Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Appl Environ Microbiol ; 88(13): e0069022, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695487

RESUMO

High-throughput sequencing and high-pressure liquid chromatography (HPLC) methods were used to investigate the influences of microbial dynamics on the quality and biogenic amine (BA) content during fish sauce fermentation. The homogeneity of total viable bacteria and lactic acid bacteria in fish sauce becomes higher as fermentation progresses. Tetragenococcus was the key genus of fish sauce fermentation. Carnobacterium (38.43%) and Lentibacillus (41.01%) were the dominant genera in the samples fermented for 3 months and 18 months, respectively. These three bacterial genera were significantly related to the physicochemical characteristics and characteristic flavors of the sauces. Tetragenococcus was significantly positively correlated with nitrogen oxides, the main characteristic flavor components in fish sauce. The BA content in fish sauce fermentation increased from 106.88 to 376.03 mg/kg, and the content of histamine reached 115.30 mg/kg at the end of fermentation, indicating that fish sauce has health risks. About 66.67% of Lentibacillus isolates were able to produce a large amount of BA, suggesting that Lentibacillus was the key genus for BA accumulation in fish sauce fermentation. Research on reducing the content of BA in fish sauce by intervening with regard to the fermentation temperature showed that a safe fish sauce product could be obtained at the fermentation temperature of about 25°C. These results help us to understand the contribution of microbial community composition to fish sauce fermentation and provide a basis for improving the quality and safety of fermented fish sauce. IMPORTANCE Traditional fermentation of fish sauce is mainly carried out by complex microbial communities from raw anchovies and processing environments. However, it is still unclear how the environmental microbiota influences the quality and the safety of fish sauce products. Therefore, this study comprehensively explained the influence of microorganisms on the quality and safety of fish sauce during the fermentation process in terms of physicochemical characters, flavors, and BA. Additionally, the accumulation of BA in fish sauce fermentation was controlled by intervening in the fermentation temperature. This finding contributes to a deeper understanding of the role of environmental microbiota during fermentation and provides data support for improving the safety of fish sauce.


Assuntos
Aminas Biogênicas , Microbiologia de Alimentos , Animais , Bactérias/genética , Enterococcaceae , Fermentação , Produtos Pesqueiros/análise , Peixes/microbiologia
2.
Langmuir ; 38(44): 13437-13447, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36288509

RESUMO

The removal of organic dyes and pathogenic bacteria from contaminated water remains a significant challenge. In the present study, S-type heterojunction Ag2MoO4/ZnFe2O4 (AMO/ZFO) composite nanofibers were synthesized by electrospinning and co-precipitation and fabricated into photoanodes. It is found that the constructed S-type heterojunction of AMO/ZFO composites effectively inhibits the recombination of photogenerated carriers, in addition to the benefits of more exposed active sites and a greater specific surface area. When several properties are improved, AMO/ZFO composites exhibit excellent photoelectrocatalytic performance. The results demonstrate that under visible light irradiation, the photoelectrocatalytic degradation rate of AMO/ZFO-3 to methylene blue reached 76.2% within 50 min, and the killing rate of Salmonella was 83.6% within 80 min. The enhanced photoelectrocatalytic activity was due to the synergy of both electrochemical and photocatalytic effects. More importantly, after four testing cycles, AMO/ZFO-3 still has a better ability to kill pathogenic bacteria and degrade organic dyes due to its high stability. This work provides a feasible method for oxidizing organic dyes and pathogenic bacteria.


Assuntos
Nanofibras , Catálise , Luz , Corantes/química , Azul de Metileno
3.
BMC Biotechnol ; 21(1): 56, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587926

RESUMO

BACKGROUND: Foodborne illness caused by Vibrio parahaemolyticus (V. parahaemolyticus) is generally associated with the consumption of seafood. Fish and other seafood can be contaminated with V. parahaemolyticus, natural inhabitants of the marine, estuarine, and freshwater environment. In this study, the antibacterial activities of benzyl isothiocyanate (BITC) against V. parahaemolyticus were investigated by both transcriptomic analysis and morphological verification. RESULTS: Treatment with 1/8 minimum inhibitory concentration (1/8 MIC) BITC resulted in 234 upregulated genes and 273 downregulated genes. The results validated by quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the relative expression levels of the six genes VP0820, VP0548, VP2233, VPA2362, fliA and fliG were only 31.0%, 31.1%, 55.8%, 57.0%, 75.3%, and 79.9% of the control group, respectively. Among them, genes VP2233, fliA and fliG are related to flagella and VP2362 can regulate a protein relevant to biofilm formation. Morphologically, we verified that the swimming diffusion diameter of V. parahaemolyticus was significantly reduced by 14.9% by bacterial swimming ability, and biofilm formation was significantly inhibited by treatment with 1/8 MIC BITC by crystal violet quantification assay. CONCLUSIONS: These results indicated that 1/8 MIC BITC had antibacterial effect on V. parahaemolyticus by inhibiting virulence gene expression related to flagella and biofilm.


Assuntos
Vibrio parahaemolyticus , Animais , Isotiocianatos/farmacologia , Testes de Sensibilidade Microbiana , Transcriptoma , Vibrio parahaemolyticus/genética
4.
Methods ; 168: 94-101, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31181257

RESUMO

A novel photoelectrochemical (PEC) immunosensor based on CdSe quantum dots (QDs) sensitized Ho3+/Yb3+-TiO2 for the detection of Vibrio parahaemolyticus (VP) was assembled. The working electrode was constructed via the layer-by-layer (LBL) method with the Ho3+/Yb3+-TiO2, CdSe QDs, NHS/EDC, antibody of VP (anti-VP), bovine serum albumin (BSA) modified on the surface of the FTO in sequence. Ascorbic acid (AA) acts as an electron donor to combine photogenerated holes in order to provide a stable current system. Ho3+ and Yb3+ co-doping TiO2 broadened the spectral response range of TiO2 to the infrared region and improved the photocurrent responsiveness of TiO2. The PEC immunosensor, with Ho3+/Yb3+ ratio of 1:5, Ho3+/Yb3+-TiO2 of 2 mg/mL and PBS solution of pH 7.4, had an optimal photocurrent responsiveness. Immobilization of anti-VP was by classical NHS/EDC coupling reactions between COOH groups of CdSe QDs and NH2 groups of the anti-VP. The results indicated that PEC immunosensors had a low detection limit of 25 CFU/mL, a wide detection range of 102-108 CFU/mL, high stability, low price, and short detection time. This method could be promising for the rapid and ultrasensitive detection of pathogenic microorganisms in the food.


Assuntos
Compostos de Cádmio/química , Nanopartículas Metálicas/química , Pontos Quânticos , Compostos de Selênio/química , Titânio/química , Vibrio parahaemolyticus/isolamento & purificação , Animais , Anticorpos Imobilizados/química , Ácido Ascórbico/química , Técnicas Biossensoriais/métodos , Bivalves , Técnicas Eletroquímicas/métodos , Eletrodos , Hólmio/química , Imunoensaio/métodos , Limite de Detecção , Fotoquímica/métodos , Alimentos Marinhos , Soroalbumina Bovina/química , Difração de Raios X , Itérbio/química
5.
Appl Microbiol Biotechnol ; 104(17): 7457-7465, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32676711

RESUMO

The serp gene codes for a protease that is considered to be an important factor associated with quorum sensing (QS)-based food spoilage caused by microorganisms. In this study, we evaluated the effect of temperature (4-37 °C) and QS inhibitors on the production of N-acyl-L-homoserine lactones (AHLs) and relative expression of the luxR/I, as well as serp in Hafnia alvei H4. Production of AHLs and expression of luxR/I were found to reach maximum levels at 10 °C, suggesting that the QS system of H. alvei H4 might have higher activity at low temperatures; similar result was also obtained for serp expression. Mutants of H. alvei H4 deficient in QS were used to identify the regulation of QS on serp expression. Significant reduction (P < 0.05) in serp expression was found in the mutants ∆luxR, ∆luxI, and ∆luxR/I, with ∆luxI and ∆luxR/I showing greater reduction than ∆luxR. Minimum inhibition concentrations (MIC) of Benzyl isothiocyanate and 3-Methylthiopropyl isothiocyanate for H. alvei H4 were determined to be 7.813 and 15.625 mM, respectively. Furthermore, the expression of serp, as well as that of luxR and luxI, was significantly repressed (P < 0.05) by the two QS inhibitors at 1/8 MIC and 1/16 MIC, indicating that these inhibitors might repress serp expression through affecting luxR and luxI expression in H. alvei H4. The findings of this study, therefore, suggested that food spoilage caused by H. alvei could be controlled through the application of QS inhibitors.


Assuntos
Hafnia alvei , Percepção de Quorum , Acil-Butirolactonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Hafnia alvei/metabolismo , Serina , Serina Proteases
6.
Curr Microbiol ; 77(9): 1997-2001, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32754853

RESUMO

A Gram-positive, aerobic, motile and short rod-shaped bacterium, designated as strain G56T, was isolated from shrimp paste produced in Panjin, China. Grows in the presence of 1.0-25.0% (w/v) NaCl (optimum at 10%), pH 5.0-9.5 (optimally at 7.0) and 10-50 °C (optimally at 37 °C). Positive for catalase and oxidase activities, but lack the ability to reduce nitrate. Acids produce from D-ribose, D-xylose, D-galactose, glycerol and D-trehalose, but no acid is produced when salicin, D-mannose, D-cellobiose and L-sorbose are provided as substrates. The polar lipid extract is found to contain diphosphatidylglycerol, phosphatidylglycerol, an unknown glycolipid, and unidentified phospholipids. Fatty acids are mainly defined as anteiso-C15:0 (69.7%) and anteiso-C17:0 (23.3%). The G+C content of its DNA is 44.7 mol%. The draft genome of strain G56T is 3,209,087 bp in length and the average nucleotide identity value (ANI) and the digital DNA-DNA hybridization (DDH) values between strain G56T and L. juripiscarius JCM 12147T is 78.41% and 22.0%, respectively. Polyphasic taxonomic analysis classified strain G56T as a novel species in the genus Lentibacillus, and therefore, we named it as Lentibacillus panjinensis sp. nov..


Assuntos
Alimentos Fermentados , Fosfolipídeos , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033098

RESUMO

Salmonella typhimurium (S. typhimurium) is a common foodborne pathogen that not only causes diseases and contaminates food, but also causes considerable economic losses. Therefore, it is necessary to find effective and feasible methods to control S. typhimurium. In this study, changes in S. typhimurium after treatment with benzyl isothiocyanate (BITC) were detected by transcriptomics to explore the antibacterial effect of BITC at subinhibitory concentration. The results showed that, in contrast to the control group (SC), the BITC-treated group (SQ_BITC) had 197 differentially expressed genes (DEGs), of which 115 were downregulated and 82 were upregulated. We screened out eight significantly downregulated virulence-related genes and verified gene expression by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). We also selected motility and biofilm formation to observe the effects of BITC on the other virulence related factors of S. typhimurium. The results showed that both swimming and swarming were significantly inhibited. BITC also had a significant inhibitory effect on biofilm formation, and showed an effect on bacterial morphology. These results will be helpful for understanding the mechanism of the antibacterial action of BITC against S. typhimurium and other foodborne pathogens.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Isotiocianatos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Testes de Sensibilidade Microbiana/métodos , Salmonella typhimurium/genética , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética
8.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683671

RESUMO

Staphylococcus aureus (S. aureus) is a common foodborne pathogen that leads to various diseases; therefore, we urgently need to identify different means to control this harmful pathogen in food. In this study, we monitored the transcriptional changes of S. aureus by RNA-seq analysis to better understand the effect of benzyl isothiocyanate (BITC) on the virulence inhibition of S. aureus and determined the bacteriostatic effect of BITC at subinhibitory concentrations. Our results revealed that, compared with the control group (SAC), the BITC-treated experimental group (SAQ_BITC) had 708 differentially expressed genes (DEGs), of which 333 genes were downregulated and the capsular polysaccharide (cp) was significantly downregulated. Furthermore, we screened five of the most virulent factors of S. aureus, including the capsular polysaccharide biosynthesis protein (cp5D), capsular polysaccharide synthesis enzyme (cp8F), thermonuclease (nuc), clumping factor (clf), and protein A (spa), and verified the accuracy of these significantly downregulated genes by qRT-PCR. At the same time, we used light microscopy, scanning electron microscopy (SEM) and inverted fluorescence microscopy (IFM) to observe changes in biofilm associated with the cp5D and cp8F. Therefore, these results will help to further study the basis of BITC for the antibacterial action of foodborne pathogenic bacteria.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Regulação para Baixo/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Análise de Sequência de RNA/métodos , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Virulência/genética , Fatores de Virulência/genética
9.
Molecules ; 24(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791538

RESUMO

Vibrio parahaemolyticus isolated from seafood is a pathogenic microorganism that leads to several acute diseases that are harmful to our health and is frequently transmitted by food. Therefore, there is an urgent need for the control and suppression of this pathogen. In this paper, transcriptional analysis was used to determine the effect of treatment with benzyl isothiocyanate (BITC) extracted from cruciferous vegetables on V. parahaemolyticus and to elucidate the molecular mechanisms underlying the response to BITC. Treatment with BITC resulted in 332 differentially expressed genes, among which 137 genes were downregulated, while 195 genes were upregulated. Moreover, six differentially expressed genes (DEGs) in RNA sequencing studies were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Genes found to regulate virulence encoded an l-threonine 3-dehydrogenase, a GGDEF family protein, the outer membrane protein OmpV, a flagellum-specific adenosine triphosphate synthase, TolQ protein and VirK protein. Hence, the results allow us to speculate that BITC may be an effective control strategy for inhibiting microorganisms growing in foods.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , Transcriptoma , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/genética , Virulência/genética , Antibacterianos/farmacologia , Biologia Computacional/métodos , Ontologia Genética , Testes de Sensibilidade Microbiana , Vibrioses/microbiologia , Vibrio parahaemolyticus/patogenicidade , Fatores de Virulência/genética
10.
Molecules ; 24(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654581

RESUMO

The influence of 11 kinds of oxygen-containing sulfur flavor molecules was examined on ß-carotene stability under UVA irradiation in ethanol system. Both the effects of sulfides on dynamic degradation of ß-carotene and the relation between structure and effect were investigated. The oxidation products of ß-carotene accelerated by sulfides under UVA irradiation were also identified. The results indicated that the disulfides had more obvious accelerative effects on the photodegradation of ß-carotene than mono sulfides. The degradation of ß-carotene after methyl (2-methyl-3-furyl) disulfide (MMFDS), methyl furfuryl disulfide (MFDS) and bis(2-methyl-3-furyl) disulfide (BMFDS) exposure followed first-order kinetics. Furan-containing sulfides such as MMFDS and BMFDS showed more pronounced accelerative effects than their corresponding isomers. The oxidation products were identified as 13-cis-ß-carotene, 9,13-di-cis-ß-carotene and all-trans-5,6-epoxy-ß-carotene. These results suggest that both the sulfur atom numbers and the furan group in oxygen-containing sulfides play a critical role in the photooxidation of ß-carotene.


Assuntos
Aromatizantes/química , Oxigênio/química , Enxofre/química , beta Caroteno/química , Indústria Alimentícia , Cinética , Estrutura Molecular , Oxirredução , Fotólise , Sulfetos/química , Raios Ultravioleta
11.
Sensors (Basel) ; 17(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379194

RESUMO

This study aimed to identify N-acylhomoserine lactone (AHL) produced by Hafnia alvei H4, which was isolated from spoiled instant sea cucumber, and to investigate the effect of AHLs on biofilm formation. Two biosensor strains, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens KYC55, were used to detect the quorum sensing (QS) activity of H. alvei H4 and to confirm the existence of AHL-mediated QS system. Thin layer chromatography (TLC) and high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS) analysis of the AHLs extracted from the culture supernatant of H. alvei H4 revealed the existence of at least three AHLs: N-hexanoyl-l-homoserine lactone (C6-HSL), N-(3-oxo-octanoyl)-l-homoserine lactone (3-oxo-C8-HSL), and N-butyryl-l-homoserine lactone (C4-HSL). This is the first report of the production of C4-HSL by H. alvei. In order to determine the relationship between the production of AHL by H. alvei H4 and bacterial growth, the ß-galactosidase assay was employed to monitor AHL activity during a 48-h growth phase. AHLs production reached a maximum level of 134.6 Miller unites at late log phase (after 18 h) and then decreased to a stable level of about 100 Miller unites. AHL production and bacterial growth displayed a similar trend, suggesting that growth of H. alvei H4 might be regulated by QS. The effect of AHLs on biofilm formation of H. alvei H4 was investigated by adding exogenous AHLs (C4-HSL, C6-HSL and 3-oxo-C8-HSL) to H. alvei H4 culture. Biofilm formation was significantly promoted (p < 0.05) by 5 and 10 µM C6-HSL, inhibited (p < 0.05) by C4-HSL (5 and 10 µM) and 5 µM 3-oxo-C8-HSL, suggesting that QS may have a regulatory role in the biofilm formation of H. alvei H4.


Assuntos
Pepinos-do-Mar , 4-Butirolactona/análogos & derivados , Acil-Butirolactonas , Animais , Hafnia alvei , Percepção de Quorum
12.
Int J Mol Sci ; 19(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271931

RESUMO

Leaf spot disease caused by the fungus Fusarium proliferatum (Matsushima) Nirenberg is a destructive disease of tomato plants in China. Typical symptoms of infected tomato plants are softened and wilted stems and leaves, leading to the eventual death of the entire plant. In this study, we resorted to transcriptional profile analysis to gain insight into the repertoire of effectors involved in F. proliferatum-tomato interactions. A total of 61,544,598 clean reads were de novo assembled to provide a F. proliferatum reference transcriptome. From these, 75,044 unigenes were obtained, with 19.46% of the unigenes being assigned to 276 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, with 22.3% having a homology with genes from F. fujikuroi. A total of 18,075 differentially expressed genes (DEGs) were identified, 720 of which were found to code for secreted proteins. Of these, 184 were identified as candidate effectors, while 79.89% had an upregulated expression. Moreover, 17 genes that were differentially expressed in RNA-seq studies were randomly selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). The study demonstrates that transcriptome analysis could be an effective method for identifying the repertoire of candidate effectors and may provide an invaluable resource for future functional analyses of F. proliferatum pathogenicity in F. proliferatum and tomato plant-host interactions.


Assuntos
Fusarium/genética , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Transcriptoma , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Foodborne Pathog Dis ; 13(6): 316-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27023165

RESUMO

The objectives of this study were to characterize the phenotype and genotype of 36 non-O157 Shiga toxin-producing Escherichia coli (STEC) strains isolated from humans, ovines, or bovines, including the top 6 (O26, O45, O103, O111, O121, and O145) and three other serogroups implicated in serious illness (O91, O113, and O128). Biofilms were formed by all strains with intermediate to strong biofilm producers (n = 24) more common at 22°C than at 37°C (p < 0.001) and 48 and 72 h (p < 0.001) than 24 h of incubation time. Biofilm-forming potential differed by serogroup and origin with O113 and human strains exhibiting the highest potential (p < 0.001). Biofilm-associated genes, csgA/csgD/crl/fimH (100%), flu (94%), rpoS (92%), ehaA(α) (89%), and cah (72%), were most prevalent, while mlrA (22%) and ehaA(ß) (14%) were least prevalent, although there was no clear compliment of genes associated with strains exhibiting the greatest biofilm-forming capacity. Among 12 virulence genes screened, iha and ehxA were present in 92% of the strains. The occurrence of stx1 in the top 6 serogroups (8/12, 67%) did not differ (p = 0.8) from other serogroups (17/24, 71%), but stx2 was less likely (confidence interval [CI] = 0.14-1.12; p = 0.04) to be in the former (9/24, 38%) than the latter (9/12, 75%). Excluding serogroups, O91 and O121, at least one strain per serogroup was resistant to between three and six antimicrobials. Streptomycin (31%), sulfisoxazole (31%), and tetracycline (25%) resistance was most common and was 35-50% less likely (p < 0.05) in human than animal strains. All non-O157 STEC strains were able to form biofilms on an abiotic surface, with some exhibiting resistance to multiple antimicrobials. Potential as a reservoir of antimicrobial resistance genes may be another hazard of biofilms in food-processing plants. As a result, future strategies to control these pathogens may include measures to prevent biofilms.


Assuntos
Biofilmes , Escherichia coli Shiga Toxigênica/fisiologia , Animais , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Canadá , Bovinos , Farmacorresistência Bacteriana , Microbiologia de Alimentos , Humanos , Fenótipo , Sorogrupo , Ovinos , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética
14.
Foods ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472800

RESUMO

Hafnia alvei, a specific spoilage microorganism, has a strong capacity to destroy food protein and lead to spoilage. The aim of this study was to evaluate the phase-dependent regulation of lux-type genes on the spoilage characteristics of H. alvei H4. The auto-inducer synthase gene luxI and a regulatory gene luxR of the quorum sensing systems in H. alvei H4 were knocked out to construct the mutant phenotypes. On this basis, the research found that the luxI and luxR genes had a strong positive influence on not only flagella-dependent swimming ability and biofilm formation but also the production of putrescine and cadaverine. The luxR gene could downregulate putrescine production. The maximum accumulation of putrescine in wild type, ΔluxI, ΔluxR and ΔluxIR were detected at 24 h, reaching up to 695.23 mg/L, 683.02 mg/L, 776.30 mg/L and 724.12 mg/L, respectively. However, the luxI and luxR genes have a potential positive impact on the production of cadaverine. The maximum concentration of cadaverine produced by wild type, ΔluxI, ΔluxR and ΔluxIR were 252.7 mg/L, 194.5 mg/L, 175.1 mg/L and 154.2 mg/L at 72 h. Moreover, the self-organizing map analysis revealed the phase-dependent effects of two genes on spoilage properties. The luxI gene played a major role in the lag phase, while the luxR gene mainly acted in the exponential and stationary phases. Therefore, the paper provides valuable insights into the spoilage mechanisms of H. alvei H4.

15.
Foods ; 13(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275703

RESUMO

In the food industry, foodborne spoilage bacteria often live in mixed species and attach to each other, leading to changes in spoilage characteristics. Quorum sensing (QS) has been reported to be a regulating mechanism for food spoiling by certain kinds of bacteria. Here, the contents of biofilm, extracellular polysaccharides, and biogenic amines in the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525 were significantly reduced when the QS element of H. alvei H4 was deleted, confirming that QS of H. alvei H4 is involved in the dual-species interactions. Then, transcriptomics was used to explore the regulatory mechanism at the mRNA molecular level. The deletion of the QS element decreased the transcript levels of genes related to chemotaxis, flagellar assembly, and the two-component system pathway of H. alvei H4 in the coculture system. Furthermore, a total of 732 DEGs of P. fluorescens ATCC13525 were regulated in the dual species, which were primarily concerned with biofilm formation, ATP-binding cassette transporters, and amino acid metabolism. Taken together, the absence of the QS element of H. alvei H4 weakened the mutual cooperation of the two bacteria in the coculture system, making it a good target for managing infection with H. alvei and P. fluorescens.

16.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998586

RESUMO

The aim of our study was to investigate whether the combination of benzyl isothiocyanate (BITC) and resveratrol (RES) has a synergistic effect on the inhibition of inflammation in colitis. The results revealed that the BITC and RES combination (BITC_RES) was more effective than either substance alone at significantly alleviating the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, including the prevention of colon shortening and loss of body weight, a reduction in the disease activity index, and prevention of colon damage. Similarly, compared with the DSS group, BITC_RES reduced myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) levels in the mouse colon by 1.4-3.0-fold and 1.4-fold, respectively. In addition, the combination of BITC and RES upregulated the inflammatory factor IL-10 by 1.3- and 107.4-fold, respectively, compared to the individual BITC and RES groups, whereas the proinflammatory factors, including TNF-α, IL-1ß, and IL-6, were downregulated by 1.1-7.4-, 0.7-3.6-, and 0.6-2.6-fold, respectively, in the BITC_RES group compared with the individual groups. Gut microbiome analysis indicated that BITC_RES remodeled the structure of gut bacteria at the phylum, family, and genus levels, upregulating the abundance of the phylum Bacteroidetes and the family Muribaculaceae and the genus norank_f_Muribaculaceae and downregulating the abundance of the phylum Firmicutes. Significant correlations between the relative levels of these proinflammatory cytokines and changes in the gut microbiota were found using Pearson's correlation analysis. BITC and RES exhibited synergistic effects by reshaping the gut microbiota and modulating the level of serum cellular inflammatory factors, thus exerting a protective effect against colitis.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38709426

RESUMO

Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.

18.
Microbiol Spectr ; 12(4): e0068723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391231

RESUMO

Quorum sensing (QS) regulation of functional metabolites is rarely reported but a common trait of some bacteria. In this study, we found that QS promoted the extracellular accumulation of glycine and serine while inhibiting the extracellular accumulation of methionine in Hafnia alvei H4. The correlation analysis of five QS signals with the above three QS-regulated amino acids suggested that these QS signals may have functional differences in amino acid regulation. The exogenous AHL add-back studies on genes involved in glycine, serine, and methionine metabolic pathway highlighted that N-octanoyl-l-homoserine lactone (C8-HSL) downregulated the expression of sdhC/fumA genes involved in the succinate to malate pathway, thereby reducing the metabolic flux of the tricarboxylic acid (TCA) cycle as an amino acid metabolism platform. Further in-depth research revealed that the QS system promoted the conversion of folate to tetrahydrofolate (THF) by positively regulating the expression of folA and folM, thus impairing the ability of folate to promote methionine accumulation. Moreover, folate positively regulated the expression of the QS signal synthesis gene luxI, promoting the synthesis of QS signals, which may further enhance the influence of the QS system on amino acid metabolism. These findings contribute to the understanding of amino acid metabolism regulated by QS and provide new perspectives for accurate control of metabolic regulation caused by QS.IMPORTANCEAs one of the important regulatory mechanisms of microorganisms, quorum sensing (QS) is involved in the regulation of various physiological activities. However, few studies on the regulation of amino acid metabolism by QS are available. This study demonstrated that the LuxI-type QS system of Hafnia alvei H4 was involved in the regulation of multiple amino acid metabolism, and different types of QS signals exhibited different roles in regulating amino acid metabolism. Additionally, the regulatory effects of the QS system on amino acid metabolism were investigated from two important cycles that influence the conversion of amino acids, including the TCA cycle and the folate cycle. These findings provide new ideas on the role of QS system in the regulation of amino acid metabolism in organisms.


Assuntos
Hafnia alvei , Percepção de Quorum , Percepção de Quorum/fisiologia , Aminoácidos , Metionina , Glicina , Ácido Fólico , Serina
19.
J Hazard Mater ; 465: 133160, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064948

RESUMO

Composite aerogels, formed by the combination of nanoscale polymers and highly efficient adsorbents, offer the potential to deploy adsorbent distinct separation properties into a processable matrix. This paper presents a method for the fabrication of low energy bio-aerogels with high ductility, excellent wet strength and favorable heat resistance, based on cellulose nanofibers (CNFs) bound by calcium carbonate particles (CaCO3) via a simple process of ice induction, cross-linking during freezing and freeze-drying. Due to induced defects, two-dimensional metal-organic layers (MOLs) were rich in mesoporous structure and embedded in the aerogel (AGCa-MOL), which exhibited a powerful adsorption capacity. AGCa-MOL could take full advantage of their hierarchical pores and available surface area to obtain high adsorption capacity (0.694-5.470 µmol/g) and rapid adsorption kinetics (5 min) for 14 heterocyclic aromatic amines (HAAs). Moreover, the CaCO3 particles and MOLs gave the AGCa-MOL excellent thermal stability, so that it could maintain excellent adsorption capacity at a high temperature (100 °C) and be applied as an adsorbent to remove HAAs in the boiling marinade. The intrinsic potential of composite aerogels was revealed due to the synergistic properties of the various components in the composite aerogel.

20.
Food Chem ; 449: 139225, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599107

RESUMO

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Assuntos
Aminas , Celulose , Nanocompostos , Adsorção , Aminas/química , Celulose/química , Animais , Nanocompostos/química , Compostos Heterocíclicos/química , Bovinos , Suínos , Salmão , Estruturas Metalorgânicas/química , Carne/análise , Contaminação de Alimentos/análise , Géis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA