Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 155(7): 1521-31, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360275

RESUMO

Enhancers are distal regulatory elements that can activate tissue-specific gene expression and are abundant throughout mammalian genomes. Although substantial progress has been made toward genome-wide annotation of mammalian enhancers, their temporal activity patterns and global contributions in the context of developmental in vivo processes remain poorly explored. Here we used epigenomic profiling for H3K27ac, a mark of active enhancers, coupled to transgenic mouse assays to examine the genome-wide utilization of enhancers in three different mouse tissues across seven developmental stages. The majority of the ∼90,000 enhancers identified exhibited tightly temporally restricted predicted activity windows and were associated with stage-specific biological functions and regulatory pathways in individual tissues. Comparative genomic analysis revealed that evolutionary conservation of enhancers decreases following midgestation across all tissues examined. The dynamic enhancer activities uncovered in this study illuminate rapid and pervasive temporal in vivo changes in enhancer usage that underlie processes central to development and disease.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Acetilação , Animais , Epigênese Genética , Evolução Molecular , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos
2.
Cell ; 152(4): 895-908, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23375746

RESUMO

The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders.


Assuntos
Elementos Facilitadores Genéticos , Telencéfalo/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Feto/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Telencéfalo/embriologia , Transcriptoma , Fatores de Transcrição de p300-CBP/metabolismo
3.
Hum Mol Genet ; 25(9): 1792-802, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908614

RESUMO

Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a graying phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.


Assuntos
Óxidos N-Cíclicos/farmacologia , Modelos Animais de Doenças , Doença de Huntington/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Redução de Peso/efeitos dos fármacos
4.
PLoS Genet ; 11(8): e1005267, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26247199

RESUMO

Huntington's Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.


Assuntos
Óxidos N-Cíclicos/farmacologia , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Animais , Óxidos N-Cíclicos/uso terapêutico , DNA Glicosilases/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Doença de Huntington/tratamento farmacológico , Doença de Huntington/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Genome Res ; 24(6): 920-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24752179

RESUMO

The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.


Assuntos
DNA Helicases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Helicases/genética , Extremidades/embriologia , Genoma , Coração/embriologia , Histonas/genética , Histonas/metabolismo , Camundongos , Miocárdio/metabolismo , Proteínas Nucleares/genética , Especificidade de Órgãos , Ligação Proteica , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 111(51): E5574-83, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489083

RESUMO

Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0(460)). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0(460) was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0(460) was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0(460) in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0(460) in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0(460) was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/efeitos da radiação , Luz , Células Ganglionares da Retina/efeitos da radiação , Visão Ocular , Animais , Cegueira/fisiopatologia , Canais Iônicos/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/fisiologia
7.
Mol Ther ; 23(10): 1562-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26137852

RESUMO

Retinal disease is one of the most active areas of gene therapy, with clinical trials ongoing in the United States for five diseases. There are currently no treatments for patients with late-stage disease in which photoreceptors have been lost. Optogenetic gene therapies are in development, but, to date, have suffered from the low light sensitivity of microbial opsins, such as channelrhodopsin and halorhodopsin, and azobenzene-based photoswitches. Several groups have shown that photoreceptive G-protein-coupled receptors (GPCRs) can be expressed heterologously, and photoactivate endogenous Gi/o signaling. We hypothesized such a GPCR could increase sensitivity due to endogenous signal amplification. We targeted vertebrate rhodopsin to retinal ON-bipolar cells of blind rd1 mice and observed restoration of: (i) light responses in retinal explants, (ii) visually-evoked potentials in visual cortex in vivo, and (iii) two forms of visually-guided behavior: innate light avoidance and discrimination of temporal light patterns in the context of fear conditioning. Importantly, both the light responses of the retinal explants and the visually-guided behavior occurred reliably at light levels that were two to three orders of magnitude dimmer than required for channelrhodopsin. Thus, gene therapy with native light-gated GPCRs presents a novel approach to impart light sensitivity for visual restoration in a useful range of illumination.


Assuntos
Optogenética/métodos , Rodopsina/genética , Visão Ocular/genética , Animais , Dependovirus/genética , Expressão Ectópica do Gene , Potenciais Evocados Visuais/genética , Potenciais Evocados Visuais/efeitos da radiação , Terapia Genética , Vetores Genéticos/genética , Luz , Camundongos , Estimulação Luminosa , Retina/citologia , Retina/metabolismo , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução Genética , Percepção Visual
8.
Nature ; 457(7231): 854-8, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19212405

RESUMO

A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.


Assuntos
Imunoprecipitação da Cromatina/métodos , Mapeamento Cromossômico/métodos , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/embriologia , Prosencéfalo/embriologia , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Sequência Conservada , Embrião de Mamíferos/embriologia , Camundongos
9.
Mol Metab ; 81: 101900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354856

RESUMO

The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Neoplasias Ovarianas , Feminino , Humanos , Proliferação de Células , Colágeno , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Ovarianas/genética , Prolina
10.
Explor Target Antitumor Ther ; 4(4): 600-615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720350

RESUMO

Aspirin is a well-known nonsteroidal anti-inflammatory drug (NSAID) that has a recognized role in cancer prevention as well as evidence to support its use as an adjuvant for cancer treatment. Importantly there has been an increasing number of studies contributing to the mechanistic understanding of aspirins' anti-tumour effects and these studies continue to inform the potential clinical use of aspirin for both the prevention and treatment of cancer. This review focuses on the emerging role of aspirin as a regulator of metabolic reprogramming, an essential "hallmark of cancer" required to support the increased demand for biosynthetic intermediates needed for sustained proliferation. Cancer cells frequently undergo metabolic rewiring driven by oncogenic pathways such as hypoxia-inducible factor (HIF), wingless-related integration site (Wnt), mammalian target of rapamycin (mTOR), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB), which supports the increased proliferative rate as tumours develop and progress. Reviewed here, cellular metabolic reprogramming has been identified as a key mechanism of action of aspirin and include the regulation of key metabolic drivers, the regulation of enzymes involved in glycolysis and glutaminolysis, and altered nutrient utilisation upon aspirin exposure. Importantly, as aspirin treatment exposes metabolic vulnerabilities in tumour cells, there is an opportunity for the use of aspirin in combination with specific metabolic inhibitors in particular, glutaminase (GLS) inhibitors currently in clinical trials such as telaglenastat (CB-839) and IACS-6274 for the treatment of colorectal and potentially other cancers. The increasing evidence that aspirin impacts metabolism in cancer cells suggests that aspirin could provide a simple, relatively safe, and cost-effective way to target this important hallmark of cancer. Excitingly, this review highlights a potential new role for aspirin in improving the efficacy of a new generation of metabolic inhibitors currently undergoing clinical investigation.

11.
Cancer Metab ; 11(1): 18, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858256

RESUMO

BACKGROUND: To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS: We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS: We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS: Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.

12.
Nature ; 444(7118): 499-502, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17086198

RESUMO

Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human-pufferfish, Takifugu (Fugu) rubripes, or ultraconserved in human-mouse-rat. We tested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all approximately 3,100 non-coding elements in the human genome that are conserved between human and Fugu. The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo, and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome.


Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , Animais , Sequência de Bases , Cromossomos Humanos Par 16 , Sequência Conservada , Embrião de Mamíferos/metabolismo , Embrião não Mamífero , Expressão Gênica , Genômica/métodos , Humanos , Camundongos , Camundongos Transgênicos , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Takifugu/genética , Fatores de Transcrição/genética
13.
Curr Opin Pharmacol ; 65: 102259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749908

RESUMO

Blinding diseases that are caused by degeneration of rod and cone photoreceptor cells often spare the rest of the retinal circuit, from bipolar cells, which are directly innervated by photoreceptor cells, to the output ganglion cells that project axons to the brain. A strategy for restoring vision is to introduce light sensitivity to the surviving cells of the retina. One approach is optogenetics, in which surviving cells are virally transfected with a gene encoding a signaling protein that becomes sensitive to light by binding to the biologically available chromophore retinal, the same chromophore that is used by the opsin photo-detectors of rods and cones. A second approach uses photopharmacology, in which a synthetic photoswitch associates with a native or engineered ion channel or receptor. We review these approaches and look ahead to the next generation of advances that could reconstitute core aspects of natural vision.


Assuntos
Retina , Células Fotorreceptoras Retinianas Cones , Humanos , Optogenética , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
14.
Front Microbiol ; 13: 1035197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523833

RESUMO

Glacial meltwater drains into proglacial rivers where it interacts with the surrounding landscape, collecting microbial cells as it travels downstream. Characterizing the composition of the resulting microbial assemblages in transport can inform us about intra-annual changes in meltwater flowpaths beneath the glacier as well as hydrological connectivity with proglacial areas. Here, we investigated how the structure of suspended microbial assemblages evolves over the course of a melt season for three proglacial catchments of the Greenland Ice Sheet (GrIS), reasoning that differences in glacier size and the proportion of glacierized versus non-glacierized catchment areas will influence both the identity and relative abundance of microbial taxa in transport. Streamwater samples were taken at the same time each day over a period of 3 weeks (summer 2018) to identify temporal patterns in microbial assemblages for three outlet glaciers of the GrIS, which differed in glacier size (smallest to largest; Russell, Leverett, and Isunnguata Sermia [IS]) and their glacierized: proglacial catchment area ratio (Leverett, 76; Isunnguata Sermia, 25; Russell, 2). DNA was extracted from samples, and 16S rRNA gene amplicons sequenced to characterize the structure of assemblages. We found that microbial diversity was significantly greater in Isunnguata Sermia and Russell Glacier rivers compared to Leverett Glacier, the latter of which having the smallest relative proglacial catchment area. Furthermore, the microbial diversity of the former two catchments continued to increase over monitored period, presumably due to increasing hydrologic connectivity with proglacial habitats. Meanwhile, diversity decreased over the monitored period in Leverett, which may have resulted from the evolution of an efficient subglacial drainage system. Linear discriminant analysis further revealed that bacteria characteristic to soils were disproportionately represented in the Isunnguata Sermia river, while putative methylotrophs were disproportionately abundant in Russell Glacier. Meanwhile, taxa typical for glacierized habitats (i.e., Rhodoferax and Polaromonas) dominated in the Leverett Glacier river. Our findings suggest that the proportion of deglaciated catchment area is more influential to suspended microbial assemblage structure than absolute glacier size, and improve our understanding of hydrological flowpaths, particulate entrainment, and transport.

15.
PLoS Biol ; 5(9): e234, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17803355

RESUMO

Ultraconserved elements have been suggested to retain extended perfect sequence identity between the human, mouse, and rat genomes due to essential functional properties. To investigate the necessities of these elements in vivo, we removed four noncoding ultraconserved elements (ranging in length from 222 to 731 base pairs) from the mouse genome. To maximize the likelihood of observing a phenotype, we chose to delete elements that function as enhancers in a mouse transgenic assay and that are near genes that exhibit marked phenotypes both when completely inactivated in the mouse and when their expression is altered due to other genomic modifications. Remarkably, all four resulting lines of mice lacking these ultraconserved elements were viable and fertile, and failed to reveal any critical abnormalities when assayed for a variety of phenotypes including growth, longevity, pathology, and metabolism. In addition, more targeted screens, informed by the abnormalities observed in mice in which genes in proximity to the investigated elements had been altered, also failed to reveal notable abnormalities. These results, while not inclusive of all the possible phenotypic impact of the deleted sequences, indicate that extreme sequence constraint does not necessarily reflect crucial functions required for viability.


Assuntos
Sequência Conservada/fisiologia , Fenótipo , Deleção de Sequência/fisiologia , Animais , Fertilidade , Genoma , Camundongos , Sobrevida
16.
Sci Rep ; 9(1): 801, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692549

RESUMO

Many links between gut microbiota and disease development have been established in recent years, with particular bacterial strains emerging as potential therapeutics rather than causative agents. In this study we describe the immunostimulatory properties of Enterococcus gallinarum MRx0518, a candidate live biotherapeutic with proven anti-tumorigenic efficacy. Here we demonstrate that strain MRx0518 elicits a strong pro-inflammatory response in key components of the innate immune system but also in intestinal epithelial cells. Using a flagellin knock-out derivative and purified recombinant protein, MRx0518 flagellin was shown to be a TLR5 and NF-κB activator in reporter cells and an inducer of IL-8 production by HT29-MTX cells. E. gallinarum flagellin proteins display a high level of sequence diversity and the flagellin produced by MRx0518 was shown to be more potent than flagellin from E. gallinarum DSM100110. Collectively, these data infer that flagellin may play a role in the therapeutic properties of E. gallinarum MRx0518.


Assuntos
Antineoplásicos Imunológicos/imunologia , Enterococcus/imunologia , Flagelina/genética , Flagelina/imunologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular , Células Dendríticas/imunologia , Enterococcus/genética , Flagelina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HT29 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Células THP-1/imunologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
17.
Nat Commun ; 10(1): 1221, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874546

RESUMO

Inherited and age-related retinal degenerative diseases cause progressive loss of rod and cone photoreceptors, leading to blindness, but spare downstream retinal neurons, which can be targeted for optogenetic therapy. However, optogenetic approaches have been limited by either low light sensitivity or slow kinetics, and lack adaptation to changes in ambient light, and not been shown to restore object vision. We find that the vertebrate medium wavelength cone opsin (MW-opsin) overcomes these limitations and supports vision in dim light. MW-opsin enables an otherwise blind retinitis pigmenotosa mouse to discriminate temporal and spatial light patterns displayed on a standard LCD computer tablet, displays adaption to changes in ambient light, and restores open-field novel object exploration under incidental room light. By contrast, rhodopsin, which is similar in sensitivity but slower in light response and has greater rundown, fails these tests. Thus, MW-opsin provides the speed, sensitivity and adaptation needed to restore patterned vision.


Assuntos
Cegueira/prevenção & controle , Opsinas dos Cones/genética , Terapia Genética/métodos , Optogenética/métodos , Degeneração Retiniana/terapia , Animais , Cegueira/etiologia , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Injeções Intravítreas , Queratinócitos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Rodopsina/genética , Resultado do Tratamento
18.
Cell Metab ; 29(6): 1258-1273.e11, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30930170

RESUMO

The basis for region-specific neuronal toxicity in Huntington disease is unknown. Here, we show that region-specific neuronal vulnerability is a substrate-driven response in astrocytes. Glucose is low in HdhQ(150/150) animals, and astrocytes in each brain region adapt by metabolically reprogramming their mitochondria to use endogenous, non-glycolytic metabolites as an alternative fuel. Each region is characterized by distinct metabolic pools, and astrocytes adapt accordingly. The vulnerable striatum is enriched in fatty acids, and mitochondria reprogram by oxidizing them as an energy source but at the cost of escalating reactive oxygen species (ROS)-induced damage. The cerebellum is replete with amino acids, which are precursors for glucose regeneration through the pentose phosphate shunt or gluconeogenesis pathways. ROS is not elevated, and this region sustains little damage. While mhtt expression imposes disease stress throughout the brain, sensitivity or resistance arises from an adaptive stress response, which is inherently region specific. Metabolic reprogramming may have relevance to other diseases.


Assuntos
Astrócitos/metabolismo , Encéfalo/patologia , Reprogramação Celular/fisiologia , Proteína Huntingtina/genética , Doença de Huntington/genética , Metabolismo/fisiologia , Neurônios/patologia , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Mapeamento Encefálico , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças/patologia , Suscetibilidade a Doenças/psicologia , Glucose/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Metabolismo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Especificidade de Órgãos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
19.
Methods Mol Biol ; 1715: 177-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29188513

RESUMO

In retinal disease, despite the loss of light sensitivity as photoreceptors die, many retinal interneurons survive in a physiologically and metabolically functional state for long periods. This provides an opportunity for treatment by genetically adding a light sensitive function to these cells. Optogenetic therapies are in development, but, to date, they have suffered from low light sensitivity and narrow dynamic response range of microbial opsins. Expression of light-sensitive G protein coupled receptors (GPCRs), such as vertebrate rhodopsin , can increase sensitivity by signal amplification , as shown by several groups. Here, we describe the methods to (1) express light gated GPCRs in retinal neurons, (2) record light responses in retinal explants in vitro, (3) record cortical light responses in vivo, and (4) test visually guided behavior in treated mice.


Assuntos
Terapia Genética/métodos , Neurônios/metabolismo , Optogenética/métodos , Retina/metabolismo , Doenças Retinianas/terapia , Rodopsina/genética , Animais , Comportamento Animal , Luz , Camundongos , Camundongos Endogâmicos C57BL , Doenças Retinianas/genética
20.
Nat Commun ; 9(1): 1112, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535310

RESUMO

Kevin J. Cao and Richard H. Kramer, who developed extended release with beta cyclodextrin, were inadvertently omitted from the author list and author contributions section of this Article. These errors have now been corrected in both the PDF and HTML versions of the Article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA