Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(8): 085001, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709744

RESUMO

In a plasma of sufficient size and density, photons emitted within the system have a probability of being reabsorbed and reemitted multiple times-a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering.

2.
Rev Sci Instrum ; 93(11): 113527, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461533

RESUMO

The Opacity Spectrometer (OpSpec) used in the National Ignition Facility's opacity experiments measures x-ray spectra from 0.9 to 2.1 keV from the different experimental regions: the backlight source, emission source, and the absorption region with the transmission calculated from these regions. The OpSpec designs have gone through several iterations to help improve the signal-to-noise ratio, remove alternate crystal plane reflections, and improve spectral resolution, which helps to increase the validity of the opacity measurements. However, the source spans well outside the current working spectral range, and higher-order reflections are intrinsic to the crystal, which increases the overall signal seen in the data regions. The recorded data are the convolution of 1st order transmission, higher-order reflections, and the penumbra blurring. This work represents the details for deconvolving the 2nd and 3rd order spectral energy corrections with a penumbral de-blurring to correct the relative measurement of x-ray intensity of different spectral energies and further analysis of datasets relevant to the opacity experiments.

3.
Rev Sci Instrum ; 93(4): 043006, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489905

RESUMO

A plasma mirror platform was developed for the OMEGA-EP facility to redirect beams, thus enabling more flexible experimental configurations as well as a platform that can be used in the future to improve laser contrast. The plasma mirror reflected a short pulse focusing beam at 22.5° angle of incidence onto a 12.5 µm thick Cu foil, generating Bremsstrahlung and kα x rays, and accelerating ions and relativistic electrons. By measuring these secondary sources, the plasma mirror key performance metrics of integrated reflectivity and optical quality are inferred. It is shown that for a 5 ± 2 ps, 310 J laser pulse, the plasma mirror integrated reflectivity was 62 ± 13% at an operating fluence of 1670 J cm-2, and that the resultant short pulse driven particle acceleration and x-ray generation indicate that the on target intensity was 3.1 × 1018 W cm-2, which is indicative of a good post-plasma mirror interaction beam optical quality. By deriving the plasma mirror performance metrics from the secondary source scalings, it was simultaneously demonstrated that the plasma mirror is ready for adoption in short pulse particle acceleration and high energy photon generation experiments using the OMEGA-EP system.

4.
Rev Sci Instrum ; 93(11): 113515, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461442

RESUMO

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure opacities at varying densities and temperatures relevant to the solar interior and thermal cooling rates in white dwarf stars. The typical temperatures reached at NIF range between 150 and 210 eV, which allow these measurements to be performed experimentally. The captured opacities are crucial to validating radiation-hydrodynamic models that are used in astrophysics. The NIF opacity platform has a unique new capability that allows in situ measurement of the sample expansion. The sample expansion data are used to better understand the plasma conditions in our experiments by inferring the sample density throughout the duration of the laser drive. We present the details of the density measurement technique, data analysis, and recent results for Fe and MgO.

5.
Rev Sci Instrum ; 93(10): 103501, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319319

RESUMO

When compared with the National Ignition Facility's (NIF) original soft x-ray opacity spectrometer, which used a convex cylindrical design, an elliptically shaped design has helped to increase the signal-to-noise ratio and eliminated nearly all reflections from alternate crystal planes. The success of the elliptical geometry in the opacity experiments has driven a new elliptical geometry crystal with a spectral range covering 520-1100 eV. When coupled with the primary elliptical geometry, which spans 1000-2100 eV, the new sub-keV elliptical geometry helps to cover the full iron L-shell and major oxygen transitions important to solar opacity experimentation. The new design has been built and tested by using a Henke x-ray source and shows the desired spectral coverage. Additional plans are underway to expand these opacity measurements into a mode of time-resolved detection, ∼1 ns gated, but considerations for the detector size and photometrics mean a crystal geometry redesign. The new low-energy geometry, including preliminary results from the NIF opacity experiments, is presented along with the expansion plans into a time-resolved platform.

6.
Rev Sci Instrum ; 93(9): 093517, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182496

RESUMO

K-shell x-ray emission spectroscopy is a standard tool used to diagnose the plasma conditions created in high-energy-density physics experiments. In the simplest approach, the emissivity-weighted average temperature of the plasma can be extracted by fitting an emission spectrum to a single temperature condition. It is known, however, that a range of plasma conditions can contribute to the measured spectra due to a combination of the evolution of the sample and spatial gradients. In this work, we define a parameterized model of the temperature distribution and use Markov Chain Monte Carlo sampling of the input parameters, yielding uncertainties in the fit parameters to assess the uniqueness of the inferred temperature distribution. We present the analysis of time-integrated S and Fe x-ray spectroscopic data from the Orion laser facility and demonstrate that while fitting each spectral region to a single temperature yields two different temperatures, both spectra can be fit simultaneously with a single temperature distribution. We find that fitting both spectral regions together requires a maximum temperature of 1310-70 +90 eV with significant contributions from temperatures down to 200 eV.

7.
Rev Sci Instrum ; 92(3): 033502, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820003

RESUMO

In this work, we present the measurement of L-band emission from buried Sc/V targets in experiments performed at the OMEGA laser facility. The goal of these experiments was to study non-local thermodynamic equilibrium plasmas and benchmark atomic physics codes. The L-band emission was measured simultaneously by the time resolved DANTE power diagnostic and the recently fielded time integrated Soreq-Transmission Grating Spectrometer (TGS) diagnostic. The TGS measurement was used to support the spectral reconstruction process needed for the unfolding of the DANTE data. The Soreq-TGS diagnostic allows for broadband spectral measurement in the 120 eV-2000 eV spectral band, covering L- and M-shell emission of mid- and high-Z elements, with spectral resolution λ/Δλ = 8-30 and accuracy better than 25%. The Soreq-TGS diagnostic is compatible with ten-inch-manipulator platforms and can be used for a wide variety of high energy density physics, laboratory astrophysics, and inertial confinement fusion experiments.

8.
Rev Sci Instrum ; 92(7): 075103, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340426

RESUMO

X-ray films remain a key asset for high-resolution x-ray spectral imaging in high-energy-density experiments conducted at the National Ignition Facility (NIF). The soft x-ray Opacity Spectrometer (OpSpec) fielded at the NIF has an elliptically shaped crystal design that measures x rays in the 900-2100 eV range and currently uses an image plate as the detecting medium. However, Agfa D4 and D3sc x-ray films' higher spatial resolution provides increased spectral resolution to the data over the IP-TR image plates, driving the desire for regular use of x-ray film as a detecting medium. The calibration of Agfa D4 x-ray film for use in the OpSpec is communicated here. These calibration efforts are vital to the accuracy of the NIF opacity measurements and are conducted in a previously un-studied x-ray energy range under a new film development protocol required by NIF. The absolute response of Agfa D4 x-ray film from 705 to 4620 eV has been measured using the Nevada National Security Site Manson x-ray source. A broader range of energies was selected to compare results with previously published data. The measurements were taken using selected anodes, filters, and applied voltages to produce well-defined energy lines.

9.
Rev Sci Instrum ; 92(3): 035108, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820075

RESUMO

The soft x-ray Opacity Spectrometer (OpSpec) used on the National Ignition Facility (NIF) has recently incorporated an elliptically shaped crystal. The original OpSpec used two convex cylindrical crystals for time-integrated measurements of point-projection spectra from 540 to 2100 eV. However, with the convex geometry, the low-energy portion of the spectrum suffered from high backgrounds due to scattered x-rays as well as reflections from alternate crystal planes. An elliptically shaped crystal allows an acceptance aperture at the crossover focus between the crystal and the detector, which reduces background and eliminates nearly all reflections from alternate crystal planes. The current elliptical design is an improvement from the convex cylindrical design but has a usable energy range from 900 to 2100 eV. In addition, OpSpec is currently used on 18 NIF shots/year, in which both crystals are typically damaged beyond reuse, so efficient production of 36 crystals/year is required. Design efforts to improve the existing system focus on mounting reliability, reducing crystal strain to increase survivability between mounting and shot time, and extending the energy range of the instrument down to 520 eV. The elliptical design, results, and future options are presented.

10.
Rev Sci Instrum ; 92(3): 033519, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819987

RESUMO

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure iron opacities at varying densities and temperatures relevant to the solar interior and to verify recent experimental results obtained at the Sandia Z-machine, that diverge from theory. The first set of NIF experiments collected iron opacity data at ∼150 eV to 160 eV and an electron density of ∼7 × 1021 cm-3, with a goal to study temperatures up to ∼210 eV, with electron densities of up to ∼3 × 1022 cm-3. Among several techniques used to infer the temperature of the heated Fe sample, the absolutely calibrated DANTE-2 filtered diode array routinely provides measurements of the hohlraum conditions near the sample. However, the DANTE-2 temperatures are consistently low compared to pre-shot LASNEX simulations for a range of laser drive energies. We have re-evaluated the estimated uncertainty in the reported DANTE-2 temperatures and also the error generated by varying channel participation in the data analysis. An uncertainty of ±5% or better can be achieved with appropriate spectral coverage, channel participation, and metrology of the viewing slot.

11.
Rev Sci Instrum ; 91(8): 083507, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872957

RESUMO

Filtered diode array spectrometers are routinely employed to infer the temporal evolution of spectral power from x-ray sources, but uniquely extracting spectral content from a finite set of broad, spectrally overlapping channel spectral sensitivities is decidedly nontrivial in these under-determined systems. We present the use of genetic algorithms to reconstruct a probabilistic spectral intensity distribution and compare to the traditional approach most commonly found in the literature. Unlike many of the previously published models, spectral reconstructions from this approach are neither limited by basis functional forms nor do they require a priori spectral knowledge. While the original intent of such measurements was to diagnose the temporal evolution of spectral power from quasi-blackbody radiation sources-where the exact details of spectral content were not thought to be crucial-we demonstrate that this new technique can greatly enhance the utility of the diagnostic by providing more physical spectra and improved robustness to hardware configuration for even strongly non-Planckian distributions.

12.
Rev Sci Instrum ; 79(1): 013504, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18248031

RESUMO

The first demonstration of laser driven dynamic Hohlraums (LDDH) as a spectrally smooth backlighter source for opacity and temperature measurements through absorption spectrometry of materials in local thermodynamic equilibrium at temperatures >150 eV has been made. This is a crucial temperature regime for future astrophysics and ignition fusion experiments at the nearly completed National Ignition Facility (NIF) [E. I. Moses and C. R. Wuest, Fusion Sci. Technol. 47, 314 (2005)] at the Lawrence Livermore National Laboratory. The new backlighter consists of a LDDH filled with either krypton or argon that implodes to create an x-ray flash. The properties of this x-ray flash have been measured in experiments at the Omega laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] at the Laboratory for Laser Energetics in Rochester, New York, satisfying all requirements imposed by future experiments: (1) the emission spectrum extends to at least 5.5 keV, well above the maximum x-ray energy ( approximately 3.5 keV) obtained from the previously "best" opacity backlighters (uranium M-shell emission backlighters); (2) the spectrum is smooth and featureless (intensity variation <6% rms), allowing absorption spectrometry through experimental samples; (3) the emission source size is sufficiently small (<50 microm) for projection backlighting through future samples; (4) the emission is bright enough (and twice as bright as imploding hydrogen-filled capsules) for gated spectrometer measurements; (5) the emission duration is optimized ( approximately 100 ps) for the current and future generations of spectrometers; and (6) by using only a small number of beams with limited energy and symmetry for the backlighter (10 out of 60 beams in the Omega experiments), the majority of laser beams are left available for heating sample materials to >150 eV.

13.
Rev Sci Instrum ; 89(10): 10F106, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399788

RESUMO

K-shell x-ray spectra of Li- to H-like ions have long been used to determine plasma conditions. The ratio of integrated line intensities is used to determine the temperature. At the density of non-local thermal dynamic equilibrium (NLTE) plasmas (n e ≈ 1021 cm-3), the K-shell spectrum is not very sensitive to density. We propose using the L-shell emission of open L-shell ions (C- to Li-like) as an alternative to determine both temperature and density of NLTE plasmas. First, the L-shell models of a mid-Z material need to be verified against the temperatures obtained using a K-shell spectrum of a low-Z material. A buried layer platform is being developed at the OMEGA laser to study the open L-shell spectra of NLTE plasmas of mid-Z materials. Studies have been done using a 250 µm diameter dot composed of a layer of 1200 Å thick Zn between two 600 Å thick layers of Ti, in the center of a 1000 µm diameter, 13 µm thick beryllium tamper. Lasers heat the target from both sides for up to 3 ns. The size of the emitting volume vs time was measured with x-ray imaging (face-on and side-on) to determine the density. The temperature was measured from the Ti K-shell spectra. The use of this platform for the verification of atomic L-shell models is discussed.

14.
Rev Sci Instrum ; 89(10): 10F122, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399802

RESUMO

Here we propose a pump-probe X-ray absorption spectroscopy temperature measurement technique appropriate for matter having temperature in the range of 10 to a few 100 eV and density up to solid density. Atomic modeling simulations indicate that for various low- to mid-Z materials in this range the energy and optical depth of bound-bound and bound-free absorption features are sensitive to temperature. We discuss sample thickness and tamp layer considerations. A series of experimental investigations was carried out using a range of laser parameters with pulse duration ≤5 ps and various pure and alloyed materials to identify backlighter sources suitable for the technique.

15.
Rev Sci Instrum ; 89(10): 10F101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399753

RESUMO

A point-projection soft X-ray Opacity Spectrometer (OpSpec) has been implemented to measure X-ray spectra from ∼1 to 2 keV on the National Ignition Facility (NIF). Measurement of such soft X-rays with open-aperture point-projection detectors is challenging because only very thin filters may be used to shield the detector from the hostile environment. OpSpec diffracts X-rays from 540 to 2100 eV off a potassium (or rubidium) acid phthalate (KAP or RbAP) crystal onto either image plates or, most recently, X-ray films. A "sacrificial front filter" strategy is used to prevent crystal damage, while 2 or 3 rear filters protect the data. Since May 2017, OpSpec has been recording X-ray transmission data for iron-magnesium plasmas on the NIF, at "Anchor 1" plasma conditions (temperature ∼150 eV, density ∼7 × 1021 e -/cm3). Upgrades improved OpSpec's performance on 6 NIF shots in August and December 2017, with reduced backgrounds and 100% data return using filter stacks as thin as 2.9 µm (total). Photometric noise is beginning to meet requirements, and further work will reduce systematic errors.

16.
Phys Plasmas ; 24(6): 063301, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29104422

RESUMO

Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ∼20 µm thickness have been performed. X-ray yields of up to ∼1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ∼100 µm FWHM, with ∼350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.

17.
Rev Sci Instrum ; 87(11): 11D623, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910379

RESUMO

Recent experiments at the Sandia National Laboratory Z facility have called into question models used in calculating opacity, of importance for modeling stellar interiors. An effort is being made to reproduce these results at the National Ignition Facility (NIF). These experiments require a new X-ray opacity spectrometer (OpSpec) spanning 540 eV-2100 eV with a resolving power E/ΔE > 700. The design of the OpSpec is presented. Photometric calculations based on expected opacity data are also presented. First use on NIF is expected in September 2016.

18.
Phys Rev E ; 94(5-1): 051201, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967028

RESUMO

We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n_{e}/n_{crit}∼0.04 is irradiated by a multi-ns, multi-kJ, 0.35-µm, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0×10^{14} to 2.5×10^{14}W/cm^{2} and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I=1.5×10^{14}W/cm^{2}) beams can efficiently couple energy (∼82% of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)10.1063/1.4890298].

19.
Rev Sci Instrum ; 86(10): 103511, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520959

RESUMO

Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.

20.
Rev Sci Instrum ; 85(11): 11D626, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430202

RESUMO

A multipurpose spectrometer (MSPEC) with elliptical crystals is in routine use to obtain x-ray spectra from laser produced plasmas in the energy range 1.0-9.0 keV. Knowledge of the energy-dependent response of the spectrometer is required for an accurate comparison of the intensities of x-ray lines of different energy. The energy-dependent response of the MSPEC has now been derived from the spectrometer geometry and calibration information on the response of its components, including two different types of detectors. Measurements of the spectrometer response with a laboratory x-ray source are used to test the calculated response and provide information on crystal reflectivity and uniformity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA