Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Pharm Biol ; 62(1): 423-435, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38757785

RESUMO

CONTEXT: Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE: This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS: We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS: Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION: This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.


Assuntos
Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Animais
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445683

RESUMO

Genomic prediction combines molecular and phenotypic data in a training population to predict the breeding values of individuals that have only been genotyped. The use of genomic information in breeding programs helps to increase the frequency of favorable alleles in the populations of interest. This study evaluated the performance of BLUP (Best Linear Unbiased Prediction) in predicting resistance to tan spot, spot blotch and Septoria nodorum blotch in synthetic hexaploid wheat. BLUP was implemented in single-trait and multi-trait models with three variations: (1) the pedigree relationship matrix (A-BLUP), (2) the genomic relationship matrix (G-BLUP), and (3) a combination of the two matrices (A+G BLUP). In all three diseases, the A-BLUP model had a lower performance, and the G-BLUP and A+G BLUP were statistically similar (p ≥ 0.05). The prediction accuracy with the single trait was statistically similar (p ≥ 0.05) to the multi-trait accuracy, possibly due to the low correlation of severity between the diseases.


Assuntos
Doenças das Plantas , Triticum , Humanos , Triticum/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Genoma , Genômica , Fenótipo , Genótipo , Modelos Genéticos
3.
J Transl Med ; 20(1): 148, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365168

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC), as one of the commonest malignancies showing poor prognosis, has been increasingly suggested to be modulated by circular RNAs (circRNAs). Through GEO (Gene Expression Omnibus) database, a circRNA derived from ZDBF2 (circZDBF2) was uncovered to be with high expression in OSCC tissues, while how it may function in OSCC remains unclear. METHODS: CircZDBF2 expression was firstly verified in OSCC cells via qRT-PCR. CCK-8, along with colony formation, wound healing, transwell and western blot assays was performed to assess the malignant cell behaviors in OSCC cells. Further, RNA pull down assay, RIP assay, as well as luciferase reporter assay was performed to testify the interaction between circZDBF2 and RNAs. RESULTS: CircZDBF2 expressed at a high level in OSCC cells and it accelerated OSCC cell proliferation, migration, invasion as well as EMT (epithelial-mesenchymal transition) process. Further, circZDBF2 sponged miR-362-5p and miR-500b-5p in OSCC cells to release their target ring finger protein 145 (RNF145). RNF145 expressed at a high level in OSCC cells and circZDBF2 facilitated RNF145 transcription by recruiting the transcription factor CCAAT enhancer binding protein beta (CEBPB). Moreover, RNF145 activated NFκB (nuclear factor kappa B) signaling pathway and regulated IL-8 (C-X-C motif chemokine ligand 8) transcription. CONCLUSION: CircZDBF2 up-regulated RNF145 expression by sponging miR-362-5p and miR-500b-5p and recruiting CEBPB, thereby promoting OSCC progression via NFκB signaling pathway. The findings recommend circZDBF2 as a probable therapeutic target for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Proteínas de Membrana , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , NF-kappa B/metabolismo , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
4.
Theor Appl Genet ; 135(6): 1965-1983, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35416483

RESUMO

KEY MESSAGE: Genomic selection is a promising tool to select for spot blotch resistance and index-based selection can simultaneously select for spot blotch resistance, heading and plant height. A major biotic stress challenging bread wheat production in regions characterized by humid and warm weather is spot blotch caused by the fungus Bipolaris sorokiniana. Since genomic selection (GS) is a promising selection tool, we evaluated its potential for spot blotch in seven breeding panels comprising 6736 advanced lines from the International Maize and Wheat Improvement Center. Our results indicated moderately high mean genomic prediction accuracies of 0.53 and 0.40 within and across breeding panels, respectively which were on average 177.6% and 60.4% higher than the mean accuracies from fixed effects models using selected spot blotch loci. Genomic prediction was also evaluated in full-sibs and half-sibs panels and sibs were predicted with the highest mean accuracy (0.63) from a composite training population with random full-sibs and half-sibs. The mean accuracies when full-sibs were predicted from other full-sibs within families and when full-sibs panels were predicted from other half-sibs panels were 0.47 and 0.44, respectively. Comparison of GS with phenotypic selection (PS) of the top 10% of resistant lines suggested that GS could be an ideal tool to discard susceptible lines, as greater than 90% of the susceptible lines discarded by PS were also discarded by GS. We have also reported the evaluation of selection indices to simultaneously select non-late and non-tall genotypes with low spot blotch phenotypic values and genomic-estimated breeding values. Overall, this study demonstrates the potential of integrating GS and index-based selection for improving spot blotch resistance in bread wheat.


Assuntos
Ascomicetos , Triticum , Pão , Genômica , Humanos , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
5.
Heredity (Edinb) ; 128(6): 402-410, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34880420

RESUMO

Wheat head blast is a dangerous fungal disease in South America and has recently spread to Bangladesh and Zambia, threatening wheat production in those regions. Host resistance as an economical and environment-friendly management strategy has been heavily relied on, and understanding the resistance loci in the wheat genome is very helpful to resistance breeding. In the current study, two recombinant inbred line (RIL) populations, Alondra/Milan (with 296 RILs) and Caninde#2/Milan-S (with 254 RILs and Milan-S being a susceptible variant of Milan), were used for mapping QTL associated with head blast resistance in field experiments. Phenotyping was conducted in Quirusillas and Okinawa, Bolivia, and in Jashore, Bangladesh, during the 2017-18 and 2018-19 cropping cycles. The DArTseq® technology was employed to genotype the lines, along with four STS markers in the 2NS region. A QTL with consistent major effects was mapped on the 2NS/2AS translocation region in both populations, explaining phenotypic variation from 16.7 to 79.4% across experiments. Additional QTL were detected on chromosomes 2DL, 7AL, and 7DS in the Alondra/Milan population, and 2BS, 4AL, 5AS, 5DL, 7AS, and 7AL in the Caninde#2/Milan-S population, all showing phenotypic effects <10%. The results corroborated the important role of the 2NS/2AS translocation on WB resistance and identified a few novel QTL for possible deployment in wheat breeding. The low phenotypic effects of the non-2NS QTL warrantee further investigation for novel QTL with higher and more stable effects against WB, to alleviate the heavy reliance on 2NS-based resistance.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/genética
6.
Phytopathology ; 111(9): 1670-1674, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33599531

RESUMO

Fusarium head blight (FHB) is one of the most destructive fungal diseases of wheat. However, difficulties in reliably phenotyping of this disease have greatly hindered the understanding of the mechanism of wheat-pathogen interaction and genetic improvement of FHB resistance. Here we report a novel inoculation method called basal rachis internode injection (BRII), in which inoculum is injected into the basal internode of a rachis instead of a floret, as is done in single floret inoculation (SFI). One of the prominent advantages of BRII over SFI and other traditional methods lies in its independence from the moisture-maintaining system that is necessary for all existing methods, making it insensitive to environmental humidity and hence cost-effective. Another unique feature of BRII is that this method produces nearly clear-cut reaction types, by which FHB resistance can be treated as a qualitative trait because generally no FHB symptoms appear on the spikelets of resistant genotypes. In addition, BRII outperformed SFI with a higher infection rate and better goodness of fit with known FHB resistance and quantitative trait locus components in a panel of 15 genotypes, as well as two populations of recombinant inbred lines segregating in Fhb1. Note that BRII and SFI methods are not mutually exclusive but rather complementary because each method has its own advantages in differentiating FHB resistance between genotypes. Combining these two methods would significantly improve the reliability and consistency of FHB phenotyping in wheat.


Assuntos
Fusarium , Doenças das Plantas , Reprodutibilidade dos Testes , Triticum/genética
7.
Phytopathology ; 111(6): 1001-1007, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33141648

RESUMO

Septoria tritici blotch (STB) is a major foliar disease globally that is notorious for quickly developing fungicide resistance, making host resistance an indispensable component in mitigating STB. The International Maize and Wheat Improvement Center (CIMMYT) wheat line Murga is well known for its high, durable, and broad-spectrum resistance against STB infection. This study aimed to investigate the resistance mechanism of Murga to facilitate its utilization in breeding. A recombinant inbred line population was derived from a cross between Murga and STB-susceptible line Huirivis#1, comprising 297 progenies. The population was evaluated for adult-plant STB resistance in Toluca, Mexico (from 2017 to 2019), and in La Estanzuela, Uruguay (from 2016 to 2018). Genotyping was performed with the DArTseq platform. Quantitative trait locus (QTL) mapping indicated a major and stable QTL on chromosome 3DL, explaining a phenotypic variation for STB of 41.2 to 62.5% in Mexico and 27.5 to 40.3% in Uruguay. This QTL was regarded as Stb16 based on the comparison of its physical position, the possible origin from synthetic wheat, and its broad-spectrum resistance. Additional QTLs with minor effects were identified on chromosomes 2B, 2D, 3A, 3B, and 5B. The QTL on 5BS was significant in four of the six environments and must be new. Murga was the resistant donor for all QTLs except for those on 2B and 3A. Being an elite breeding line, Stb16 carrier Murga could be used as a promising STB resistance donor. Rational employment of Stb16 could contribute to STB management yet avoid the rapid emergence of Stb16-virulent isolates.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas , Triticum/genética
8.
Theor Appl Genet ; 133(9): 2673-2683, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488302

RESUMO

KEY MESSAGE: Wheat blast resistance in Caninde#1 is controlled by a major QTL on 2NS/2AS translocation and multiple minor QTL in an additive mode. Wheat blast (WB) is a devastating disease in South America, and it recently also emerged in Bangladesh. Host resistance to WB has relied heavily on the 2NS/2AS translocation, but the responsible QTL has not been mapped and its phenotypic effects in different environments have not been reported. In the current study, a recombinant inbred line population with 298 progenies was generated, with the female and male parents being Caninde#1 (with 2NS) and Alondra (without 2NS), respectively. Phenotyping was carried out in two locations in Bolivia, namely Quirusillas and Okinawa, and one location in Bangladesh, Jashore, with two sowing dates in each of the two cropping seasons in each location, during the years 2017-2019. Genotyping was performed with the DArTseq® technology along with five previously reported STS markers in the 2NS region. QTL mapping identified a major and consistent QTL on 2NS/2AS region, explaining between 22.4 and 50.1% of the phenotypic variation in different environments. Additional QTL were detected on chromosomes 1AS, 2BL, 3AL, 4BS, 4DL and 7BS, all additive to the 2NS QTL and showing phenotypic effects less than 10%. Two codominant STS markers, WGGB156 and WGGB159, were linked proximally to the 2NS/2AS QTL with a genetic distance of 0.9 cM, being potentially useful in marker-assisted selection.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Bangladesh , Basidiomycota/patogenicidade , Bolívia , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
9.
Phytopathology ; 110(12): 1980-1987, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32635797

RESUMO

Spot blotch (SB), caused by Bipolaris sorokiniana, is a major fungal disease of wheat in South Asia and South America. Two biparental mapping populations with 232 F2:7 progenies each were generated, with CIMMYT breeding lines CASCABEL and KATH as resistant parents and CIANO T79 as the common susceptible parent. The two populations were evaluated for field SB resistance in CIMMYT's Agua Fria station for three consecutive cropping seasons, with artificial inoculation. Genotyping was done with the DArTseq platform and approximately 1,500 high quality and nonredundant markers were used for quantitative trait loci (QTL) mapping. In both populations, a major QTL was found on chromosome 5A in the Vrn-A1 region, explaining phenotypic variations of 13.5 to 25.9%, which turned up to be less- or nonsignificant when days to heading and plant height were used as covariates in the analysis, implying a disease escape mechanism. Another major QTL was located on chromosome 5B in CASCABEL, accounting for 8.9 to 21.4% of phenotypic variation. Minor QTL were found on 4A and 4B in CASCABEL; 1B, 4B, and 4D in KATH; and 1B, 2B, and 4B in CIANO T79. Through an analysis of QTL projection onto the IWGSC Chinese Spring reference genome, the 5B QTL in CASCABEL was mapped in the Sb2 region, delimited by the single nucleotide polymorphism marker wsnp_Ku_c50354_55979952 and the simple sequence repeat marker gwm213, with a physical distance of about 14 Mb to the Tsn1 locus.


Assuntos
Ascomicetos , Triticum , Ásia , Pão , Mapeamento Cromossômico , Resistência à Doença/genética , Humanos , Fenótipo , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , América do Sul , Triticum/genética
10.
Plant Dis ; 104(9): 2369-2376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32689920

RESUMO

Fusarium head blight (FHB) and stem rust are among the most devastating diseases of wheat worldwide. Fhb1 is the most widely utilized and the only isolated gene for FHB resistance, while Sr2 is a durable stem rust resistance gene used in rust-prone areas. The two loci are closely linked on the short arm of chromosome 3B and the two genes are in repulsion phase among cultivars. With climate change and the shift in Fusarium populations, it is imperative to develop wheat cultivars resistant to both diseases. The present study was dedicated to developing wheat germplasm combining Fhb1 and Sr2 resistance alleles in the International Maize and Wheat Improvement Center (CIMMYT)'s elite cultivars' backgrounds. Four recombinant inbred lines (RILs) in Hartog background that have the resistant Fhb1 and Sr2 alleles in coupled phase linkage were crossed with seven CIMMYT bread wheat lines, resulting in 208 lines. Molecular markers for both genes were employed in addition to the use of pseudo-black chaff (PBC) as a phenotypic marker for the selection of Sr2. At various stages of the selection process, progeny lines were assessed for FHB index, Fusarium damaged kernels (FDK), stem rust, and PBC expression as well as other diseases of interest (stripe rust and leaf spotting diseases). The 25 best lines were selected for CIMMYT's wheat breeding program. In addition to expressing resistance to FHB, most of these 25 lines have an acceptable level of resistance to other tested diseases. These lines will be useful for wheat breeding programs worldwide and potentially speed up the resistance breeding efforts against FHB and stem rust.


Assuntos
Resistência à Doença , Triticum/genética , Cromossomos de Plantas , Marcadores Genéticos , Humanos , Doenças das Plantas
11.
Plant Dis ; 104(8): 2210-2216, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32511047

RESUMO

Fusarium head blight (FHB) caused by Fusarium species is a globally important wheat disease. Host resistance to FHB is composed of multiple mechanisms, including resistance to initial infection (type I), disease spread (type II), toxin accumulation (type III), kernel infection (type IV), and yield loss (type V), of which the last three have been less studied. Traditionally, the Fusarium-damaged kernel rate (FDK; percentage of Fusarium-infected grains) from point- or spray-inoculated experiments was used as the parameter for type IV resistance, which may be problematic because of the influence of type II resistance. Here we propose a new definition for type IV resistance: that is, the resistance against Fusarium infection expressed in wheat grains that have the same chance in contact with the pathogen, under favorable temperature and humidity for infection. Fhb1 confers strong type II resistance, leading to significantly reduced FHB severity and FDK. To investigate the role of Fhb1 in type IV resistance, a pair of near-isogenic lines, R22W (Fhb1 carrier, resistant in terms of type II resistance) and S22V (non-Fhb1, susceptible), along with eight wheat genotypes differing at Fhb1 were inoculated at different grain development stages with Fusarium macrospores both in vivo and in vitro. The in vivo experiments with all florets inoculated demonstrated a significant reduction in thousand kernel weight (TKW) in inoculated grains, regardless of their Fhb1 status and developmental stages. Surprisingly, R22W showed more TKW reduction than S22V, which was supported by the scanning electron microscopy observation that confirmed the more severe degradation of starch granules in R22W grains. The in vitro experiments demonstrated that grains from both R22W and S22V promoted fungal colonization, but no significant difference was found between the two lines. In summary, our results indicated that the proposed type IV evaluation system is effective in determining different grain resistance levels, providing novel tools for FHB resistance breeding. The finding that Fhb1 is not associated with type IV resistance enriches our understanding of this gene.


Assuntos
Fusarium , Grão Comestível , Genótipo , Doenças das Plantas , Triticum
12.
BMC Plant Biol ; 19(1): 153, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014249

RESUMO

BACKGROUND: Fusarium crown rot (FCR) is a severe and chronic disease in common wheat and is able to cause serious yield loss and health problems to human and livestock. RESULTS: Here, 234 Chinese wheat cultivars were evaluated in four greenhouse experiments for FCR resistance and genome-wide association studies (GWAS) were performed using the wheat 660 K genotyping assay. The results indicated that most cultivars evaluated showed FCR disease index (DI) of 40-60, while some cultivars showed stably good FCR resistance (DI < 30). GWAS identified 286 SNPs to be significantly associated with FCR resistance, of which 266, 6 and 8 were distributed on chromosomes 6A, 6B and 6D, respectively. The significant SNPs on 6A were located in a 7.0-Mb region containing 51 annotated genes. On the other hand, QTL mapping using a bi-parental population derived from UC1110 and PI610750 detected three QTLs on chromosomes 6A (explaining 7.77-10.17% of phenotypic variation), 2D (7.15-9.29%) and 2A (5.24-6.92%). The 6A QTL in the UC1110/PI610750 population falls into the same chromosomal region as those detected from GWAS, demonstrating its importance in Chinese materials for FCR resistance. CONCLUSION: This study could provide useful information for utilization of FCR-resistant wheat germplasm and further understanding of molecular and genetics basis of FCR resistance in common wheat.


Assuntos
Resistência à Doença/genética , Fusarium/fisiologia , Genoma de Planta , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Alelos , Cromossomos de Plantas/genética , Haplótipos/genética , Endogamia , Escore Lod , Fenótipo , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Locos de Características Quantitativas/genética , Triticum/imunologia
13.
Theor Appl Genet ; 132(8): 2401-2411, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31129715

RESUMO

KEY MESSAGE: Two QTL with major effects on DON content reduction were identified on chromosomes 3BL and 3DL, with the former showing minor and the latter showing no effects on FHB resistance. Deoxynivalenol (DON) contamination in food and feed is a major concern regarding Fusarium head blight (FHB) infection in wheat. However, relatively less attention has been paid on DON compared to FHB. In this study, a FHB-susceptible cultivar 'NASMA' was hybridized with a FHB-resistant CIMMYT breeding line 'IAS20*5/H567.71' to generate 197 recombinant inbred lines. The population was phenotyped for FHB and associated traits including DON accumulation in spray-inoculated field experiments at CIMMYT-Mexico across four years. Genotyping was performed by using the Illumina Infinium 15 K Beadchip and SSR markers. QTL mapping results indicated that the field FHB resistance was mainly controlled by QTL at Rht-D1 and Vrn-A1, along with a few minor QTL. For DON content, two major QTL were identified: the first located on chromosome 3BL (R2 of 16-24%), showing minor effects on FHB, and the second was on chromosome 3DL (R2 of 10-15%), exhibiting no effect on FHB resistance. It is likely that both DON QTL are new based on comparison with previous studies. This study indicates that resistance to DON accumulation and FHB disease could involve different genes, and the utilization of the two DON QTL in breeding could be helpful in further reducing DON contamination in food and feed.


Assuntos
Pão , Mapeamento Cromossômico , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/genética , Triticum/microbiologia , Alelos , Análise de Variância , Bases de Dados Genéticas , Ligação Genética , Haplótipos/genética , Fenótipo , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
14.
Phytopathology ; 109(1): 120-126, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30070970

RESUMO

Stripe rust is a major disease constraint of wheat production worldwide. Resistance to stripe rust was analyzed using 131 F6 recombinant inbred lines (RILs) derived from a cross between synthetic derived wheat line Soru#1 and wheat cultivar Naxos. The phenotype was evaluated in Mexico and Norway at both seedling and adult plant stages. Linkage groups were constructed based on 90K single-nucleotide polymorphism (SNP), sequence-tagged site, and simple sequence repeat markers. Two major resistance loci conferred by Soru#1 were detected and located on chromosomes 1BL and 4DS. The 1BL quantitative trait loci explained 15.8 to 40.2 and 51.1% of the phenotypic variation at adult plant and seedling stages, respectively. This locus was identified as Yr24/Yr26 based on the flanking markers and infection types. Locus 4DS was flanked by molecular markers D_GB5Y7FA02JMPQ0_238 and BS00108770_51. It explained 8.4 to 27.8 and 5.5% of stripe rust variation at the adult plant and seedling stages, respectively. The 4DS locus may correspond to known resistance gene Yr28 based on the resistance source. All RILs that combine Yr24/Yr26 and Yr28 showed significantly reduced stripe rust severity in all four environments compared with the lines with only one of the genes. SNP marker BS00108770_51 was converted into a breeder-friendly kompetitive allele-specific polymerase chain reaction marker that will be useful to accelerate Yr28 deployment in wheat breeding programs.


Assuntos
Basidiomycota , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Genes de Plantas , Marcadores Genéticos , México , Noruega , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/microbiologia
15.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683619

RESUMO

Tan spot (TS) and Septoria nodorum blotch (SNB) induced by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, cause significant yield losses and adversely affect grain quality. The objectives of this study were to decipher the genetics and map the resistance to TS and SNB in the PBW343/Kenya Nyangumi (KN) population comprising 204 F6 recombinant inbred lines (RILs). Disease screening was performed at the seedling stage under greenhouse conditions. TS was induced by P. tritici-repentis isolate MexPtr1 while SNB by P. nodorum isolate MexSN1. Segregation pattern of the RILs indicated that resistance to TS and SNB in this population was quantitative. Diversity Array Technology (DArTs) and simple sequence repeats (SSRs) markers were used to identify the quantitative trait loci (QTL) for the diseases using inclusive composite interval mapping (ICIM). Seven significant additive QTLs for TS resistance explaining 2.98 to 23.32% of the phenotypic variation were identified on chromosomes 1A, 1B, 5B, 7B and 7D. For SNB, five QTLs were found on chromosomes 1A, 5A, and 5B, explaining 5.24 to 20.87% of the phenotypic variation. The TS QTL on 1B chromosome coincided with the pleiotropic adult plant resistance (APR) gene Lr46/Yr29/Pm39. This is the first report of the APR gene Lr46/Yr29/Pm39 contributing to TS resistance.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Plântula/genética , Triticum/genética , Ascomicetos/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Endogamia , Quênia , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia , Recombinação Genética , Plântula/microbiologia , Triticum/microbiologia
16.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247965

RESUMO

Karnal bunt disease of wheat, caused by the fungus Neovossia indica, is one of the most important challenges to the grain industry as it affects the grain quality and also restricts the international movement of infected grain. It is a seed-, soil- and airborne disease with limited effect of chemical control. Currently, this disease is contained through the deployment of host resistance but further improvement is limited as only a few genotypes have been found to carry partial resistance. To identify genomic regions responsible for resistance in a set of 339 wheat accessions, genome-wide association study (GWAS) was undertaken using the DArTSeq® technology, in which 18 genomic regions for Karnal bunt resistance were identified, explaining 5-20% of the phenotypic variation. The identified quantitative trait loci (QTL) on chromosome 2BL showed consistently significant effects across all four experiments, whereas another QTL on 5BL was significant in three experiments. Additional QTLs were mapped on chromosomes 1DL, 2DL, 4AL, 5AS, 6BL, 6BS, 7BS and 7DL that have not been mapped previously, and on chromosomes 4B, 5AL, 5BL and 6BS, which have been reported in previous studies. Germplasm with less than 1% Karnal bunt infection have been identified and can be used for resistance breeding. The SNP markers linked to the genomic regions conferring resistance to Karnal bunt could be used to improve Karnal bunt resistance through marker-assisted selection.


Assuntos
Basidiomycota , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Marcadores Genéticos , Variação Genética , Genoma Fúngico , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes
17.
Crop Prot ; 123: 45-58, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31481821

RESUMO

The first occurrence of wheat blast in 2016 threatened Bangladesh's already precarious food security situation. The Bangladesh Agricultural Research Institute (BARI), together with the International Maize and Wheat Improvement Center (CIMMYT) developed and released the wheat variety BARI Gom 33 that is resistant to wheat blast and other common diseases. The new variety provides a 5-8% yield gain over the available popular varieties, as well as being zinc enriched. This study examines the potential economic benefits of BARI Gom 33 in Bangladesh. First, applying a climate analogue model, this study identified that more than 55% of the total wheat-growing area in Bangladesh (across 45 districts) is vulnerable to wheat blast. Second, applying an ex-ante impact assessment framework, this study shows that with an assumed cumulative adoption starting from 2019-20 and increasing to 30% by 2027-28, the potential economic benefits of the newly developed wheat variety far exceeds its dissemination cost by 2029-30. Even if dissemination of the new wheat variety is limited to only the ten currently blast-affected districts, the yearly average net benefits could amount to USD 0.23-1.6 million. Based on the findings, international funder agencies are urged to support the national system in scaling out the new wheat variety and wheat research in general to ensure overall food security in Bangladesh and South Asia.

18.
Int J Mol Sci ; 19(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558200

RESUMO

Spot blotch (SB) is an important fungal disease of wheat in South Asia and South America. Host resistance is regarded as an economical and environmentally friendly approach of controlling SB, and the inheritance of resistance is mostly quantitative. In order to gain a better understanding on the SB resistance mechanism in CIMMYT germplasm, two bi-parental mapping populations were generated, both comprising 232 F2:7 progenies. Elite CIMMYT breeding lines, BARTAI and WUYA, were used as resistant parents, whereas CIANO T79 was used as susceptible parent in both populations. The two populations were evaluated for field SB resistance at CIMMYT's Agua Fria station for three consecutive years, from the 2012⁻2013 to 2014⁻2015 cropping seasons. Phenological traits like plant height (PH) and days to heading (DH) were also determined. Genotyping was performed using the DArTSeq genotyping-by-sequencing (GBS) platform, and a few D-genome specific SNPs and those for phenological traits were integrated for analysis. The most prominent quantitative trait locus (QTL) in both populations was found on chromosome 5AL at the Vrn-A1 locus, explaining phenotypic variations of 7⁻27%. Minor QTL were found on chromosomes 1B, 3A, 3B, 4B, 4D, 5B and 6D in BARTAI and on chromosomes 1B, 2A, 2D and 4B in WUYA, whereas minor QTL contributed by CIANO T79 were identified on chromosome 1B, 1D, 3A, 4B and 7A. In summary, resistance to SB in the two mapping populations was controlled by multiple minor QTL, with strong influence from Vrn-A1.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas/genética , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
19.
Theor Appl Genet ; 127(9): 2029-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25134516

RESUMO

KEY MESSAGE: A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.


Assuntos
Cromossomos de Plantas , Mapeamento de Sequências Contíguas , Triticum/genética , Algoritmos , Hibridização Genômica Comparativa , DNA de Plantas/genética , Genótipo , Sondas de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
20.
Plant Genome ; 17(1): e20425, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221748

RESUMO

Spot blotch caused by Bipolaris sorokiniana ((Sacc.) Shoemaker) (teleomorph: Cochliobolus sativus [Ito and Kuribayashi] Drechsler ex Dastur) is an economically important disease of warm and humid regions. The present study focused on identifying resistant genotypes and single-nucleotide polymorphism (SNP) markers associated with spot blotch resistance in a panel of 174 bread spring wheat lines using field screening and genome-wide association mapping strategies. Field experiments were conducted in Agua Fria, Mexico, during the 2019-2020 and 2020-2021 cropping seasons. A wide range of phenotypic variation was observed among genotypes tested during both years. Twenty SNP markers showed significant association with spot blotch resistance on 15 chromosomes, namely, 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7B. Of these, two consistently significant SNPs on 5A, TA003225-0566 and TA003225-1427, may represent a new resistance quantitative trait loci. Further, in the proximity of Tsn1 on 5B, AX-94435238 was the most stable and consistent in both years. The identified genomic regions could be deployed to develop spot blotch-resistant genotypes, particularly in the spot blotch-vulnerable wheat growing areas.


Assuntos
Bipolaris , Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Estações do Ano , Fenótipo , Resistência à Doença/genética , Doenças das Plantas/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA