synapses. Numerous studies have documented the potential contribution of neurexin-3 to neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, addiction behaviors, and other diseases, which raises hopes that understanding the mechanisms of neurexin-3 may hold the key to developing new strategies for related illnesses. This review comprehensively covers the literature to provide current knowledge of the structure, function, and clinical role of neurexin-3.

13.
Int J Mol Med ; 52(6)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37830152

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid­ß (Aß) in the brain. The gut/brain axis may serve a role in AD pathogenesis. The present study investigated deposition of Aß in the intestinal epithelium and its potential effects on intestinal barrier function in a transgenic mouse model of AD. To investigate alterations in the structure and functionality of the intestinal mucosal barrier in AD model mice, hematoxylin and eosin staining for Paneth cell count, Alcian blue­periodic acid Schiff staining for goblet cells, immunohistochemistry and immunofluorescence for mucin (MUC)2 and wheat germ agglutin expression, transmission electron microscopy for mucosal ultrastructure, FITC­labeled dextran assay for intestinal permeability, quantitative PCR for goblet cell precursor expression and western blot analysis for tight junction proteins, MUC2 and inflammatory cytokine detection were performed. The results showed that AD model mice exhibited excessive Aß deposition in the intestinal epithelium, which was accompanied by increased intestinal permeability, inflammatory changes and decreased expression of tight junction proteins. These alterations in the intestinal barrier led to an increased proliferation of goblet and Paneth cells and increased mucus synthesis. Dysfunction of gut barrier occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve early manipulation of gut physiology and its microbiota.


Assuntos
Doença de Alzheimer , Mucinas , Camundongos , Animais , Mucinas/metabolismo , Doença de Alzheimer/patologia , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Transgênicos , Permeabilidade , Proteínas de Junções Íntimas/metabolismo
14.
Genes Dis ; 10(1): 284-300, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37013063

RESUMO

Osteoporosis (OP) is a debilitating skeletal abnormality involving bone remodeling and bone cell homeostasis characterized by decreased bone strength and high fracture risk. A novel therapeutic intervention for OP by manipulating cellular autophagy-apoptosis processes to promote skeletal homeostasis is presented. Protective effects of the naturally occurring plant extract Liquiritigenin (LG) were demonstrated in an ovariectomy (OVX)-OP mouse model and preosteoblast MC3T3-E1 cells. Micro-CT and histological staining assessments of skeletal phenotype were applied alongside detection of autophagy activity in osteocytes and MC3T3-E1 cells by transmission electron microscopy (TEM). The effects of LG on chloroquine (CQ)- and the apoptosis-inducing TS-treated osteogenic differentiations and status of lysosomes within MC3T3-E1 cells were analyzed by Neutral red, Alizarin red S and alkaline phosphatase (ALP) staining and Western blot assays. Treatment with LG prevented bone loss, increased osteogenic differentiation in vivo and in vitro, and inhibited osteoclast formation to some extent. TEM analyses revealed that LG can improve auto-lysosomal degradation within osteocytes from OVX mice and MC3T3-E1 cells. The abnormal status of lysosomes associated with CQ and TS treatments was notably alleviated by LG which also reduced levels of apoptosis-induced inhibition of osteogenic differentiation and averted abnormal osteogenic differentiation as a consequence of a blockage in autolysosome degradation. Overall, LG stimulates bone growth in OVX mice through increased osteogenic differentiation and regulation of autophagy-apoptosis mechanisms, presenting an auspicious natural therapy for OP.

15.
Front Neuroanat ; 16: 1043924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686576

RESUMO

Introduction: Protein O-linked mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) is crucial for the elongation of O-mannosyl glycans. Mutations in POMGNT1 cause muscle-eye-brain (MEB) disease, one of the main features of which is anatomical aberrations in the brain. A growing number of studies have shown that defects in POMGNT1 affect neuronal migration and distribution, disrupt basement membranes, and misalign Cajal-Retzius cells. Several studies have examined the distribution and expression of POMGNT1 in the fetal or neonatal brain for neurodevelopmental studies in the mouse or human brain. However, little is known about the neuroanatomical distribution and expression of POMGNT1 in the normal adult mouse brain. Methods: We analyzed the expression of POMGNT1 mRNA and protein in the brains of various neuroanatomical regions and spinal cords by western blotting and RT-qPCR. We also detected the distribution profile of POMGnT1 in normal adult mouse brains by immunohistochemistry and double-immunofluorescence. Results: In the present study, we found that POMGNT1-positive cells were widely distributed in various regions of the brain, with high levels of expression in the cerebral cortex and hippocampus. In terms of cell type, POMGNT1 was predominantly expressed in neurons and was mainly enriched in glutamatergic neurons; to a lesser extent, it was expressed in glial cells. At the subcellular level, POMGNT1 was mainly co-localized with the Golgi apparatus, but expression in the endoplasmic reticulum and mitochondria could not be excluded. Discussion: The present study suggests that POMGNT1, although widely expressed in various brain regions, may has some regional and cellular specificity, and the outcomes of this study provide a new laboratory basis for revealing the possible involvement of POMGNT1 in normal physiological functions of the brain from a morphological perspective.

16.
Genes Dis ; 9(5): 1315-1331, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35873026

RESUMO

Alterations in glucose metabolism occur in the brain in the early stage of Alzheimer's disease (AD), and menopausal women have more severe metabolic dysfunction and are more prone to dementia than men. Although estrogen deficiency-induced changes in glucose metabolism have been previously studied in animal models, their molecular mechanisms in AD remain elusive. To investigate this issue, double transgenic (APP/PS1) female mice were subjected to bilateral ovariectomy at 3 months of age and were sacrificed 1 week, 1 month and 3 months after surgery to simulate early, middle and late postmenopause, respectively. Our analysis demonstrated that estrogen deficiency exacerbates learning and memory deficits in this mouse model of postmenopause. Estrogen deficiency impairs the function of mitochondria in glucose metabolism. It is possible that the occurrence of AD is associated with the aberrant mitochondrial ERß-mediated IGF-1/IGF-1R/GSK-3ß signaling pathway. In this study, we established a potential mechanism for the increased risk of AD in postmenopausal women and proposed a therapeutic target for AD due to postmenopause.

17.
Prog Neurobiol ; 209: 102209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953962

RESUMO

The hippocampal CA3 region, that is involved in the encoding and retrieval of spatial memory, is found to be synaptically impaired in the early-onset of Alzheimer's disease (AD). It is reported optogenetic manipulation of DG or CA1 can rescue the memory impairment of APP/PS1 mice, however, how CA3 region contributes to AD-related deficits in cognitive function is still unknown. Our work shows optogenetic stimulation of CA3 pyramidal neurons (PNs) significantly restores the impaired spatial short-term memory of APP/PS1 mice. This enhances the anatomical synaptic density/strength and synaptic plasticity as well as activates astrocytes. Chemogenetic inhibiting the activity of CA3 astrocytes reverses the effect of optogenetic stimulation of CA3 PNs that leads to reduced anatomical synaptic density/strength, decreased synaptic protein and AMPA receptors GluA3/4, thus disrupting the cognitive restoration of APP/PS1 mice. These results reveal the molecular mechanism of optogenetic activation of CA3 PNs on restoration of the spatial short-term memory of APP/PS1 mice and unveil a potential strategy of manipulating CA3 for AD treatment.


Assuntos
Doença de Alzheimer , Optogenética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Memória de Curto Prazo , Camundongos , Camundongos Transgênicos , Células Piramidais/metabolismo
18.
Neurotox Res ; 39(2): 349-358, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32990912

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and is currently incurable. Amyloid ß protein (Aß) deposition is the main pathogenesis of AD, and many studies have shown that Aß accumulation is toxic to neurons, leading to the inflammatory reaction, neuronal apoptosis, and neurofibrillary tangles. Thus, reducing Aß levels might be a potential therapeutic strategy for AD. Liquiritigenin (LG), a dihydroflavone monomer compound extracted from natural plant licorice, has a variety of biological activities such as antioxidant, anti-tumor, anti-inflammatory and anti-virus. However, the exact function of LG in the pathogenesis of AD is elusive. Here, we reported that LG could significantly attenuate neuronal apoptosis in Aß-induced N2A cells and APP/PS1 transgenic mice. Our in vivo and in vitro studies revealed that LG could alleviate the inflammation response, reflected by the reduction of NLRP3 and cleaved caspase-1. Meanwhile, we also found that LG was able to shift M1 type microglia towards M2 type microglia in Aß-induced BV2 cells and AD mice. Furthermore, LG could reduce the Aß levels by decreasing APP processing and accelerating Aß clearance in AD mice. More importantly, daily treatment of LG (30 mg/kg day) for 90 days dramatically ameliorated the spatial learning and memory of AD mice. Taken together, these results suggest that LG can reduce the Aß levels by regulating the M1/M2 transformation of microglia, thereby reversing memory decline during AD development, suggesting that LG may be a potential therapeutic agent for treating AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Flavanonas/administração & dosagem , Microglia/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Encefalite/metabolismo , Feminino , Camundongos Transgênicos
19.
Front Pharmacol ; 12: 680815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248632

RESUMO

Allergic asthma is a typical chronic inflammatory disease of respiratory tract. Clinical data shows that patients with allergic asthma have different degrees of cognitive dysfunction. The molecular mechanism underlying the pathogenesis of asthma-induced cognitive disorder is not yet well defined. Dexamethasone (DEX), one of the first-line drugs being widely used in the treatment of asthma, has not been reported to have an effect on cognitive dysfunction in mice model. To investigate the effect of asthma on cognitive impairment as well as the effect of DEX on asthma-caused morphological and behavioral changes, C57BL/6J mice received treatment with house dust mites (HDM) for 60 days to become allergic asthma model mice, and a group of HDM-treated asthma model mice were treated with DEX. HDM-treated asthma model mice exhibited increased airway hyperresponsiveness (AHR) and inflammatory infiltration in lung tissue. An elevated level of IL-4, IL-5, and TNF-α was detected in bronchoalveolar lavage fluid (BALF) by Luminex liquid suspension chip. Asthma model mice also presented memory deficits accompanied with morphological changes at the synaptic levels in the cortex and hippocampus. Meanwhile, vascular edema and increased expression of HIF-1α and HIF-2α were found in the brain of asthma model mice. Interestingly, DEX treatment could reverse the inflammatory changes in asthma model mice airway, rescue the cognitive impairment and improve the synaptic plasticity. Besides, DEX significantly decreased the expression of HIF-1α and HIF-2α in mice brain and lung. These processes may be used to decipher the complex interplay and pathological changes between asthma and cognition. This study provides laboratory evidence for the prevention and treatment of cognitive malfunction induced by asthma.

20.
Front Aging Neurosci ; 13: 629891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708103

RESUMO

The pathogenesis of Alzheimer's disease (AD) involves activation of many NLRP3 inflammatory bodies, which may be related to amyloid ß peptide and aggregation of misfolded proteins. Autophagy is an important regulator of inflammatory bodies. However, autophagy shows dynamic changes in the development of AD, and its role in inflammation remains controversial. In this study, the key link between autophagic disorders and the NLRP3 inflammasome in AD was investigated. APP/PS1 double transgenic mice and C57 mice with Aß25-35 injected into the lateral ventricle were used as two animal models of AD. Immunofluorescence staining and Western blot analysis showed that NLRP3 inflammasome-related proteins and inflammatory cytokines, such as IL-1α, IL-1ß, IL-6, IL-12, and TNF-α, were increased and microglia were activated in the brains of both AD animal models. Endogenous overexpression of the APPswe gene and exogenous addition of Aß25-35 increased the expression of NLRP3 inflammasome-related proteins, while exogenous Aß25-35 intervention more significantly activated inflammation. Furthermore, LC3 was increased in the AD animal and cell models, and the level of Lamp1 decreased. After overexpression of the primary regulator of lysosomal biogenesis, TFEB, the lysosome protein Lamp1 was increased, and LC3 and inflammatory protein expression were decreased. These results suggest that the NLRP3 inflammasome-mediated inflammatory response is activated in AD animal and cell models, which may be related to the decline in autolysosome function. Overexpression of the TFEB protein can reduce the inflammatory response by improving autolysosome function in AD model cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA