Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Annu Rev Biochem ; 82: 139-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23495937

RESUMO

DNA topoisomerases are nature's tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.


Assuntos
Replicação do DNA , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo I , Antineoplásicos/farmacologia , Domínio Catalítico , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Estrutura Terciária de Proteína
2.
Development ; 147(2)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941704

RESUMO

WD40 proteins control many cellular processes via protein interactions. Drosophila Wuho (Wh, a WD40 protein) controls fertility, although the involved mechanisms are unclear. Here, we show that Wh promotion of Mei-p26 (a human TRIM32 ortholog) function maintains ovarian germ cell homeostasis. Wh and Mei-p26 are epistatically linked, with wh and mei-p26 mutants showing nearly identical phenotypes, including germline stem cell (GSC) loss, stem-cyst formation due to incomplete cytokinesis between GSCs and daughter cells, and overproliferation of GSC progeny. Mechanistically, Wh interacts with Mei-p26 in different cellular contexts to induce cell type-specific effects. In GSCs, Wh and Mei-p26 promote BMP stemness signaling for proper GSC division and maintenance. In GSC progeny, Wh and Mei-p26 silence nanos translation, downregulate a subset of microRNAs involved in germ cell differentiation and suppress ribosomal biogenesis via dMyc to limit germ cell mitosis. We also found that the human ortholog of Wh (WDR4) interacts with TRIM32 in human cells. Our results show that Wh is a regulator of Mei-p26 in Drosophila germ cells and suggest that the WD40-TRIM interaction may also control tissue homeostasis in other stem cell systems.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Homeostase , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Sequência Conservada , Drosophila melanogaster/citologia , Evolução Molecular , Feminino , Fertilidade , Células Germinativas/citologia , Meiose , MicroRNAs/genética , MicroRNAs/metabolismo , Mitose , Modelos Biológicos , Mutação/genética , Ovário/citologia , Óvulo/citologia , Óvulo/metabolismo , Fenótipo , Ligação Proteica , Ribossomos/metabolismo , Transdução de Sinais
3.
PLoS Biol ; 14(1): e1002349, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26751069

RESUMO

Replication forks are vulnerable to wayward nuclease activities. We report here our discovery of a new member in guarding genome stability at replication forks. We previously isolated a Drosophila mutation, wuho (wh, no progeny), characterized by a severe fertility defect and affecting expression of a protein (WH) in a family of conserved proteins with multiple WD40 repeats. Knockdown of WH by siRNA in Drosophila, mouse, and human cultured cells results in DNA damage with strand breaks and apoptosis through ATM/Chk2/p53 signaling pathway. Mice with mWh knockout are early embryonic lethal and display DNA damage. We identify that the flap endonuclease 1 (FEN1) is one of the interacting proteins. Fluorescence microscopy showed the localization of WH at the site of nascent DNA synthesis along with other replication proteins, including FEN1 and PCNA. We show that WH is able to modulate FEN1's endonucleolytic activities depending on the substrate DNA structure. The stimulatory or inhibitory effects of WH on FEN1's flap versus gap endonuclease activities are consistent with the proposed WH's functions in protecting the integrity of replication fork. These results suggest that wh is a new member of the guardians of genome stability because it regulates FEN1's potential DNA cleavage threat near the site of replication.


Assuntos
Endonucleases Flap/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Instabilidade Genômica , Animais , Apoptose , Proteínas de Transporte , Replicação do DNA , Proteínas de Drosophila , Drosophila melanogaster , Células HCT116 , Humanos , Camundongos , Camundongos Knockout , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(38): E5544-51, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27582462

RESUMO

Topoisomerase 3ß (Top3ß) can associate with the mediator protein Tudor domain-containing protein 3 (TDRD3) to participate in two gene expression processes of transcription and translation. Despite the apparent importance of TDRD3 in binding with Top3ß and directing it to cellular compartments critical for gene expression, the biochemical mechanism of how TDRD3 can affect the functions of Top3ß is not known. We report here sensitive biochemical assays for the activities of Top3ß on DNA and RNA substrates in resolving topological entanglements and for the analysis of TDRD3 functions. TDRD3 stimulates the relaxation activity of Top3ß on hypernegatively supercoiled DNA and changes the reaction from a distributive to a processive mode. Both supercoil retention assays and binding measurement by fluorescence anisotropy reveal a heretofore unknown preference for binding single-stranded nucleic acids over duplex. Whereas TDRD3 has a structure-specific binding preference, it does not discriminate between DNA and RNA. This unique property for binding with nucleic acids can have an important function in serving as a hub to form nucleoprotein complexes on DNA and RNA. To gain insight into the roles of Top3ß on RNA metabolism, we designed an assay by annealing two single-stranded RNA circles with complementary sequences. Top3ß is capable of converting two such single-stranded RNA circles into a double-stranded RNA circle, and this strand-annealing activity is enhanced by TDRD3. These results demonstrate that TDRD3 can enhance the biochemical activities of Top3ß on both DNA and RNA substrates, in addition to its function of targeting Top3ß to critical sites in subcellular compartments.


Assuntos
DNA Topoisomerases/genética , DNA Super-Helicoidal/genética , Proteínas de Drosophila/genética , Nucleoproteínas/genética , Sequência de Aminoácidos/genética , Animais , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Drosophila/genética , Regulação da Expressão Gênica/genética , Substâncias Macromoleculares/química , Nucleoproteínas/química , Ligação Proteica , Biossíntese de Proteínas , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , Transcrição Gênica , Domínio Tudor/genética
5.
J Biol Chem ; 292(10): 4313-4325, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28159839

RESUMO

Human RecQ-like helicase 4 (RECQL4) plays crucial roles in replication initiation and DNA repair; however, the contextual regulation of its unwinding activity is not fully described. Mutations in RECQL4 have been linked to three diseases including Rothmund-Thomson syndrome, which is characterized by osteoskeletal deformities, photosensitivity, and increased osteosarcoma susceptibility. Understanding regulation of RECQL4 helicase activity by interaction partners will allow deciphering its role as an enzyme and a signaling cofactor in different cellular contexts. We became interested in studying the interaction of RECQL4 with ribosomal protein S3 (RPS3) because previous studies have shown that RPS3 activity is sometimes associated with phenotypes mimicking those of mutated RECQL4. RPS3 is a small ribosomal protein that also has extraribosomal functions, including apurnic-apyrimidinic endonuclease-like activity suggested to be important during DNA repair. Here, we report a functional and physical interaction between RPS3 and RECQL4 and show that this interaction may be enhanced during cellular stress. We show that RPS3 inhibits ATPase, DNA binding, and helicase activities of RECQL4 through their direct interaction. Further domain analysis shows that N-terminal 1-320 amino acids of RECQL4 directly interact with the C-terminal 94-244 amino acids of RPS3 (C-RPS3). Biochemical analysis of C-RPS3 revealed that it comprises a standalone apurnic-apyrimidinic endonuclease-like domain. We used U2OS cells to show that oxidative stress and UV exposure could enhance the interaction between nuclear RPS3 and RECQL4. Regulation of RECQL4 biochemical activities by RPS3 along with nuclear interaction during UV and oxidative stress may serve to modulate active DNA repair.


Assuntos
Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , RecQ Helicases/metabolismo , Proteínas Ribossômicas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Células Cultivadas , Dano ao DNA , Reparo do DNA , Replicação do DNA , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Mutagênese Sítio-Dirigida , Mutação/genética , Osteossarcoma/genética , Osteossarcoma/patologia , RecQ Helicases/química , RecQ Helicases/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética
6.
J Biol Chem ; 292(30): 12589-12598, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28630044

RESUMO

Topoisomerases play crucial roles in DNA replication, transcription, and recombination. For instance, topoisomerase II (Top2) is critically important for resolving DNA tangles during cell division, and as such, it is a broad anticancer drug target. Top2 regulates DNA topology by transiently breaking one double-stranded DNA molecule (cleavage), allowing a second double strand to pass through the opened DNA gate (opening), and then closing the gate by rejoining the broken ends. Drugs that modulate Top2 catalysis may therefore affect enzymatic activity at several different steps. Previous studies have focused on examining DNA cleavage and ligation; however, the dynamic opening and closing of the DNA gate has been less explored. Here, we used the single-molecule Förster resonance energy transfer (smFRET) method to observe the open and closed state of the DNA gate and to measure dwell times in each state. Our results show that Top2 binds and bends DNA to increase the energy transfer efficiency (EFRET), and ATP treatment further induces the fluctuation of EFRET, representing the gate opening and closing. Additionally, our results demonstrate that both types of Top2-targeting anticancer drugs, the catalytic inhibitor dexrazoxane (ICRF187) and mechanistic poison teniposide (VM26), can interfere with DNA gate dynamics and shorten the dwell time in the closed state. Moreover, Top2 bound to the nonhydrolyzable ATP analog 5'-adenylyl-ß,γ-imidodiphosphate exhibits altered DNA gate dynamics, but the DNA gate appears to open and close even after N-gate closure. In summary, we have utilized single-molecule detection to unravel Top2 DNA gate dynamics and reveal previously unknown effects of Top2 drugs on these dynamics.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Drosophila melanogaster/enzimologia , Transferência Ressonante de Energia de Fluorescência , Animais , Antineoplásicos/farmacologia , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/química , Dexrazoxano/farmacologia , Transferência de Energia , Relação Estrutura-Atividade
7.
Nucleic Acids Res ; 44(22): 10804-10823, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986956

RESUMO

Serine and tyrosine site-specific recombinases (SRs and YRs, respectively) provide templates for understanding the chemical mechanisms and conformational dynamics of strand cleavage/exchange between DNA partners. Current evidence suggests a rather intriguing mechanism for serine recombination, in which one half of the cleaved synaptic complex undergoes a 180° rotation relative to the other. The 'small' and 'large' SRs contain a compact amino-terminal catalytic domain, but differ conspicuously in their carboxyl-terminal domains. So far, only one serine recombinase has been analyzed using single substrate molecules. We now utilized single-molecule tethered particle motion (TPM) to follow step-by-step recombination catalyzed by a large SR, phage ϕC31 integrase. The integrase promotes unidirectional DNA exchange between attB and attP sites to integrate the phage genome into the host chromosome. The recombination directionality factor (RDF; ϕC31 gp3) activates the excision reaction (attL × attR). From integrase-induced changes in TPM in the presence or absence of gp3, we delineated the individual steps of recombination and their kinetic features. The gp3 protein appears to regulate recombination directionality by selectively promoting or excluding active conformations of the synapse formed by specific att site partners. Our results support a 'gated rotation' of the synaptic complex between DNA cleavage and joining.


Assuntos
Integrases/química , Proteínas Virais/química , Sítios de Ligação Microbiológicos , Bacteriófagos/enzimologia , DNA Bacteriano/química , Escherichia coli , Cinética , Ligação Proteica , Recombinação Genética , Imagem Individual de Molécula
8.
Nucleic Acids Res ; 44(13): 6335-49, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27257063

RESUMO

DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved Type IA core domains and the same catalytic residue used in DNA topoisomerase reaction; however, it does not absolutely require the non-conserved carboxyl-terminal domain (CTD), which is necessary for relaxation reactions of supercoiled DNA. The RNA topoisomerase activity of human Top3ß differs from that of Escherichia coli topoisomerase I in that the former but not the latter requires the CTD, indicating that topoisomerases have developed distinct mechanisms during evolution to catalyze RNA topoisomerase reactions. Notably, Top3ß proteins from several animals associate with polyribosomes, which are units of mRNA translation, whereas the Top3 homologs from E. coli and yeast lack the association. The Top3ß-polyribosome association requires TDRD3, which directly interacts with Top3ß and is present in animals but not bacteria or yeast. We propose that RNA topoisomerases arose in the early RNA world, and that they are retained through all domains of DNA-based life, where they mediate mRNA translation as part of polyribosomes in animals.


Assuntos
DNA Topoisomerases Tipo I/genética , Evolução Molecular , Polirribossomos/genética , Proteínas/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , DNA Super-Helicoidal/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , RNA/genética , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
9.
J Biol Chem ; 291(25): 13216-28, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129233

RESUMO

Eukaryotic topoisomerase 2 (Top2) and one of its interacting partners, topoisomerase IIß binding protein 1 (TopBP1) are two proteins performing essential cellular functions. We mapped the interacting domains of these two proteins using co-immunoprecipitation and pulldown experiments with truncated or mutant Drosophila Top2 with various Ser-to-Ala substitutions. We discovered that the last 20 amino acids of Top2 represent the key region for binding with Mus101 (the Drosophila homolog of TopBP1) and that phosphorylation of Ser-1428 and Ser-1443 is important for Top2 to interact with the N terminus of Mus101, which contains the BRCT1/2 domains. The interaction between Mus101 and the Top2 C-terminal regulatory domain is phosphorylation-dependent because treatment with phosphatase abolishes their association in pulldown assays. The binding affinity of N-terminal Mus101 with a synthetic phosphorylated peptide spanning the last 25 amino acids of Top2 (with Ser(P)-1428 and Ser(P)-1443) was determined by surface plasmon resonance with a Kd of 0.57 µm In an in vitro decatenation assay, Mus101 can specifically reduce the decatenation activity of Top2, and dephosphorylation of Top2 attenuates this response. Next, we endeavored to establish a cellular system for testing the biological function of Top2-Mus101 interaction. Top2-silenced S2 cells rescued by Top2Δ20, Top2 with 20 amino acids truncated from the C terminus, developed abnormally high chromosome numbers, which implies that Top2-Mus101 interaction is important for maintaining the fidelity of chromosome segregation during mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , DNA Topoisomerases Tipo II/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ciclo Celular , Linhagem Celular , Cromossomos de Insetos/genética , DNA Topoisomerases Tipo II/metabolismo , DNA de Cinetoplasto/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
10.
J Biomed Sci ; 23: 38, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27067525

RESUMO

BACKGROUND: Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. RESULTS: Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. CONCLUSIONS: The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.


Assuntos
Envelhecimento/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Drosophila/metabolismo , Genoma Mitocondrial/fisiologia , Instabilidade Genômica/fisiologia , Envelhecimento/genética , Animais , DNA Topoisomerases Tipo I/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Masculino
11.
Proc Natl Acad Sci U S A ; 110(38): E3587-94, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003117

RESUMO

Type IA DNA topoisomerases work with a unique mechanism of strand passage through an enzyme-bridged, ssDNA gate, thus enabling them to carry out diverse reactions in processing structures important for replication, recombination, and repair. Here we report a unique reaction mediated by an archaeal type IA topoisomerase, the synthesis and dissolution of hemicatenanes. We cloned, purified, and characterized an unusual type IA enzyme from a hyperthermophilic archaeum, Nanoarchaeum equitans, which is split into two pieces. The recombinant heterodimeric enzyme has the expected activities in its preference of relaxing negatively supercoiled DNA. Its amino acid sequence and cleavage site sequence analysis suggest that it is topoisomerase III, and therefore we named it "NeqTop3." At high enzyme concentrations, NeqTop3 can generate high-molecular-weight DNA networks. Biochemical and electron microscopic data indicate that the DNA networks are connected through hemicatenane linkages. The hemicatenane formation likely is mediated by the single-strand passage through denatured bubbles in the substrate DNA under high temperature. NeqTop3 at lower concentrations can reverse hemicatenanes. A complex of human topoisomerase 3α, Bloom helicase, and RecQ-mediated genome instability protein 1 and 2 can partially disentangle the hemicatenane network. Both the formation and dissolution of hemicatenanes by type IA topoisomerases demonstrate that these enzymes have an important role in regulating intermediates from replication, recombination, and repair.


Assuntos
Proteínas de Transporte/metabolismo , Catenanos/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Nanoarchaeota/enzimologia , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/genética , Humanos , Microscopia Eletrônica , Dados de Sequência Molecular , Proteínas Nucleares/genética , RecQ Helicases/genética , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Nucleic Acids Res ; 41(5): e60, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275569

RESUMO

Previously, we published a method for creating a novel DNA substrate, the double Holliday junction substrate. This substrate contains two Holliday junctions that are mobile, topologically constrained and separated by a distance comparable with conversion tract lengths. Although useful for studying late stage homologous recombination in vitro, construction of the substrate requires significant effort. In particular, there are three bottlenecks: (i) production of large quantities of single-stranded DNA; (ii) the loss of a significant portion of the DNA following the recombination step; and (iii) the loss of DNA owing to inefficient gel extraction. To address these limitations, we have made the following changes to the protocol: (i) use of a helper plasmid, rather than exogenous helper phage, to produce single-stranded DNA; (ii) use of the unidirectional C31 integrase system in place of the bidirectional Cre recombinase reaction; and (iii) gel extraction by DNA diffusion. Here, we describe the changes made to the materials and methods and characterize the substrates that can be produced, including migratable single Holliday junctions, hemicatenanes and a quadruple Holliday junction substrate.


Assuntos
DNA Cruciforme/biossíntese , Sítios de Ligação Microbiológicos , Bacteriófago M13/genética , Clonagem Molecular , DNA Cruciforme/genética , DNA Cruciforme/ultraestrutura , Escherichia coli , Integrases/genética , Integrases/metabolismo , Plasmídeos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
J Biol Chem ; 287(23): 19346-53, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22511792

RESUMO

Topoisomerase IIIα (Top3α) is an essential component of the double Holliday junction (dHJ) dissolvasome complex in metazoans, along with Blm and Rmi1/2. This important anti-recombinogenic function cannot be performed by Top3ß, the other type IA topoisomerase present in metazoans. The two share a catalytic core but diverge in their tail regions. To understand this difference in function, we investigated the role of the unique C terminus of Top3α. The Drosophila C terminus contains an insert region not conserved among metazoans. This insert contributes an independent interaction with Blm, which may account for the absence of Rmi1 in Drosophila. Mutant Top3α lacking this insert maintains the ability to perform dHJ dissolution but only partially rescues a top3α null fly line, indicating an in vivo role for the insert. Truncation of the C terminus has a minimal effect on the type IA relaxation activity of Top3α; however, dHJ dissolution is greatly reduced. The Top3α C terminus was found to strongly interact with both Blm and DNA, which are critical to the dissolution reaction; these interactions are greatly reduced in the truncated enzyme. The truncation mutant also cannot rescue the viability of top3α null flies, indicating an essential in vivo role. Our data therefore suggest that the Top3α C terminus has an important role in dHJ dissolution (by providing an interaction interface for Blm and DNA) and an essential function in vivo.


Assuntos
DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Cruciforme/metabolismo , Animais , DNA Helicases/genética , DNA Topoisomerases Tipo I/genética , DNA Cruciforme/genética , Proteínas de Drosophila , Drosophila melanogaster , Mutação , Estrutura Terciária de Proteína
14.
J Biol Chem ; 287(30): 25660-8, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22679013

RESUMO

Type II topoisomerases are essential enzymes for solving DNA topological problems by passing one segment of DNA duplex through a transient double-strand break in a second segment. The reaction requires the enzyme to precisely control DNA cleavage and gate opening coupled with ATP hydrolysis. Using pulsed alkylation mass spectrometry, we were able to monitor the solvent accessibilities around 13 cysteines distributed throughout human topoisomerase IIα by measuring the thiol reactivities with monobromobimane. Most of the measured reactivities are in accordance with the predicted ones based on a homology structural model generated from available crystal structures. However, these results reveal new information for both the residues not covered in the structural model and potential differences between the modeled and solution holoenzyme structures. Furthermore, on the basis of the reactivity changes of several cysteines located at the N-gate and DNA gate, we could monitor the movement of topoisomerase II in the presence of cofactors and detect differences in the DNA gate between two closed clamp enzyme conformations locked by either 5'-adenylyl ß,γ-imidodiphosphate or the anticancer drug ICRF-193.


Assuntos
Antígenos de Neoplasias/química , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/química , Modelos Moleculares , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Alquilação , Antígenos de Neoplasias/metabolismo , Compostos Bicíclicos com Pontes/química , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Dicetopiperazinas , Holoenzimas/química , Humanos , Hidrólise , Espectrometria de Massas , Piperazinas/química , Estrutura Terciária de Proteína
15.
Proc Natl Acad Sci U S A ; 107(14): 6228-33, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308575

RESUMO

Topoisomerase IIIalpha (topo IIIalpha), a member of the conserved Type IA subfamily of topoisomerases, is required for the cell proliferation in mitotic tissues, but has a lesser effect on DNA endoreplication. The top3alpha gene encodes two forms of protein by utilizing alternative translation initiation sites: one (short form) with the nuclear localization signal only, exclusively localized in the nuclei, and the other (long form), retaining a mitochondrial import sequence at the N-terminus and the nuclear localization sequence at the C-terminus, localized primarily in the mitochondria, though with a small portion in the nuclei. Both forms of topo IIIalpha can rescue the viability of null mutants of top3alpha. No apparent defect is associated with the flies rescued by the long form; short-form-rescued flies (referred to as M1L), however, exhibit defects in fertilities. M1L females are sterile. They can lay eggs but with mitochondrial DNA (mtDNA) copy number and ATP content decreased by 20- and 2- to 3-fold, respectively, and they fail to hatch. Of the newly eclosed M1L males, 33% are completely sterile, whereas the rest have residual fertilities that are quickly lost in 6 days. The fertility loss of M1L males is caused by the disruption of the individualization complex and a progressive loss of germ-line stem cells. This study implicates topo IIIalpha in the maintenance of mtDNA and male germ-line stem cells, and thus is a causative candidate for genetic disorders associated with mtDNA depletion.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Drosophila melanogaster/enzimologia , Genoma Mitocondrial , Células Germinativas/enzimologia , Células-Tronco/enzimologia , Sequência de Aminoácidos , Animais , Núcleo Celular/enzimologia , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Feminino , Fertilização , Humanos , Masculino , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência
16.
Crit Rev Biochem Mol Biol ; 45(3): 233-42, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20429771

RESUMO

Recent work has greatly contributed to the understanding of the biology and biochemistry of RecQ4. It plays an essential non-enzymatic role in the formation of the CMG complex, and thus replication initiation, by means of its Sld2 homologous domain. The helicase domain of RecQ4 has now been demonstrated to possess 3'-5' DNA helicase activity, like the other members of the RecQ family. The biological purpose of this activity is still unclear, but helicase-dead mutants are unable to restore viability in the absence of wildtype RecQ4. This indicates that RecQ4 performs a second role, which requires helicase activity and is implicated in replication and DNA repair. Thus, it is clear that two helicases, RecQ4 and Mcm2-7, are integral to replication. The nature of the simultaneous involvement of these two helicases remains to be determined, and possible models will be proposed.


Assuntos
Replicação do DNA , RecQ Helicases/metabolismo , Animais , Reparo do DNA , Humanos , RecQ Helicases/química , Alinhamento de Sequência
17.
J Biol Chem ; 286(38): 33591-600, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21828038

RESUMO

Studies in animal models have indicated that dietary isothiocyanates (ITCs) exhibit cancer preventive activities through carcinogen detoxification-dependent and -independent mechanisms. The carcinogen detoxification-independent mechanism of cancer prevention by ITCs has been attributed at least in part to their ability to induce apoptosis of transformed (initiated) cells (e.g. through suppression of IκB kinase and nuclear factor κB as well as other proposed mechanisms). In the current studies we show that ITC-induced apoptosis of oncogene-transformed cells involves thiol modification of DNA topoisomerase II (Top2) based on the following observations. 1) siRNA-mediated knockdown of Top2α in both SV40-transformed MEFs and Ras-transformed human mammary epithelial MCF-10A cells resulted in reduced ITC sensitivity. 2) ITCs, like some anticancer drugs and cancer-preventive dietary components, were shown to induce reversible Top2α cleavage complexes in vitro. 3) ITC-induced Top2α cleavage complexes were abolished by co-incubation with excess glutathione. In addition, proteomic analysis revealed that several cysteine residues on human Top2α were covalently modified by benzyl-ITC, suggesting that ITC-induced Top2α cleavage complexes may involve cysteine modification. Interestingly, consistent with the thiol modification mechanism for Top2α cleavage complex induction, the thiol-reactive selenocysteine, but not the non-thiol-reactive selenomethionine, was shown to induce Top2α cleavage complexes. In the aggregate, our results suggest that thiol modification of Top2α may contribute to apoptosis induction in transformed cells by ITCs.


Assuntos
Antígenos de Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dieta , Isotiocianatos/farmacologia , Compostos de Sulfidrila/metabolismo , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteína/metabolismo , Dano ao DNA , Fragmentação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/deficiência , Proteínas de Ligação a DNA/deficiência , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Camundongos , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo
18.
J Biol Chem ; 285(51): 39637-45, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20929866

RESUMO

Reverse gyrase reanneals denatured DNA and induces positive supercoils in DNA, an activity that is critical for life at very high temperatures. Positive supercoiling occurs by a poorly understood mechanism involving the coordination of a topoisomerase domain and a helicase-like domain. In the parasitic archaeon Nanoarchaeum equitans, these domains occur as separate subunits. We express the subunits, and characterize them both in isolation and as a heterodimer. Each subunit tightly associates and interacts with the other. The topoisomerase subunit enhances the catalytic specificity of the DNA-dependent ATPase activity of the helicase-like subunit, and the helicase-like subunit inhibits the relaxation activity of the topoisomerase subunit while promoting positive supercoiling. DNA binding preference for both single- and double-stranded DNA is partitioned between the subunits. Based on a sensitive topological shift assay, the binding preference of helicase-like subunit for underwound DNA is modulated by its binding with ATP cofactor. These results provide new insight into the mechanism of positive supercoil induction by reverse gyrase.


Assuntos
Proteínas Arqueais/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Arqueal/metabolismo , DNA Super-Helicoidal/metabolismo , Nanoarchaeota/enzimologia , Multimerização Proteica/fisiologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Domínio Catalítico , DNA Topoisomerases Tipo I/genética , DNA Arqueal/genética , DNA Super-Helicoidal/genética , Nanoarchaeota/genética
19.
Nucleic Acids Res ; 37(3): 712-20, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19155278

RESUMO

Type II DNA topoisomerases (topos) are essential and ubiquitous enzymes that perform important intracellular roles in chromosome condensation and segregation, and in regulating DNA supercoiling. Eukaryotic topo II, a type II topoisomerase, is a homodimeric enzyme that solves topological entanglement problems by using the energy from ATP hydrolysis to pass one segment of DNA through another by way of a reversible, enzyme-bridged double-stranded break. This DNA break is linked to the protein by a phosphodiester bond between the active site tyrosine of each subunit and backbone phosphate of DNA. The opening and closing of the DNA gate, a critical step for strand passage during the catalytic cycle, is coupled to this enzymatic cleavage/religation of the backbone. This reversible DNA cleavage reaction is the target of a number of anticancer drugs, which can elicit DNA damage by affecting the cleavage/religation equilibrium. Because of its clinical importance, many studies have sought to determine the manner in which topo II interacts with DNA. Here we highlight recent single-molecule fluorescence resonance energy transfer and crystallographic studies that have provided new insight into the dynamics and structure of the topo II DNA gate.


Assuntos
DNA Topoisomerases Tipo II/química , DNA/química , Catálise , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares
20.
J Biol Chem ; 284(45): 30737-41, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19726668

RESUMO

DNA strand passage through an enzyme-mediated gate is a key step in the catalytic cycle of topoisomerases to produce topological transformations in DNA. In most of the reactions catalyzed by topoisomerases, strand passage is not directional; thus, the enzyme simply provides a transient DNA gate through which DNA transport is allowed and thereby resolves the topological entanglement. When studied in isolation, the type IA topoisomerase family appears to conform to this rule. Interestingly, type IA enzymes can carry out directional strand transport as well. We examined here the biochemical mechanism for directional strand passage of two type IA topoisomerases: reverse gyrase and a protein complex of topoisomerase III alpha and Bloom helicase. These enzymes are able to generate vectorial strand transport independent of the supercoiling energy stored in the DNA molecule. Reverse gyrase is able to anneal single strands, thereby increasing linkage number of a DNA molecule. However, topoisomerase III alpha and Bloom helicase can dissolve DNA conjoined with a double Holliday junction, thus reducing DNA linkage. We propose here that the helicase or helicase-like component plays a determinant role in the directionality of strand transport. There is thus a common biochemical ground for the directional strand passage for the type IA topoisomerases.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Topoisomerases/metabolismo , DNA de Cadeia Simples/genética , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA