Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7839): 636-641, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299185

RESUMO

The hypothesis that destructive mass extinctions enable creative evolutionary radiations (creative destruction) is central to classic concepts of macroevolution1,2. However, the relative impacts of extinction and radiation on the co-occurrence of species have not been directly quantitatively compared across the Phanerozoic eon. Here we apply machine learning to generate a spatial embedding (multidimensional ordination) of the temporal co-occurrence structure of the Phanerozoic fossil record, covering 1,273,254 occurrences in the Paleobiology Database for 171,231 embedded species. This facilitates the simultaneous comparison of macroevolutionary disruptions, using measures independent of secular diversity trends. Among the 5% most significant periods of disruption, we identify the 'big five' mass extinction events2, seven additional mass extinctions, two combined mass extinction-radiation events and 15 mass radiations. In contrast to narratives that emphasize post-extinction radiations1,3, we find that the proportionally most comparable mass radiations and extinctions (such as the Cambrian explosion and the end-Permian mass extinction) are typically decoupled in time, refuting any direct causal relationship between them. Moreover, in addition to extinctions4, evolutionary radiations themselves cause evolutionary decay (modelled co-occurrence probability and shared fraction of species between times approaching zero), a concept that we describe as destructive creation. A direct test of the time to over-threshold macroevolutionary decay4 (shared fraction of species between two times ≤ 0.1), counted by the decay clock, reveals saw-toothed fluctuations around a Phanerozoic mean of 18.6 million years. As the Quaternary period began at a below-average decay-clock time of 11 million years, modern extinctions further increase life's decay-clock debt.


Assuntos
Extinção Biológica , Fósseis , Especiação Genética , Aprendizado de Máquina , Animais , História Antiga , Plantas , Fatores de Tempo
2.
Cladistics ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924583

RESUMO

Here, we propose, prove mathematically and discuss maximum and minimum measures of maximum parsimony evolution across 12 discrete phylogenetic character types, classified across 4467 morphological and molecular datasets. Covered character types are: constant, binary symmetric, multistate unordered (non-additive) symmetric, multistate linear ordered symmetric, multistate non-linear ordered symmetric, binary irreversible, multistate irreversible, binary Dollo, multistate Dollo, multistate custom symmetric, binary custom asymmetric and multistate custom asymmetric characters. We summarize published solutions and provide and prove a range of new formulae for the algebraic calculation of minimum (m), maximum (g) and maximum possible (gmax) character cost for applicable character types. Algorithms for exhaustive calculation of m, g and gmax applicable to all classified character types (within computational limits on the numbers of taxa and states) are also provided. The general algorithmic solution for minimum steps (m) is identical to a minimum spanning tree on the state graph or minimum weight spanning arborescence on the state digraph. Algorithmic solutions for character g and gmax are based on matrix mathematics equivalent to optimization on the star tree, respectively for given state frequencies and all possible state frequencies meeting specified numbers of taxa and states. We show that maximizing possible cost (gmax) with given transition costs can be equivalent to maximizing, across all possible state frequency combinations, the lowest implied cost of state transitions if any one state is ancestral on the star tree, via the solution of systems of linear equations. The methods we present, implemented in the Claddis R package, extend to a comprehensive range, the fundamental character types for which homoplasy may be measured under parsimony using m, g and gmax, including extra cost (h), consistency index (ci), retention index (ri) or indices based thereon.

4.
Proc Natl Acad Sci U S A ; 111(36): 13122-6, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25114255

RESUMO

The branching morphology of Ediacaran rangeomorph fronds has no exact counterpart in other complex macroorganisms. As such, these fossils pose major questions as to growth patterns, functional morphology, modes of feeding, and adaptive optimality. Here, using parametric Lindenmayer systems, a formal model of rangeomorph morphologies reveals a fractal body plan characterized by self-similar, axial, apical, alternate branching. Consequent morphological reconstruction for 11 taxa demonstrates an adaptive radiation based on 3D space-filling strategies. The fractal body plan of rangeomorphs is shown to maximize surface area, consistent with diffusive nutrient uptake from the water column (osmotrophy). The enigmas of rangeomorph morphology, evolution, and extinction are resolved by the realization that they were adaptively optimized for unique ecological and geochemical conditions in the late Proterozoic. Changes in ocean conditions associated with the Cambrian explosion sealed their fate.


Assuntos
Estruturas Animais/anatomia & histologia , Fósseis , Fractais , Animais , Imageamento Tridimensional , Fatores de Tempo
5.
Proc Biol Sci ; 283(1831)2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27226467

RESUMO

Australian spiny mountain crayfish (Euastacus, Parastacidae) and their ecotosymbiotic temnocephalan flatworms (Temnocephalida, Platyhelminthes) may have co-occurred and interacted through deep time, during a period of major environmental change. Therefore, reconstructing the history of their association is of evolutionary, ecological, and conservation significance. Here, time-calibrated Bayesian phylogenies of Euastacus species and their temnocephalans (Temnohaswellia and Temnosewellia) indicate near-synchronous diversifications from the Cretaceous. Statistically significant cophylogeny correlations between associated clades suggest linked evolutionary histories. However, there is a stronger signal of codivergence and greater host specificity in Temnosewellia, which co-occurs with Euastacus across its range. Phylogeography and analyses of evolutionary distinctiveness (ED) suggest that regional differences in the impact of climate warming and drying had major effects both on crayfish and associated temnocephalans. In particular, Euastacus and Temnosewellia show strong latitudinal gradients in ED and, conversely, in geographical range size, with the most distinctive, northern lineages facing the greatest risk of extinction. Therefore, environmental change has, in some cases, strengthened ecological and evolutionary associations, leaving host-specific temnocephalans vulnerable to coextinction with endangered hosts. Consequently, the extinction of all Euastacus species currently endangered (75%) predicts coextinction of approximately 60% of the studied temnocephalans, with greatest loss of the most evolutionarily distinctive lineages.


Assuntos
Astacoidea/parasitologia , Evolução Biológica , Turbelários/fisiologia , Animais , Proteínas de Artrópodes/genética , Astacoidea/genética , Austrália , Teorema de Bayes , DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Filogeografia , Análise de Sequência de DNA , Turbelários/genética
6.
Commun Biol ; 7(1): 774, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951581

RESUMO

Machine learning (ML) newly enables tests for higher inter-species diversity in visible phenotype (disparity) among males versus females, predictions made from Darwinian sexual selection versus Wallacean natural selection, respectively. Here, we use ML to quantify variation across a sample of > 16,000 dorsal and ventral photographs of the sexually dimorphic birdwing butterflies (Lepidoptera: Papilionidae). Validation of image embedding distances, learnt by a triplet-trained, deep convolutional neural network, shows ML can be used for automated reconstruction of phenotypic evolution achieving measures of phylogenetic congruence to genetic species trees within a range sampled among genetic trees themselves. Quantification of sexual disparity difference (male versus female embedding distance), shows sexually and phylogenetically variable inter-species disparity. Ornithoptera exemplify high embedded male image disparity, diversification of selective optima in fitted multi-peak OU models and accelerated divergence, with cases of extreme divergence in allopatry and sympatry. However, genus Troides shows inverted patterns, including comparatively static male embedded phenotype, and higher female than male disparity - though within an inferred selective regime common to these females. Birdwing shapes and colour patterns that are most phenotypically distinctive in ML similarity are generally those of males. However, either sex can contribute majoritively to observed phenotypic diversity among species.


Assuntos
Borboletas , Animais , Feminino , Borboletas/genética , Borboletas/fisiologia , Borboletas/anatomia & histologia , Masculino , Fenótipo , Filogenia , Caracteres Sexuais , Evolução Biológica , Aprendizado de Máquina , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
7.
Sci Adv ; 5(8): eaaw4967, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31453326

RESUMO

Traditional anatomical analyses captured only a fraction of real phenomic information. Here, we apply deep learning to quantify total phenotypic similarity across 2468 butterfly photographs, covering 38 subspecies from the polymorphic mimicry complex of Heliconius erato and Heliconius melpomene. Euclidean phenotypic distances, calculated using a deep convolutional triplet network, demonstrate significant convergence between interspecies co-mimics. This quantitatively validates a key prediction of Müllerian mimicry theory, evolutionary biology's oldest mathematical model. Phenotypic neighbor-joining trees are significantly correlated with wing pattern gene phylogenies, demonstrating objective, phylogenetically informative phenome capture. Comparative analyses indicate frequency-dependent mutual convergence with coevolutionary exchange of wing pattern features. Therefore, phenotypic analysis supports reciprocal coevolution, predicted by classical mimicry theory but since disputed, and reveals mutual convergence as an intrinsic generator for the unexpected diversity of Müllerian mimicry. This demonstrates that deep learning can generate phenomic spatial embeddings, which enable quantitative tests of evolutionary hypotheses previously only testable subjectively.


Assuntos
Mimetismo Biológico/genética , Borboletas/genética , Asas de Animais/fisiologia , Animais , Coevolução Biológica/genética , Coevolução Biológica/fisiologia , Aprendizado Profundo , Modelos Teóricos
8.
Sci Rep ; 9(1): 4955, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894583

RESUMO

Cambrian annelids are strikingly diverse and reveal important details of annelid character acquisition. Their contribution, however, to a wider understanding of the evolution of the trochozoans (encompassing the annelids as well as such groups as the brachiopods and molluscs) remains limited. Thus the early annelids had been linked to a variety of cataphract Cambrian metazoans, notably Wiwaxia and the halkieriids, but recent work assigns such fossils to stem-group molluscs. Here we report two new annelids from the Lower Cambrian Chengjiang Lagerstätte, South China. Ipoliknus avitus n. gen., n. sp. is biramous with neurochaetae and notochaetae, but significantly also bears dorsal spinose sclerites and dorso-lateral dentate sclerites. Adelochaeta sinensis n. gen., n. sp. is unique amongst Cambrian polychaetes in possessing the rod-like supports of the parapodia known as aciculae. This supports phylogenetic placement of Adelochaeta as sister to some more derived aciculate Palaeozoic taxa, but in contrast Ipoliknus is recovered as the most basal of the stem-group annelids. Sclerites and chaetae of I. avitus are interpreted respectively as the remnants and derivatives of a once more extensive cataphract covering that was a characteristic of more primitive trochozoans. The two sets of chaetae (noto- and neurochaetae) and two sets of sclerites (spinose and dentate) suggest that in a pre-annelid an earlier and more complete scleritome may have consisted of four zones of sclerites. Other cataphract taxa from the Lower Palaeozoic show a variety of scleritome configurations but establishing direct links with such basal annelids as Ipoliknus at present must remain conjectural.


Assuntos
Anelídeos/classificação , Evolução Biológica , Fósseis/anatomia & histologia , Moluscos/fisiologia , Filogenia , Animais , Anelídeos/anatomia & histologia , Anelídeos/fisiologia , China , Moluscos/anatomia & histologia
9.
Nat Ecol Evol ; 1(8): 1201-1204, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29046572

RESUMO

Macroscale rangeomorph fossils, with characteristic branching fronds, appear (571 Myr ago) after the Gaskiers glaciation (580 Myr ago). However, biological mechanisms of size growth and potential connections to ocean geochemistry were untested. Using micro-computerized tomography and photographic measurements, alongside mathematical and computer models, we demonstrate that growth of rangeomorph branch internodes declined as their relative surface area decreased. This suggests that frond size and shape were directly responsive to nutrient uptake.


Assuntos
Evolução Biológica , Tamanho Corporal , Fósseis/anatomia & histologia , Invertebrados/fisiologia , Animais , Dieta , Invertebrados/crescimento & desenvolvimento
10.
Interface Focus ; 5(6): 20150049, 2015 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-26640650

RESUMO

Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an 'inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales.

11.
Evolution ; 69(12): 3082-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26552726

RESUMO

Examples of long-term coevolution are rare among free-living organisms. Müllerian mimicry in Heliconius butterflies had been suggested as a key example of coevolution by early genetic studies. However, research over the last two decades has been dominated by the idea that the best-studied comimics, H. erato and H. melpomene, did not coevolve at all. Recently sequenced genes associated with wing color pattern phenotype offer a new opportunity to resolve this controversy. Here, we test the hypothesis of coevolution between H. erato and H. melpomene using Bayesian multilocus analysis of five color pattern genes and five neutral genetic markers. We first explore the extent of phylogenetic agreement versus conflict between the different genes. Coevolution is then tested against three aspects of the mimicry diversifications: phylogenetic branching patterns, divergence times, and, for the first time, phylogeographic histories. We show that all three lines of evidence are compatible with strict coevolution of the diverse mimicry wing patterns, contrary to some recent suggestions. Instead, these findings tally with a coevolutionary diversification driven primarily by the ecological force of Müllerian mimicry.


Assuntos
Evolução Biológica , Mimetismo Biológico , Borboletas/fisiologia , Proteínas de Insetos/genética , Pigmentação , Animais , Borboletas/genética , Evolução Molecular , Proteínas de Insetos/metabolismo , Fenótipo , Filogenia , Filogeografia , Análise de Sequência de DNA , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA