Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 239(2): 792-805, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161713

RESUMO

The kinetics of wood formation in angiosperms are largely unknown because their complex xylem anatomy precludes using the radial position of vessels and fibers to infer their time of differentiation. We analyzed xylogenesis in ring-porous ash (Fraxinus angustifolia) and diffuse-porous beech (Fagus sylvatica) over 1 yr and proposed a novel procedure to assess the period of vessel and fiber enlargement using a referential radial file (RRF). Our approach captured the dynamics of wood formation and provided a robust estimation of the kinetics of vessel and fiber enlargement. In beech, fibers and vessels had a similar duration of enlargement, decreasing from 14 to 5 d between April and July. In ash, wide vessels formed in April enlarged at a rate of 27 × 103 µm2 d-1 , requiring half the time of contemporary fibers (6 vs 12 d), and less time than the narrower vessels (14 d) formed in May. These findings reveal distinct cell-type-dependent mechanisms for differentiation in diffuse-porous and ring-porous trees, enhancing our understanding of angiosperm wood cell kinetics. Our approach presents an effective method for investigating angiosperm wood formation and provides a more accurate representation of vessel and fiber morphogenesis in wood formation models.


Assuntos
Fagus , Magnoliopsida , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Árvores , Carboidratos , Fagus/anatomia & histologia
2.
New Phytol ; 238(2): 584-597, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631959

RESUMO

Trees are known to be atmospheric methane (CH4 ) emitters. Little is known about seasonal dynamics of tree CH4 fluxes and relationships to environmental conditions. That prevents the correct estimation of net annual tree and forest CH4 exchange. We aimed to explore the contribution of stem emissions to forest CH4 exchange. We determined seasonal CH4 fluxes of mature European beech (Fagus sylvatica) stems and adjacent soil in a typical temperate beech forest of the White Carpathians with high spatial heterogeneity in soil moisture. The beech stems were net annual CH4 sources, whereas the soil was a net CH4 sink. High CH4 emitters showed clear seasonality in their stem CH4 emissions that followed stem CO2 efflux. Elevated CH4 fluxes were detected during the vegetation season. Observed high spatial variability in stem CH4 emissions was neither explicably by soil CH4 exchange nor by CH4 concentrations, water content, or temperature studied in soil profiles near each measured tree. The stem CH4 emissions offset the soil CH4 uptake by up to 46.5% and on average by 13% on stand level. In Central Europe, widely grown beech contributes markedly to seasonal dynamics of ecosystem CH4 exchange. Its contribution should be included into forest greenhouse gas flux inventories.


Assuntos
Fagus , Solo , Ecossistema , Metano , Florestas , Árvores , Dióxido de Carbono
3.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864558

RESUMO

Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.


Assuntos
Florestas , Fotossíntese , Árvores , Fotossíntese/fisiologia , Árvores/fisiologia , Quercus/fisiologia , Quercus/metabolismo , Sequestro de Carbono , Fraxinus/fisiologia , Fraxinus/metabolismo
4.
Sci Total Environ ; 913: 169692, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160816

RESUMO

To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Florestas , Árvores , Mudança Climática , Europa Oriental , Europa (Continente)
5.
PLoS One ; 16(10): e0259054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34679119

RESUMO

Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.


Assuntos
Biomassa , Quercus/crescimento & desenvolvimento , Solo , Madeira/crescimento & desenvolvimento , Dióxido de Carbono , Árvores/crescimento & desenvolvimento
6.
Tree Physiol ; 40(7): 943-955, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32268373

RESUMO

Stem respiration is an important component of an ecosystem's carbon budget. Beside environmental factors, it depends highly on tree energy demands for stem growth. Determination of the relationship between stem growth and stem respiration would help to reveal the response of stem respiration to changing climate, which is expected to substantially affect tree growth. Common measurement of stem radial increment does not record all aspects of stem growth processes, especially those connected with cell wall thickening; therefore, the relationship between stem respiration and stem radial increment may vary depending on the wood cell growth differentiation phase. This study presents results from measurements of stem respiration and increment carried out for seven growing seasons in a young Norway spruce forest. Moreover, rates of carbon allocation to stems were modeled for these years. Stem respiration was divided into maintenance (Rm) and growth respiration (Rg) based upon the mature tissue method. There was a close relationship between Rg and daily stem radial increment (dSRI), and this relationship differed before and after dSRI seasonal maximum, which was around 19 June. Before this date, Rg increased exponentially with dSRI, while after this date logarithmically. This is a result of later maxima of Rg and its slower decrease when compared with dSRI, which is connected with energy demands for cell wall thickening. Rg reached a maxima at the end of June or in July. The maximum of carbon allocation to stem peaked in late summer, when Rg mostly tended to decrease. The overall contribution of Rg to stem CO2 efflux amounted to 46.9% for the growing period from May to September and 38.2% for the year as a whole. This study shows that further deeper analysis of in situ stem growth and stem respiration dynamics is greatly needed, especially with a focus on wood formation on a cell level.


Assuntos
Picea , Carbono , Dióxido de Carbono , Ecossistema , Noruega , Caules de Planta , Alocação de Recursos , Estações do Ano , Árvores
7.
Plant Physiol Biochem ; 134: 103-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30097290

RESUMO

Under the conditions of ongoing climate change, terrestrial ecosystems will be simultaneously exposed to a permanent rise in atmospheric CO2 concentration and increasing variability of such environmental factors as temperature, precipitation, and UV radiation. This will result in numerous interactions. The interactive effects caused by exposure to such multiple environmental factors are not yet well understood. We tested the hypotheses that enhanced UV radiation reduces the stimulatory effect of elevated CO2 concentration on plant biomass production and that it alters biomass allocation in broadleaved European beech (Fagus sylvatica L.) saplings. Our results after 2 years of exposure confirmed interactive effects of CO2 concentration and UV radiation on biomass production, and particularly on biomass allocation to roots and aboveground biomass. The strongest stimulatory effect of elevated CO2 on aboveground biomass and roots was found under ambient UV radiation, while both low and high UV doses reduced this stimulation. Nitrogen content in the roots and the distribution of nitrogen among leaves and roots were also significantly affected by interaction of CO2 concentration and UV radiation. The observed changes in leaf and root C:N stoichiometry were associated with altered morphological traits, and particularly with a change in the proportion of fine roots. As the biomass allocation and especially the proportion of fine roots can play an important role in effective water and nutrient use and acclimation to future climates, it is essential to obtain a deeper understanding of the links between C:N stoichiometry and biomass accumulation.


Assuntos
Biomassa , Dióxido de Carbono/farmacologia , Carbono/análise , Fagus/metabolismo , Nitrogênio/análise , Raios Ultravioleta , Fagus/efeitos dos fármacos , Fagus/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA