Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 106(32): 13493-8, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19651608

RESUMO

Cancer/testis (CT) genes are predominantly expressed in human germ line cells, but not somatic tissues, and frequently become activated in different cancer types. Several CT antigens have already proved to be useful biomarkers and are promising targets for therapeutic cancer vaccines. The aim of the present study was to investigate the expression of CT antigens in breast cancer. Using previously generated massively parallel signature sequencing (MPSS) data, together with 9 publicly available gene expression datasets, the expression pattern of CT antigens located on the X chromosome (CT-X) was interrogated. Whereas a minority of unselected breast cancers was found to contain CT-X transcripts, a significantly higher expression frequency was detected in estrogen and progesterone receptor (ER) negative breast cancer cell lines and primary breast carcinomas. A coordinated pattern of CT-X antigen expression was observed, with MAGEA and NY-ESO-1/CTAG1B being the most prevalent antigens. Immunohistochemical staining confirmed the correlation of CT-X antigen expression and ER negativity in breast tumors and demonstrated a trend for their coexpression with basal cell markers. Because of the limited therapeutic options for ER-negative breast cancers, vaccines based on CT-X antigens might prove to be useful.


Assuntos
Antígenos de Neoplasias/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Etiquetas de Sequências Expressas , Feminino , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Metástase Neoplásica/patologia , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Análise Serial de Tecidos
2.
J Biol Chem ; 284(42): 28704-12, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19696445

RESUMO

Heparan sulfate proteoglycans (HSPGs) are important modulators for optimizing signal transduction of many pathways, including the Wnt pathways. We demonstrate that HSPG glycosaminoglycan levels increased with increasing metastatic potential of melanoma cells. Previous studies have demonstrated that Wnt5A increases the invasiveness of melanoma cells. We further demonstrate that HSPGs potentiate Wnt5A signaling, since enzymatic removal of the HSPG backbone resulted in a decrease in cellular Wnt5A levels, an increase in secreted Wnt5A in cell media, a decrease in downstream signaling, and ultimately, a decrease in invasiveness. Specifically, syndecan 1 and syndecan 4 expression correlated to Wnt5A expression and melanoma malignancy. Knockdown of syndecan 1 or 4 caused decreases in cell invasion, which could be restored by treating the cells with recombinant Wnt5A. These data indicate that syndecan 1 and 4 correlate to increased metastatic potential in melanoma patients and are an important component of the Wnt5A autocrine signaling loop, the activation of which leads to increased metastasis of melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteoglicanas de Heparan Sulfato/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas/química , Neoplasias Cutâneas/patologia , Proteínas Wnt/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proteoglicanas de Heparan Sulfato/química , Humanos , Melanoma/metabolismo , Metástase Neoplásica , Proteínas Recombinantes/química , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Sindecana-1/metabolismo , Sindecana-4/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a , Cicatrização
3.
Clin Cancer Res ; 15(6): 1954-63, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19276289

RESUMO

PURPOSE: The sperm-derived SPANX family proteins can be found expressed in human tumors. Here, we aimed to perform a comprehensive study to evaluate immunotherapeutic relevance of one of its members, SPANX-B. We wanted to test its expression pattern in human tumors and to evaluate CD4(+) and CD8(+) T-cell responses in healthy humans after in vitro immunizations. EXPERIMENTAL DESIGN: Expression of SPANX-B in human malignancies, including a multitumor tissue array of 145 primary tumors, was assessed using reverse transcription-PCR, Western blotting, and immunohistochemical analysis. T-cell immunogenicity and immunodominant epitopes of SPANX-B were studied using in vitro immunizations of healthy human donor-derived leukocytes. RESULTS: SPANX-B was abundantly expressed in melanoma and carcinomas of lung, ovary, colon, and breast. In melanoma, tissue array data indicated that it was expressed in advanced and metastatic disease. Unlike most tumor-associated antigens, SPANX-B was an immunogenic antigen that was recognized by circulating T-cell precursors in healthy humans. Importantly, these T cells were readily expanded to generate SPANX-B-specific helper CD4(+) and cytolytic CD8(+) T cells that recognized unique immunodominant epitopes: at least one HLA-DR-restricted Pep-9 epitope (SPANX-B(12-23)) and two HLA-A2-restricted Pep-2 and Pep-4 epitopes (SPANX-B(23-31) and SPANX-B(57-65), respectively). CD8(+) T cells were fully functional to recognize and lyse HLA-A2-expressing tumors, including primary human melanomas. CONCLUSIONS: SPANX-B is an immunogenic sperm-derived antigen that is expressed in several human tumors. SPANX-B is also efficiently recognized by the human T-cell immune arm, indicating its significant value for the development of protective and therapeutic cancer vaccines.


Assuntos
Antígenos de Neoplasias/análise , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Proteínas Nucleares/análise , Sequência de Aminoácidos , Vacinas Anticâncer/imunologia , Humanos , Epitopos Imunodominantes , Dados de Sequência Molecular , Neoplasias/terapia , Proteínas Nucleares/imunologia
4.
Exp Dermatol ; 18(1): 69-77, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18631247

RESUMO

Ultraviolet (UV) irradiation plays a pivotal role in human skin carcinongenesis. Preclinically, systemically and topically applied green tea extract (GTE) has shown reduction of UV-induced (i) erythema, (ii) DNA damage, (iii) formation of radical oxygen species and (iv) downregulation of numerous factors related to apoptosis, inflammation, differentiation and carcinogenesis. In humans, topical GTE has so far only been tested in limited studies, with usually very high GTE concentrations and over short periods of time. Both chemical stability of GTE and staining properties of highly concentrated green tea polyphenols limit the usability of highly concentrated green tea extracts in cosmetic products. The present study tested the utility of stabilized low-dose GTE as photochemopreventive agents under everyday conditions. We irradiated with up to 100 mJ/cm(2) of UVB light skin patches which were pretreated with either OM24-containing lotion or a placebo lotion. Biopsies were taken from both irradiated and un-irradiated skin for both immunohistochemistry and DNA microarray analysis. We found that while OM24 treatment did not significantly affect UV-induced erythema and thymidine dimer formation, OM24 treatment significantly reduced UV-induced p53 expression in keratinocytes. We also found that OM24 treatment significantly reduced the number of apoptotic keratinocytes (sunburn cells and TUNEL-positive cells). Carefully controlled DNA microarray analyses showed that OM24 treatment does not induce off-target changes in gene expression, reducing the likelihood of unwanted side-effects. Topical GTE (OM24) reduces UVB-mediated epithelial damage already at low, cosmetically usable concentrations, without tachyphylaxis over 5 weeks, suggesting GTE as suitable everyday photochemopreventive agents.


Assuntos
Apoptose , Pele/metabolismo , Chá , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Adulto , Idoso , Biópsia , Dano ao DNA , Feminino , Humanos , Queratinócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53/biossíntese
5.
BMC Cancer ; 9: 52, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19216735

RESUMO

BACKGROUND: The C-terminal binding protein 1 (CtBP1) is a known co-repressor of gene transcription. We recently revealed that CtBP1 expression is lost in melanoma cells and melanoma inhibitory activity (MIA) expression is subsequently increased. The present study was performed to evaluate a more general role of CtBP1 in human melanoma and identify further CtBP1-regulated target genes. METHODS: Sequence analysis and expression profile of CtBP1 in melanoma cell lines were done by PCR. Boyden Chamber assays and co-immunoprecipitation were performed to investigate the functional role of CtBP1. Gene expression analysis and micro array data were used to define target genes. RESULTS: Interestingly, we detected an alternative splice product of CtBP1 with unknown function whose expression is induced at reduction of full length CtBP1. Overexpression of full length CtBP1 in melanoma cells had no effect on cell proliferation but did influence cell migration and invasiveness. To understand the effect of CtBP1 we identified putative LEF/TCF target genes found to be strongly expressed in melanoma using DNA microarray analysis. We focused on fourteen genes not previously associated with melanoma. Detailed analysis revealed that most of these were known to be involved in tumor metastasis. Eleven genes had expression profiles associated with melanoma cell invasiveness. CONCLUSION: In summary, this study revealed that reduction of CtBP1 expression is correlated with migratory, invasive potential of melanoma cells.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/patologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Bases , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Melanoma/metabolismo , Dados de Sequência Molecular , Invasividade Neoplásica
6.
Melanoma Res ; 17(2): 131-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17496789

RESUMO

Cutaneous melanoma is the most aggressive of cutaneous neoplasms. Identifying patients with an increased risk for the development of metastases is critical. This study investigates phospho-Smad2, a central factor of the transforming growth factor beta pathway, on formalin-fixed, paraffin-embedded tissues from 60 primary cutaneous melanomas (Breslow >1 mm), for its candidacy for being a prognostic marker in primary cutaneous melanoma. Phospho-Smad2 positivity was assessed for correlation with clinical parameters including Breslow index, melanoma type, survival, development of metastases, sentinel lymph node status and age. Phospho-Smad2 positivity was not associated with survival or development of metastases, suggesting that it would not be a useful prognostic marker. Despite this, we found phospho-Smad2 positivity to be correlated with low tumour thickness, indicating that as the primary tumour grows there is an increased inhibition of transforming growth factor beta signalling resulting in suppressed Smad2 phosphorylation. Additionally, phosphorylation of Smad2 in neighbouring melanoma cells and keratinocytes was interrelated, which is a further indication that Smad2 phosphorylation in primary melanoma is affected by local area microenvironmental factors. We hypothesize that the observed decrease in transforming growth factor beta signalling in thicker primary melanomas is due to the increased production of signalling inhibitors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/diagnóstico , Melanoma/metabolismo , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Proteína Smad2/biossíntese , Adulto , Fatores Etários , Idoso , Feminino , Formaldeído/farmacologia , Humanos , Imunofenotipagem , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Metástase Neoplásica , Parafina/farmacologia , Neoplasias Cutâneas/imunologia
7.
Cancer Res ; 64(15): 5270-82, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15289333

RESUMO

Affymetrix and spotted oligonucleotide microarrays were used to assess global differential gene expression comparing normal human melanocytes with six independent melanoma cell strains from advanced lesions. The data, validated at the protein level for selected genes, confirmed the overexpression in melanoma cells relative to normal melanocytes of several genes in the growth factor/receptor family that confer growth advantage and metastasis. In addition, novel pathways and patterns of associated expression in melanoma cells not reported before emerged, including the following: (a) activation of the NOTCH pathway; (b) increased Twist expression and altered expression of additional transcriptional regulators implicated in embryonic development and epidermal/mesenchymal transition; (c) coordinated activation of cancer/testis antigens; (d) coordinated down-regulation of several immune modulation genes, in particular in the IFN pathways; (e) down-regulation of several genes implicated in membrane trafficking events; and (f) down-regulation of growth suppressors, such as the Prader-Willi gene NECDIN, whose function was confirmed by overexpression of ectopic Flag-necdin. Validation of differential expression using melanoma tissue microarrays showed that reduced ubiquitin COOH-terminal esterase L1 in primary melanoma is associated with worse outcome and that increased expression of the basic helix-loop-helix protein Twist is associated with worse outcome. Some differentially expressed genes reside on chromosomal regions displaying common loss or gain in melanomas or are known to be regulated by CpG promoter methylation. These results provide a comprehensive view of changes in advanced melanoma relative to normal melanocytes and reveal new targets that can be used in assessing prognosis, staging, and therapy of melanoma patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanócitos/metabolismo , Melanoma/metabolismo , Transdução de Sinais , Animais , Estudos de Coortes , Regulação para Baixo , Humanos , Metástase Linfática/patologia , Melanócitos/patologia , Melanoma/genética , Melanoma/secundário , Camundongos , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/secundário , Taxa de Sobrevida , Fatores de Transcrição/metabolismo , Transfecção , Proteína 1 Relacionada a Twist , Ubiquitina Tiolesterase/metabolismo
8.
Cancer Biol Ther ; 4(9): 1018-29, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16251803

RESUMO

Over the past two decades, several known genes have been shown to govern important functions in the development of primary and metastatic melanomas. However, from this limited number of genes, it is not possible to establish detailed molecular profiles for the early and advanced stages of melanoma development. To gain insights into the genetic profile of every stage of the melanoma progression pathway, and to determine to what extent these profiles are similar or distinct, we performed whole-genome expression profiling of tissue specimens representing normal skin, benign and atypical nevi, and early and advanced-stage melanomas. The results of this study provide first-time evidence that significant molecular changes occur distinctly at the border of/transition from melanoma in situ to primary melanoma, and that genes involved in mitotic cell cycle regulation and cell proliferation constitute the two leading categories of genes associated with these changes.


Assuntos
Perfilação da Expressão Gênica , Genoma Humano , Melanoma/genética , Melanoma/patologia , Lesões Pré-Cancerosas/genética , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Melanoma/química , Estadiamento de Neoplasias , Nevo/química , Nevo/genética , Nevo/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Lesões Pré-Cancerosas/patologia
9.
Cancer Cell ; 26(1): 61-76, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24981740

RESUMO

Although common cancer hallmarks are well established, lineage-restricted oncogenes remain less understood. Here, we report an inherent dependency of melanoma cells on the small GTPase RAB7, identified within a lysosomal gene cluster that distinguishes this malignancy from over 35 tumor types. Analyses in human cells, clinical specimens, and mouse models demonstrated that RAB7 is an early-induced melanoma driver whose levels can be tuned to favor tumor invasion, ultimately defining metastatic risk. Importantly, RAB7 levels and function were independent of MITF, the best-characterized melanocyte lineage-specific transcription factor. Instead, we describe the neuroectodermal master modulator SOX10 and the oncogene MYC as RAB7 regulators. These results reveal a unique wiring of the lysosomal pathway that melanomas exploit to foster tumor progression.


Assuntos
Biomarcadores Tumorais/metabolismo , Linhagem da Célula , Lisossomos/enzimologia , Melanoma/enzimologia , Neoplasias Cutâneas/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/mortalidade , Melanoma/secundário , Melanoma/terapia , Camundongos , Invasividade Neoplásica , Estadiamento de Neoplasias , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Fatores de Tempo , Transfecção , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
10.
Pigment Cell Melanoma Res ; 26(4): 555-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23470013

RESUMO

The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells.


Assuntos
Caderinas/metabolismo , Caveolina 1/metabolismo , Melanoma/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/secundário , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Metástase Neoplásica , Neuropeptídeos/metabolismo , Fenótipo , Neoplasias Cutâneas/metabolismo , beta Catenina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
J Invest Dermatol ; 133(10): 2436-2443, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23474946

RESUMO

We have previously reported a model for melanoma progression in which oscillation between melanoma cell phenotypes characterized by invasion or proliferation is fundamental to tumor heterogeneity and disease progression. In this study we examine the possible role of hypoxia as one of the microenvironmental influences driving metastatic progression by promoting a switch from a proliferative to an invasive phenotype. Immunohistochemistry on primary human cutaneous melanoma biopsies showed intratumoral heterogeneity for cells expressing melanocytic markers, and a loss of these markers correlated with hypoxic regions. Furthermore, we show that the downregulation of melanocytic markers is dependent on hypoxia inducible factor 1α (HIF1α), a known regulator of the hypoxic response. In vitro invasion assays showed that a hypoxic environment increases the invasiveness of proliferative melanoma cell cultures in a HIF1α-dependent manner. In contrast, invasive phenotype melanoma cells showed no increase in invasive potential upon exposure to hypoxia. Thus, exposure of proliferative melanoma cells to hypoxic microenvironments is sufficient, in a HIF1α-dependent manner, to downregulate melanocytic marker expression and increase their invasive potential.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/fisiologia , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Antígeno MART-1/genética , Antígeno MART-1/metabolismo , Melanoma/genética , Melanoma/metabolismo , Invasividade Neoplásica , Fenótipo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Células Tumorais Cultivadas
12.
Cell Rep ; 5(2): 493-507, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24139804

RESUMO

Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.


Assuntos
GMP Redutase/metabolismo , Melanoma/enzimologia , Nucleosídeos de Purina/biossíntese , Animais , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , GMP Redutase/antagonistas & inibidores , GMP Redutase/genética , Guanosina Trifosfato/metabolismo , Células HCT116 , Humanos , IMP Desidrogenase/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transplante Heterólogo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
13.
Pigment Cell Melanoma Res ; 25(3): 343-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22336146

RESUMO

There is growing evidence that the metastatic spread of melanoma is driven not by a linear increase in tumorigenic aggressiveness, but rather by switching back and forth between two different phenotypes of metastatic potential. In vitro these phenotypes are respectively defined by the characteristics of strong proliferation/weak invasiveness and weak proliferation/strong invasiveness. Melanoma cell phenotype is tightly linked to gene expression. Taking advantage of this, we have developed a gene expression-based tool for predicting phenotype called Heuristic Online Phenotype Prediction. We demonstrate the predictive utility of this tool by comparing phenotype-specific signatures with measurements of characteristics of melanoma phenotype-specific biology in different melanoma cell lines and short-term cultures. We further show that 86% of 536 tested melanoma lines and short-term cultures are significantly associated with the phenotypes we describe. These findings reinforce the concept that a two-state system, as described by the phenotype switching model, underlies melanoma progression.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Melanoma/classificação , Neoplasias Cutâneas/classificação , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos/genética , Estudos de Associação Genética , Humanos , Melanoma/genética , Melanoma/patologia , Análise em Microsséries , Invasividade Neoplásica , Fenótipo , Reprodutibilidade dos Testes , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Distribuição Tecidual , Células Tumorais Cultivadas/classificação
14.
Pigment Cell Melanoma Res ; 24(4): 631-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21599871

RESUMO

Recent observations suggest that melanoma cells drive disease progression by switching back and forth between phenotypic states of proliferation and invasion. Phenotype switching has been linked to changes in Wnt signalling, and we therefore looked for cell phenotype-specific differences in the levels and activity of ß-catenin and its LEF/TCF co-factors. We found that while cytosolic ß-catenin distribution is phenotype-specific (membrane-associated in proliferative cells and cytosolic in invasive cells), its nuclear distribution and activity is not. Instead, the expression patterns of two ß-catenin co-factors, LEF1 and TCF4, are both phenotype-specific and inversely correlated. LEF1 is preferentially expressed by differentiated/proliferative phenotype cells and TCF4 by dedifferentiated/invasive phenotype cells. Knock-down experiments confirmed that these co-factors are important for the phenotype-specific expression of M-MITF, WNT5A and other genes and that LEF1 suppresses TCF4 expression independently of ß-catenin. Our data show that melanoma cell phenotype switching behaviour is regulated by differential LEF1/TCF4 activity.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Fenótipo , Fator de Transcrição 4 , Fatores de Transcrição/metabolismo , Proteínas Wnt/farmacologia , beta Catenina/metabolismo
15.
Pigment Cell Melanoma Res ; 24(5): 932-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21801332

RESUMO

We recently identified GLI2, the most active of GLI transcription factors, as a direct TGF-ß/SMAD target, whose expression in melanoma cells is associated with increased invasiveness and metastatic capacity. In this work, we provide evidence that high GLI2 expression is inversely correlated with that of the melanocyte-specific transcription factor M-microphthalmia transcription factor (M-MITF) and associated transcriptional program. GLI2-expressing cell lines were characterized by the loss of M-MITF-dependent melanocytic differentiation markers and reduced pigmentation. The balance between M-MITF and GLI2 expression did not correlate with the presence or absence of BRAF-activating mutations, but rather was controlled by two distinct pathways: the TGF-ß pathway, which favors GLI2 expression, and the protein kinase A (PKA)/cAMP pathway, which pushes the balance toward high M-MITF expression. Furthermore, overexpression and knockdown experiments demonstrated that GLI2 and M-MITF reciprocally repress each other's expression and control melanoma cell invasion in an opposite manner. These findings thus identify GLI2 as a critical transcription factor antagonizing M-MITF function to promote melanoma cell phenotypic plasticity and invasive behavior.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Melanoma/genética , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Transcrição Kruppel-Like/genética , Melanoma/fisiopatologia , Camundongos , Camundongos Nus , Fator de Transcrição Associado à Microftalmia/genética , Invasividade Neoplásica , Proteínas Nucleares/genética , Pigmentação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Cutâneas/fisiopatologia , Proteínas Smad/metabolismo , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Gli2 com Dedos de Zinco
16.
Pigment Cell Melanoma Res ; 24(2): 326-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21176117

RESUMO

Oncogenic mutations within the MAPK pathway are frequent in melanoma, and targeting of MAPK signaling has yielded spectacular responses in a significant number of patients that last for several months before relapsing. We investigated the effects of two different inhibitors of MAPK signaling in proliferative and invasive melanoma cell cultures with various mutations in the MAPK pathway. Proliferative melanoma cells were more susceptible to pathway inhibition than invasive phenotype cells, irrespective of BRAF mutation status, while invasive phenotype cell response was dependent on BRAF mutation status. Critically, MAPK pathway inhibition of proliferative phenotype cells resulted in acquisition of invasive phenotype characteristics. These results show that melanoma cell phenotype is an important factor in MAPK pathway inhibition response. This suggests that while current therapeutic strategies target proliferative melanoma cells, future approaches should also account for the invasive phenotype population.


Assuntos
Melanoma/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Quinases raf/antagonistas & inibidores , Adulto , Idoso , Proliferação de Células , Inibidores Enzimáticos/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Análise em Microsséries , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Invasividade Neoplásica , Proteínas Proto-Oncogênicas B-raf/metabolismo
17.
Pigment Cell Melanoma Res ; 23(3): 306-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20236251
18.
Pigment Cell Melanoma Res ; 23(6): 746-59, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20726948

RESUMO

Tumours comprise multiple phenotypically distinct subpopulations of cells, some of which are proposed to possess stem cell-like properties, being able to self-renew, seed and maintain tumours, and provide a reservoir of therapeutically resistant cells. Here, we use melanoma as a model to explore the validity of the cancer stem cell hypothesis in the light of accumulating evidence that melanoma progression may instead be driven by phenotype-switching triggered by genetic lesions that impose an increased sensitivity to changes in the tumour microenvironment. Although at any given moment cells within a tumour may exhibit differentiated, proliferative or invasive phenotypes, an ability to switch phenotypes implies that most cells will have the potential to adopt a stem cell-like identity. Insights into the molecular events underpinning phenotype-switching in melanoma highlight the close relationship between signalling pathways that generate, maintain and activate melanocyte stem cells as well as the inverse correlation between proliferation and invasive potentials. An understanding of phenotype-switching in melanoma, and in particular the signalling events that regulate the expression of the microphthalmia-associated transcription factor Mitf, points to new therapeutic opportunities aimed at eradicating therapeutically resistant stem cell-like melanoma cells.


Assuntos
Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/genética , Melanoma/terapia , Fator de Transcrição Associado à Microftalmia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Lesões Pré-Cancerosas/patologia
19.
Melanoma Res ; 20(4): 349-55, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20526217

RESUMO

To date there is no effective therapy for metastatic melanoma and at the molecular level the disease progression is poorly understood. A recent study by our group led to the development of a novel phenotype switching model for melanoma progression, wherein cells transition back-and-forth between states of proliferation and invasion to drive disease progression. To explore the model's clinical relevance we interrogated phenotype-specific expression patterns in human melanoma patient material. A matched primary/metastasis pair from a human melanoma patient was obtained and immunohistochemically stained for proliferative and invasive phenotype markers. These were also stained for hypoxia and blood vessel markers. Proliferative phenotype markers Melan-A and Mitf showed consistent anti-correlation with invasive phenotype marker Wnt5A and hypoxia marker Glut-1. These also correlated with observed intra-tumoural vascularization patterns. Similar pattern distributions were present in both primary and metastasis samples. Strikingly, we observed that late phase metastatic melanoma cells adopt morphologies and behaviours identical to very early phase cells. The expression patterns observed closely matched expectations derived from previous in vitro and xenografting experiments. These results highlight the likelihood that disease progression involves melanoma cells retaining the capacity to regulate the expression of metastatic potential critical factors according to changing microenvironmental conditions.


Assuntos
Melanoma/patologia , Neoplasias Cutâneas/patologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Progressão da Doença , Feminino , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Antígeno MART-1 , Melanoma/genética , Melanoma/metabolismo , Melanoma/secundário , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
20.
J Natl Cancer Inst ; 102(15): 1148-59, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20660365

RESUMO

BACKGROUND: The transforming growth factor-beta (TGF-beta) pathway, which has both tumor suppressor and pro-oncogenic activities, is often constitutively active in melanoma and is a marker of poor prognosis. Recently, we identified GLI2, a mediator of the hedgehog pathway, as a transcriptional target of TGF-beta signaling. METHODS: We used real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting to determine GLI2 expression in human melanoma cell lines and subsequently classified them as GLI2high or as GLI2low according to their relative GLI2 mRNA and protein expression levels. GLI2 expression was reduced in a GLI2high cell line with lentiviral expression of short hairpin RNA targeting GLI2. We assessed the role of GLI2 in melanoma cell invasiveness in Matrigel assays. We measured secretion of matrix metalloproteinase (MMP)-2 and MMP-9 by gelatin zymography and expression of E-cadherin by western blotting and RT-PCR. The role of GLI2 in development of bone metastases was determined following intracardiac injection of melanoma cells in immunocompromised mice (n = 5-13). Human melanoma samples (n = 79) at various stages of disease progression were analyzed for GLI2 and E-cadherin expression by immunohistochemistry, in situ hybridization, or RT-PCR. All statistical tests were two-sided. RESULTS: Among melanoma cell lines, increased GLI2 expression was associated with loss of E-cadherin expression and with increased capacity to invade Matrigel and to form bone metastases in mice (mean osteolytic tumor area: GLI2high vs GLI2low, 2.81 vs 0.93 mm(2), difference = 1.88 mm(2), 95% confidence interval [CI] = 1.16 to 2.60, P < .001). Reduction of GLI2 expression in melanoma cells that had expressed high levels of GLI2 substantially inhibited both basal and TGF-beta-induced cell migration, invasion (mean number of Matrigel invading cells: shGLI2 vs shCtrl (control), 52.6 vs 100, difference = 47.4, 95% CI = 37.0 to 57.8, P = .024; for shGLI2 + TGF-beta vs shCtrl + TGF-beta, 31.0 vs 161.9, difference = -130.9, 95% CI = -96.2 to -165.5, P = .002), and MMP secretion in vitro and the development of experimental bone metastases in mice. Within human melanoma lesions, GLI2 expression was heterogeneous, associated with tumor regions in which E-cadherin was lost and increased in the most aggressive tumors. CONCLUSION: GLI2 was directly involved in driving melanoma invasion and metastasis in this preclinical study.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Fatores de Transcrição Kruppel-Like/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Animais , Western Blotting , Caderinas/metabolismo , Linhagem Celular Tumoral , Colágeno , Combinação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Hospedeiro Imunocomprometido , Imuno-Histoquímica , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Laminina , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/secundário , Camundongos , Invasividade Neoplásica , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Proteoglicanas , RNA Mensageiro/metabolismo , Transdução de Sinais , Regulação para Cima , Proteína Gli2 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA