Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Gastroenterology ; 165(6): 1488-1504.e20, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634735

RESUMO

BACKGROUND & AIMS: Studies have demonstrated that activated pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis (CP); however, the precise mechanism for PSCs activation has not been fully elucidated. We analyzed the role of injured pancreatic acinar cells (iPACs) in the activation of PSCs of CP. METHODS: Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling was evaluated in experimental CP induced by cerulein injection or pancreatic duct ligation, as well as in PACs injured by cholecystokinin. The activation of PSCs and pancreatic fibrosis in CP samples was evaluated by immunohistochemical and immunofluorescence analyses. In vitro coculture assay of iPACs and PSCs was created to evaluate the effect of the SPHK1/S1P pathway and S1P receptor 2 (SIPR2) on autophagy and activation of PSCs. The pathogenesis of CP was assessed in SPHK1-/- mice or PACs-specific SPHK1-knockdown mice with recombinant adeno-associated virus serotypes 9-SPHK1-knockdown, as well as in mice treated with inhibitor of SPHK1 and S1P receptor 2 (S1PR2). RESULTS: SPHK1/S1P was remarkably increased in iPACs and acinar cells in pancreatic tissues of CP mice. Meanwhile, the pathogenesis, fibrosis, and PSCs activation of CP was significantly prevented in SPHK1-/- mice and recombinant adeno-associated virus serotypes 9-SPHK1-knockdown mice. Meanwhile, iPACs obviously activated PSCs, which was prevented by SPHK1 knockdown in iPACs. Moreover, iPACs-derived S1P specifically combined to S1PR2 of PSCs, by which modulated 5' adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway and consequently induced autophagy and activation of PSCs. Furthermore, hypoxia-inducible factor 1-α and -2α promoted SPHK1 transcription of PACs under hypoxia conditions, which is a distinct characteristic of the CP microenvironment. Coincidently, inhibition of SPHK1 and S1PR2 activity with inhibitor PF-543 and JTE-013 obviously impeded pancreatic fibrogenesis of CP mice. CONCLUSIONS: The activated SPHK1/S1P pathway in iPACs induces autophagy and activation of PSCs by regulating the S1PR2/5' adenosine monophosphate-activated protein kinase/mammalian target of rapamycin pathway, which promotes fibrogenesis of CP. The hypoxia microenvironment might contribute to the cross talk between PACs and PSCs in pathogenesis of CP.


Assuntos
Células Acinares , Pancreatite Crônica , Animais , Camundongos , Receptores de Esfingosina-1-Fosfato , Células Estreladas do Pâncreas , Pancreatite Crônica/induzido quimicamente , Autofagia , Proteínas Quinases Ativadas por AMP , Fibrose , Monofosfato de Adenosina , Hipóxia , Mamíferos
2.
Biomacromolecules ; 25(3): 1429-1438, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408372

RESUMO

We applied solid- and solution-state nuclear magnetic resonance spectroscopy to examine the structure of multidomain peptides composed of self-assembling ß-sheet domains linked to bioactive domains. Bioactive domains can be selected to stimulate specific biological responses (e.g., via receptor binding), while the ß-sheets provide the desirable nanoscale properties. Although previous work has established the efficacy of multidomain peptides, molecular-level characterization is lacking. The bioactive domains are intended to remain solvent-accessible without being incorporated into the ß-sheet structure. We tested for three possible anticipated molecular-level consequences of introducing bioactive domains to ß-sheet-forming peptides: (1) the bioactive domain has no effect on the self-assembling peptide structure; (2) the bioactive domain is incorporated into the ß-sheet nanofiber; and (3) the bioactive domain interferes with self-assembly such that nanofibers are not formed. The peptides involved in this study incorporated self-assembling domains based on the (SL)6 motif and bioactive domains including a VEGF-A mimic (QK), an IGF-mimic (IGF-1c), and a de novo SARS-CoV-2 binding peptide (SBP3). We observed all three of the anticipated outcomes from our examination of peptides, illustrating the unintended structural effects that could adversely affect the desired biofunctionality and biomaterial properties of the resulting peptide hydrogel. This work is the first attempt to evaluate the structural effects of incorporating bioactive domains into a set of peptides unified by a similar self-assembling peptide domain. These structural insights reveal unmet challenges in the design of highly tunable bioactive self-assembling peptide hydrogels.


Assuntos
Nanofibras , Peptídeos , Conformação Proteica em Folha beta , Peptídeos/química , Nanofibras/química , Hidrogéis/química , Materiais Biocompatíveis
3.
Environ Sci Technol ; 58(19): 8587-8596, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683942

RESUMO

Water scarcity has driven the demand for water production from unconventional sources and the reuse of industrial wastewater. Pressure-driven membranes, notably thin-film composite (TFC) membranes, stand as energy-efficient alternatives to the water scarcity challenge and various wastewater treatments. While pressure drives solvent movement, it concurrently triggers membrane compaction and flux deterioration. This necessitates a profound comprehension of the intricate interplay among compressive modulus, structural properties, and transport efficacy amid the compaction process. In this study, we present an all-encompassing compaction model for TFC membranes, applying authentic structural and mechanical variables, achieved by coupling viscoelasticity with Monte Carlo flux calculations based on the resistance-in-series model. Through validation against experimental data for multiple commercial membranes, we evaluated the influence of diverse physical parameters. We find that support polymers with a higher compressive modulus (lower compliance), supports with higher densities of "finger-like" pores, and "sponge-like" pores with optimum void fractions will be preferred to mitigate compaction. More importantly, we uncover a trade-off correlation between steady-state permeability and the modulus for identical support polymers displaying varying porosities. This model holds the potential as a valuable guide in shaping the design and optimization for further TFC applications and extending its utility to biological scaffolds and hydrogels with thin-film coatings in tissue engineering.


Assuntos
Membranas Artificiais , Porosidade , Permeabilidade , Polímeros/química
4.
Pediatr Crit Care Med ; 25(5): 425-433, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353591

RESUMO

OBJECTIVES: To describe the epidemiological characteristics of pediatric sepsis in Southwest China PICUs. DESIGN: A prospective, multicenter, and observational study. SETTING: Twelve PICUs in Southwest China. PATIENTS: The patients admitted to the PICU from April 1, 2022, to March 31, 2023. The age ranged from 28 days to 18 years. All patients met the criteria of severe sepsis or septic shock. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of the 31 PICUs invited to participate, 12 PICUs (capacity of 292 beds) enrolled patients in the study. During the study period, 11,238 children were admitted to the participating PICUs, 367 (3.3%) of whom met the diagnosis of severe sepsis or septic shock. The most prevalent sites of infection were the respiratory system (55%) and the digestive system (15%). The primary treatments administered to these patients included antibiotics (100%), albumin (61.3%), invasive mechanical ventilation (58.7%), glucocorticoids (55.6%), blood products (51%), gammaglobulin (51%), and vasoactive medications (46.6%). Sepsis-related mortality in the PICU was 11.2% (41/367). Nearly half of the sepsis deaths occurred within the first 3 days of PICU admission (22/41, 53.7%). The mortality rate of septic shock (32/167, 19.2%) was significantly higher than that of severe sepsis (9/200, 4.5%; p < 0.001). The outcomes of a multivariate logistic regression analysis suggested that a higher pediatric Sequential Organ Failure Assessment score, and the use of invasive mechanical ventilation and vasoactive medications were independently associated with PICU mortality in children with sepsis. CONCLUSIONS: This report updates the epidemiological data of pediatric sepsis in PICUs in Southwest China. Sepsis is still a life-threatening disease in children.


Assuntos
Unidades de Terapia Intensiva Pediátrica , Sepse , Humanos , Estudos Prospectivos , Pré-Escolar , China/epidemiologia , Criança , Lactente , Masculino , Feminino , Adolescente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Sepse/epidemiologia , Recém-Nascido , Mortalidade Hospitalar , Choque Séptico/epidemiologia
5.
Cancer Sci ; 114(9): 3623-3635, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488751

RESUMO

Pancreatic cancer (PC) development faces significant metabolic stress due to metabolic reprogramming and a distinct hypovascular nature, often leading to glucose and glutamine depletion. However, the adaption mechanisms by which PC adapts to these metabolic challenges have not yet been completely explored. Here, we found that metabolic stress induced by glucose and glutamine deprivation led to an overexpression of ZNFX1 antisense RNA 1 (ZFAS1). This overexpression played a significant role in instigating PC cell epithelial-mesenchymal transition (EMT) and metastasis. Mechanistically, ZFAS1 enhanced the interaction between AMPK, a key kinase, and ZEB1, the primary regulator of EMT. This interaction resulted in the phosphorylation and subsequent stabilization of ZEB1. Interestingly, ZEB1 also reciprocally influenced the transcription of ZFAS1 by binding to its promoter. Furthermore, when ZFAS1 was depleted, the nutrient deprivation-induced EMT of PC cells and lung metastasis in nude mice were significantly inhibited. Our investigations also revealed that ZFAS1-rich exosomes released from cells suffering glucose and glutamine deprivation promoted the EMT and metastasis of recipient PC cells. Corroborating these findings, a correlated upregulation of ZFAS1 and ZEB1 expression was observed in PC tissues and was associated with a poor overall survival rate for patients. Our findings highlight the involvement of a long noncoding RNA-driven metabolic adaptation in promoting EMT and metastasis of PC, suggesting ZFAS1 as a promising novel therapeutic target for PC metabolic treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Glutamina/metabolismo , Neoplasias Pancreáticas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proliferação de Células/genética , Neoplasias Pancreáticas
6.
J Acoust Soc Am ; 151(3): 1722, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364942

RESUMO

Active acoustic metamaterials incorporate electric circuit elements that input energy into an otherwise passive medium to aptly modulate the effective material properties. Here, we propose an active acoustic metamaterial with Willis coupling to drastically extend the tunability of the effective density and bulk modulus with the accessible parameter range enlarged by at least two orders of magnitude compared to that of a non-Willis metamaterial. Traditional active metamaterial designs are based on local resonances without considering the Willis coupling that limit their accessible effective material parameter range. Our design adopts a unit cell structure with two sensor-transducer pairs coupling the acoustic response on both sides of the metamaterial by detecting incident waves and driving active signals asymmetrically superimposed onto the passive response of the material. The Willis coupling results from feedback control circuits with unequal gains. These asymmetric feedback control circuits use Willis coupling to expand the accessible range of the effective density and bulk modulus of the metamaterial. The extreme effective material parameters realizable by the metamaterials will remarkably broaden their applications in biomedical imaging, noise control, and transformation acoustics-based cloaking.

7.
Cancer Cell Int ; 21(1): 692, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930270

RESUMO

BACKGROUND: Researches indicated the process of Endothelial-Mesenchymal-Transition (EndMT) of vascular endothelial cells (ECs) was critically involved in the progression of tumor. ECs demonstrated functional and phenotypic heterogeneity when located under different microenvironments. The extracellular pH of tumor tissues was acidic compared to that of normal tissues. However, there was still unclear whether the acidic microenvironment affected the EndMT of vascular ECs. METHODS: Human Umbilical Vein Endothelial Cell (HUVECs) was cultured under the normal or acidic medium to evaluate the alteration of morphology, migration, permeability, and EndMT markers. Microarray assay was adopted to analyze the differential expression of miRNAs in the acidity-treated HUVECs. Gain- and loss- of function experiments were performed to evaluate the functional role of miRNA-548ac on acidity-induced EndMT of HUVECs. Luciferase reporter and Chromatin-immunoprecipitation assays were conducted to assess the downstream pathway of miRNA-548ac in acidity-induced EndMT of HUVECs. RESULTS: Our results showed that HUVECs demonstrated mesenchymal transition under acidic conditions with the increase of migration, permeability, and expression of α-SMA and Vimentin, but the expression of vascular endothelial cadherin (VE-cadherin) and CD31 were reduced. In addition, the acidity-treated HUVECs remarkably facilitated the transmigration of pancreatic cancer cells. The expression of miRNA-548ac was significantly decreased in the acidity-treated HUVECs. Moreover, overexpression of miR-548ac inhibited the EndMT of HUVECs and consequently impeded the transmigration of pancreatic cancer cells. The miR-548ac inhibited the expression of YB-1 by binding to the 3'UTR of its mRNA, and YB-1 promoted the translation of Snail which was a critical regulator of EndMT. What's more, Snail transcriptionally inhibited the expression of miR-548ac through binding to the promoter of its host gene. CONCLUSIONS: Our data implicated that the acidic microenvironment promoted the EndMT of HUVECs by the miR-548ac/YB-1/Snail axis, which could contribute to the metastasis of pancreatic cancer.

8.
Diabetes Metab Res Rev ; 37(3): e3390, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32748546

RESUMO

OBJECTIVE: To assess bone mineral density (BMD) and associated clinical factors in patients with type 1 diabetes (T1D), latent autoimmune diabetes in adults (LADA), and type 2 diabetes (T2D) and in non-diabetic subjects. METHODS: Total 108 age-, sex-, disease duration-, and postmenopausal ratio-matched patients with T1D, LADA, and T2D each and 216 age-, sex-, and postmenopausal ratio-matched non-diabetic controls. Anthropometric, biochemical, and BMD data were collected and analysed. RESULTS: BMD of total hip and lumbar spine of individuals in the LADA group was lower than those in the T2D and control groups but higher than those in the T1D group. After adjusting for body mass index (BMI), a significant difference in BMD in the lumbar spine was seen between groups. After adjustment for smoking, BMI, 25-(OH) vitamin D, calcium, haemoglobin A1c, and diabetic complication scores, BMD values of patients in LADA group were not significantly different from those of patients in T1D and T2D groups. Multiple stepwise regression analysis showed that BMD was (a) positively associated with weight and C-peptide, and negatively associated with age in patients with diabetes, (b) positively associated with C-peptide in the T1D and LADA groups. The proportion of patients with osteoporosis in the T1D, LADA, T2D, and control groups was 55.6%, 45.4%, 34.3%, and 26.9%, respectively. CONCLUSIONS: BMD values in T1D, LADA, and T2D were in an increasing order of mention. Patients with autoimmune diabetes were more susceptible to osteoporosis. A lower C-peptide level may be responsible for decreased BMD in individuals with autoimmune diabetes.


Assuntos
Densidade Óssea , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Autoimune Latente em Adultos , Adulto , Densidade Óssea/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Diabetes Autoimune Latente em Adultos/fisiopatologia , Masculino
9.
BMC Cancer ; 21(1): 1345, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922489

RESUMO

BACKGROUNDS: Osteosarcomas are one of the most common primary malignant tumors of bone. It primarily occurs in children and adolescents, with the second highest incidence among people over 50 years old. Although there were immense improvements in the survival of patients with osteosarcoma in the past 30 years, targetable mutations and agents of osteosarcomas still have been generally not satisfactory. Therefore, it is of great importance to further explore the highly specialized immune environment of bone, genes related to macrophage infiltration and potential therapeutic biomarkers and targets. METHODS: The 11 expression data sets of OS tissues and the 11 data sets of adjacent non-tumorous tissues available in the GEO database GSE126209 were used to conduct immune infiltration analysis. Then, through WGCNA analysis, we acquired the co-expression modules related to Mast cells activated and performed the GO and KEGG enrichment analysis. Next, we did the survival prognosis analysis and plotted a survival curve. Finally, we analyzed the COX multivariate regression of gene expression on clinical parameters and drew forest maps for visualization by the forest plot package. RESULTS: OS disease-related immune cell populations, mainly Mast cells activated, have higher cell content (p = 0.006) than the normal group. Then, we identified co-expression modules related to Mast cells activated. In sum, a total of 822 genes from the top three strongest positive correlation module MEbrown4, MEdarkslateblue and MEnavajowhite2 and the strongest negative correlation module MEdarkturquoise. From that, we identified nine genes with different levels in immune cell infiltration related to osteosarcoma, eight of which including SORBS2, BAIAP2L2, ATAD2, CYGB, PAMR1, PSIP1, SNAPC3 and ZDHHC21 in their low abundance have higher disease-free survival probability than the group in their high abundances. CONCLUSION: These results could assist clinicians to select targets for immunotherapies and individualize treatment strategies for patients with OS.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Recidiva Local de Neoplasia/epidemiologia , Osteossarcoma/imunologia , Adolescente , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/mortalidade , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mastócitos/imunologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/mortalidade , Prognóstico , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
10.
Nature ; 519(7541): 70-3, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25739629

RESUMO

Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold-the pressure needed to open the pores-can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.


Assuntos
Microfluídica/métodos , Porosidade , Ar , Biomimética/métodos , Gases , Dispositivos Lab-On-A-Chip , Modelos Teóricos , Nanotecnologia/métodos , Óleos , Estômatos de Plantas/química , Estômatos de Plantas/metabolismo , Pressão , Impressão Tridimensional , Propriedades de Superfície , Água
11.
Soft Matter ; 16(34): 8057-8068, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32789332

RESUMO

Materials used in organ mimics for medial simulation and education require tissue-like softness, toughness, and hydration to give clinicians and students accurate tactile feedback. However, there is a lack of materials that satisfy these requirements. Herein, we demonstrate that a stretchable and tough polyacrylamide hydrogel is useful to build organ mimics that match softness, crack growth resistance, and interstitial water of real organs. Varying the acrylamide concentration between 29 or 62% w/w with a molar ratio between cross-linker and acrylamide of 1 : 10 800 resulted in a fracture energy around ∼2000 J m-2. More interestingly, this tough gel permitted variation of the elastic modulus from 8 to 62 kPa, which matches the softness of brain to vascular and muscle tissue. According to the rheological frequency sweep, the tough polyacrylamide hydrogels had a greatly decreased number of flow units, indicating that when deformed, stress was dispersed over a greater area. We propose that such molecular dissipation results from the increased number of entangled polymers between distant covalent cross-links. The gel was able to undergo various manipulations including stretching, puncture, delivery through a syringe tip, and suturing, thus enabling the use of the gel as a blood vessel model for microsurgery simulation.


Assuntos
Hidrogéis , Polímeros , Módulo de Elasticidade , Humanos , Água
12.
J Clin Lab Anal ; 34(2): e23045, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31642110

RESUMO

BACKGROUND: This study aimed to evaluate the association of circular RNA La-related RNA-binding protein 4 (circ-LARP4) with clinical features and prognosis in osteosarcoma patients, and further explore its effect on chemosensitivity in osteosarcoma cells. METHODS: Seventy-two osteosarcoma patients with Enneking stage IIA-IIB who underwent resection were consecutively enrolled, and then, tumor tissues and non-tumor tissues were obtained. Circ-LARP4 in tumor tissue/non-tumor tissue was detected by quantitative polymerase chain reaction. After circ-LARP4 overexpression and negative control overexpression plasmid transfection, relative cell viability (%) was evaluated by Cell Counting Kit-8 in MG63 cells treated by different concentrations of cisplatin, methotrexate, and doxorubicin, and IC50 was calculated. RESULTS: Circ-LARP4 was downregulated in tumor tissue compared with non-tumor tissue and had a good value in distinguishing tumor tissue from non-tumor tissue with an area under curve of 0.829 (95% CI: 0.762-0.859). Meanwhile, tumor circ-LARP4 was negatively correlated with the Enneking stage. After resection, circ-LARP4 high expression patients showed an increased tumor cell necrosis rate to adjuvant chemotherapy compared to circ-LARP4 low expression patients, and circ-LARP4 high expression correlated with prolonged disease-free survival and overall survival. In vitro experiments revealed that circ-LARP4 overexpression elevated the chemosensitivity of MG63 cells to cisplatin and doxorubicin but not methotrexate, with decreased cisplatin IC50 and doxorubicin IC50 concentrations than negative control. Besides, miR-424 overexpression attenuated the chemosensitivity in circ-LARP4 overexpression-treated MG63 cells. CONCLUSION: Circ-LARP4 high expression correlates with decreased Enneking stage and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging miR-424 in osteosarcoma.


Assuntos
Autoantígenos/genética , Neoplasias Ósseas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Osteossarcoma/tratamento farmacológico , RNA Circular/genética , Ribonucleoproteínas/genética , Adolescente , Adulto , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Criança , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Osteossarcoma/genética , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Taxa de Sobrevida , Adulto Jovem , Antígeno SS-B
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(8): 923-928, 2020 Aug 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33053533

RESUMO

OBJECTIVES: To investigate the prevalence of primary aldosteronism (PA) in newly diagnosed diabetic patients with hypertension and to compare clinical differences between newly diagnosed diabetes mellitus with essential hypertension (EH) and PA, and to explore the relationship between plasm aldosterone concentration (PAC) and clinical biochemical variables. METHODS: A total of 270 newly diagnosed diabetic patients with hypertension were prospectively enrolled in this study. All patients were screened for PA. The positive patients in the screening test were further confirmed by captopril challenge test (CCT) to determine the prevalence of PA. Clinical biochemical indexes were detected. RESULTS: The prevalence of PA in 270 newly diagnosed diabetic patients with hypertension was 18.5%. Compared with patients in the EH group, patients in the PA group had higher systolic blood pressure (SBP), PAC, aldosterone to renin ratio (ARR), and carbondioxide binding force, but lower plasma renin activity (PRA) and serum potassium. Correlation analysis showed that the PAC was positively correlated with homeostasis model assessment-insulin resistance (HOMA-IR) in the EH group (r=0.139, P<0.05), but the correlation was not found in the PA group. Compared with patients with SBP<140 mmHg, patients with SBP≥160 mmHg had the significantly decreased PRA and potassium (P<0.05, P<0.001, respectively), but increased ARR and proportion in the PA patients (P<0.05, P<0.01, respectively). CONCLUSIONS: The prevalence of PA is relatively high in newly diagnosed diabetic patients with hypertension. Patients with hypertension above grade 2 should be actively screened for aldosterone. Newly diagnosed diabetic patients with hypertension combined with PA has a higher hypertension compared with the patients without PA.In newly diagnosed diabetic patients with hypertension, PAC may be related to insulin resistance.


Assuntos
Diabetes Mellitus , Hiperaldosteronismo , Hipertensão , Aldosterona , Diabetes Mellitus/epidemiologia , Humanos , Hiperaldosteronismo/complicações , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/epidemiologia , Hipertensão/complicações , Hipertensão/epidemiologia , Renina
14.
Soft Matter ; 14(14): 2619-2627, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29577116

RESUMO

Hydrogels are composed of a crosslinked polymer network and water. The constitutive behaviors of hydrogels have been modeled based on Flory-Huggins theory. Within this model, the thermodynamic and kinetic parameters are assumed to be of constant values and are typically characterized through swelling tests. Since most hydrogels can absorb a large amount of solvent from the dry state to the swollen state, and the network size and solvent concentration of the hydrogels change significantly, the assumption of constant values of the thermodynamic and kinetic properties as the network swells is questionable. In this work, we have experimentally shown that even for the simple neutral polyacrylamide (PAAm) hydrogels, their mechanical responses cannot be fully described by the Flory-Huggins theory with constant thermodynamic parameters: N (number of chains per unit volume of dry polymers) and χ (polymer-solvent interaction parameter). For a more complete and precise characterization of the hydrogels, we measure the evolving properties of the gels as the network swells. Here, we use dynamic indentation to measure the poroelastic properties (shear modulus G, Poisson's ratio ν and diffusivity D) of the hydrogels under a wide range of swelling ratios. We also use linear perturbation to build the link between G, ν and N, χ, and plot the thermodynamic parameters in the Flory-Huggins theory as a function of the hydrogel swelling ratio. Consequently, the validity of the hydrogel models based on Flory-Huggins theory can be quantitatively examined.

15.
Soft Matter ; 13(4): 852-861, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28067395

RESUMO

An oscillation indentation method is developed for characterizing the local poroelastic properties of soft and hydrated materials such as hydrogels and biological tissues. In the dynamic oscillation indentation measurement, an indenter is pressed into the material to a certain depth and held for a period of time. After a plateau of force is reached, an oscillation of small depth is superimposed sweeping through a range of frequencies. The shift between the force and displacement spectra is denoted as the phase lag that characterizes the energy dissipative behavior of the soft hydrated materials due to solvent migration. A unified solution is obtained for the three widely used shapes of indenters for soft materials: cylindrical punch, spherical indenter and conical indenter. The solutions are summarized in remarkably simple forms allowing for easy extraction of material parameters including shear modulus, Poisson's ratio and diffusivity from the oscillation indentation measurements. The oscillation indentation measurement was demonstrated on a polyacrylamide (PAAm) gel using an atomic force microscope. It is shown that the time-dependent behavior of the PAAm gel at the micron scale is dominated by poroelasticity and the properties can be accurately extracted from the explicit expressions derived in this work. This method has great potential to be applied on heterogeneous biological tissues where local properties are of interest.

16.
Nat Mater ; 12(6): 529-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563739

RESUMO

Materials that adapt dynamically to environmental changes are currently limited to two-state switching of single properties, and only a small number of strategies that may lead to materials with continuously adjustable characteristics have been reported. Here we introduce adaptive surfaces made of a liquid film supported by a nanoporous elastic substrate. As the substrate deforms, the liquid flows within the pores, causing the smooth and defect-free surface to roughen through a continuous range of topographies. We show that a graded mechanical stimulus can be directly translated into finely tuned, dynamic adjustments of optical transparency and wettability. In particular, we demonstrate simultaneous control of the film's transparency and its ability to continuously manipulate various low-surface-tension droplets from free-sliding to pinned. This strategy should make possible the rational design of tunable, multifunctional adaptive materials for a broad range of applications.


Assuntos
Nanoestruturas/química , Óptica e Fotônica , Porosidade , Propriedades de Superfície , Resistência à Tração , Molhabilidade
17.
Sci Adv ; 10(24): eadn0439, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865467

RESUMO

The development of smart hydrogels capable of actively controlling ion conductivity is of paramount importance for iontronics. Most current work in this field focuses on enhancing the hydrogels' ion conductivity. Few successes have been seen in achieving spatial regulation of ion flow through external control. Among various controls, light gives the best spatial and temporal resolution for practical iontronic applications. However, developing hydrogels that can generate drastic ion concentration change upon photoirradiation for tunable conductivity is challenging. Very few molecules can enable photoion generation, and most of them are hydrophobic and low quantum yield. Here, we present an optoionic hydrogel that uses triphenylmethane leuconitrile (TPMLN) for ultraviolet-regulated ion conductivity. Through postpolymerization TPMLN synthesizing, we can incorporate high concentration of the hydrophobic TPMLN in hydrogels without compromising the hydrogel's mechanical integrity. Upon light irradiation, the hydrogel's local conductivity can change an unprecedented 10-fold. We also demonstrated soft optoionic devices that are capable of logic processing and photo imaging.

18.
Oncol Lett ; 28(1): 336, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38846430

RESUMO

The present study compared the differences in effectiveness and safety between segmentectomy (ST) and wedge resection (WR) in patients with operable non-small cell lung cancer (NSCLC). The PubMed, EMBASE, Cochrane Library and Web of Science databases were searched for papers published from inception until July 2023. The inclusion criteria were based on the population, intervention, comparator, outcomes and study designs. ROBINS-I was selected to assess the risk of bias and quality of evidence in the included non-randomised studies. Appropriate effect sizes were selected, and subgroup analyses, heterogeneity tests, sensitivity analyses and publication bias were applied. A total of 18 retrospective studies were included, involving 19,381 patients with operable NSCLC. The 5-year overall survival rate [hazard ratio (HR), 0.19; 95% confidence interval (CI), 0.04, 0.34; P=0.014; I2=76.3%], lung cancer-specific survival rate (HR, 0.3; 95% CI, 0.21, 0.38; P<0.01; I2=13.8%) and metastasis rate [odds ratio (OR), 1.56; 95% CI, 1.03, 2.38; P=0.037] in patients with operable NSCLC treated with WR were worse than those in patients treated with ST. The incidence of postoperative complications (OR, 0.44; 95% CI, 0.23, 0.82) in the WR group was lower than in the ST treatment group. There was no difference in postoperative recurrence (OR, 2.15; 95% CI, 0.97, 4.74; P=0.058) and mortality (risk difference, 0.04; 95% CI, -0.03, 0.11; P=0.287) between groups. Based on current evidence, patients with NSCLC treated with ST surgery have better postoperative survival but more complications than those patients treated with WT, while the effect of WR and ST on the recurrence rate and distant metastasis rate remains controversial.

19.
Int Immunopharmacol ; 135: 112300, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781609

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of RCC. It is characterized by resistance to traditional radiotherapy and chemotherapy, as well as an unfavorable clinical prognosis. Although TYMP is implicated in the advancement of tumor progression, the role of TYMP in ccRCC is still not understood. Heightened TYMP expression was identified in ccRCC through database mining and confirmed in RCC cell lines. Indeed, TYMP knockdown impacted RCC cell proliferation, migration, and invasion in vitro. TYMP showed a positive correlation with clinicopathological parameters (histological grade, pathological stage). Moreover, patients with high TYMP expression were indicative of poor prognosis in TCGA-ccRCC and external cohorts. The results of single-cell analysis showed that the distribution of TYMP was predominantly observed in monocytes and macrophages. Furthermore, there is a significant association between TYMP and immune status. Methylation analysis further elucidated the relationship between TYMP expression and multiple methylation sites. Drug sensitivity analysis unveiled potential pharmaceutical options. Additionally, mutation analyses identified an association between TYMP and the ccRCC driver genes like BAP1 and ROS1. In summary, TYMP may serve as a reliable prognostic indicator for ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Masculino , Estudos de Coortes , Feminino , Proliferação de Células , Metilação de DNA , Movimento Celular , Pessoa de Meia-Idade
20.
Front Endocrinol (Lausanne) ; 15: 1360998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978627

RESUMO

Objective: To evaluate the effects of high-intensity interval training (HIIT) on glycolipid metabolism among type 2 diabetes patients. Methods: HIIT is consistent with an exercise program (65%-90%VO2max or 75%-95% HRmax; exercise cycle≥2 weeks; frequency ≥ 2 times/week). A meta-analysis was conducted utilizing the random effects model to synthesize the data. Results: A total of 22 RCT studies with 1034 diabetic patients were included. Compared to moderate-intensity aerobic exercise or conventional controls, HIIT yields noteworthy effects on FBG (MD: -0.55; 95% CI: -0.85- -0.25, Hedges' g =0.98), 2h-PG (MD: -0.36; 95% CI: -0.57- -0.14, Hedges' g =1.05), FINS (MD: -0.41; 95% CI: -0.79- -0.03, Hedges' g =1.07), HbA1c (MD: -0.60; 95% CI: -0.84- -0.36, Hedges' g =2.69), TC (MD: -0.58; 95% CI: -0.80- -0.36, Hedges' g =2.36), TG (MD: -0.50; 95% CI: -0.86- -0.14, Hedges' g =1.50), HDL (MD: 0.62; 95% CI: 0.29-0.95, Hedges' g =1.19) and LDL (MD: -0.31; 95% CI: -0.56- -0.08, Hedges' g =0.91), all of the above p<0.01. Conclusions: HIIT has been shown to improve glucose and lipid metabolism in patients with type 2 diabetes, especially in HbA1c, TC, TG, and HDL. For patients between the ages of 40 and 60 with less than 5 years of disease, exercise programs of moderate to longer duration or moderate to high intensity will produce more favorable results.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Metabolismo dos Lipídeos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/sangue , Treinamento Intervalado de Alta Intensidade/métodos , Metabolismo dos Lipídeos/fisiologia , Glicemia/metabolismo , Terapia por Exercício/métodos , Exercício Físico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA