RESUMO
Chemical investigation of bioactive components from the whole plant of Euphorbia helioscopia resulted in the isolation and identification of 17 new jatrophane diterpenoids, namely, heliojatrone D (1) and helioscopids A-P (2-17), along with 11 known analogues (18-28). The structural elucidation of the new diterpenoids was achieved by the comprehensive analysis of HRESIMS, NMR, and X-ray crystallographic data, as well as using electronic circular dichroism. Structurally, heliojatone D (1) is the fourth natural diterpenoid with a rare bicyclo[8.3.0]tridecane skeleton. The inhibitory effect of the isolated diterpenoids against Kv1.3 ion channels was evaluated in a human embryonic kidney 293 cell model transfected with plasmid encoding Kv1.3, resulting in the identification of a series of potent Kv1.3 ion channel inhibitors, with the most active ones (2 and 15) showing IC50 values of 0.9 µM.
Assuntos
Diterpenos , Euphorbia , Cristalografia por Raios X , Diterpenos/química , Diterpenos/farmacologia , Euphorbia/química , Humanos , Estrutura MolecularRESUMO
Extensive phytochemical investigation on the methanol extract of the inflorescences, twigs, and leaves of Brucea javanica led to the isolation and identification of 27 triterpenoids, including 21 previously undescribed ones, named brujavanoids A-U (1-21). Their structures were determined based on comprehensive spectroscopic analysis and single-crystal X-ray diffraction. Of these compounds, brujavanoid A (1) represents the first apotirucallane-type triterpenoid with a novel 19(10 â 9)abeo motif, and brujavanoids B and C (2-3) are the first apotirucallane-type triterpenoids with a rarely occurring 14-hydorxy-15,16-epoxy fragment. All the isolates were evaluated for their anti-inflammatory effect in an LPS-activated RAW264.7 cells model. Furthermore, the most active one, brujavanoid E (5), can suppress the transcriptional expression of typical pro-inflammatory mediators and inhibit the nuclear translocation of NF-κB p65 in the LPS- activated RAW264.7 cells.
Assuntos
Brucea , Triterpenos , Anti-Inflamatórios/farmacologia , Brucea/química , Brucea javanica , Lipopolissacarídeos/farmacologia , Triterpenos/química , Triterpenos/farmacologiaRESUMO
The phytochemical investigation of the methanol extract of Ixeris sonchifolia led to the isolation and identification of nine analogs, including one new guaiane-type sesquiterpenoid, named ixerinoid A (1). The structure of 1 was determined by extensive analysis of the 1 D and 2 D nuclear magnetic resonance spectroscopic data, as well as quantum chemical calculations. Additionally, all the isolates were tested for their neuroprotective activity using the oxygen-glucose deprivation/reperfusion-induced SH-SY5Y cell injury model. Compounds 3, 5, 6, 8, and 9 displayed remarkable protective effects at concentrations of 1, 5, and 10 µM, respectively.
Assuntos
Asteraceae , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Sesquiterpenos , Humanos , Estrutura Molecular , Asteraceae/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Fármacos Neuroprotetores/farmacologiaRESUMO
Extensive phytochemical study of the methanol extract of twigs and leaves of Buxus sempervirens resulted in the identification of 17 Buxus alkaloids, including 12 new ones, namely buxusemines A-L (1-12). Their structures were delineated by detailed analysis of the HRESIMS and NMR data, as well as quantum chemical NMR calculations. Buxusemine A (1) represents the second Buxus alkaloid with a unique spiro[4.6]undecatriene moiety, buxusemines B-C (2-3) are a rarely occurring class of Buxus alkaloids featured with an additional five-membered ring through the ether or lactone linkage between C-10 and C-23, and buxusemines D-F (4-6) are another rare type of Buxus alkaloids with an epoxy motif. In the assessment of their bioactivities, buxusemine F (6) and buxanoldine (17) displayed more potent protective effects than the positive control cyclovirobuxinum D in the doxorubicin-induced cardiac injury model.
Assuntos
Buxus/química , Cardiotônicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Cardiotônicos/química , Cardiotônicos/isolamento & purificação , Linhagem Celular , Relação Dose-Resposta a Droga , Doxorrubicina , Estrutura Molecular , Miócitos Cardíacos/patologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ratos , Relação Estrutura-AtividadeRESUMO
Thirteen previously undescribed guaiane-type sesquiterpenoids based on [5,7] bicyclic system, stelleranoids A-M (1-13), along with six known analogues (14-20), were isolated from the roots of Stellera chamaejasme with chromatographic techniques. Their structures including absolute configurations were determined by HRESIMS and spectroscopic data, quantum chemical calculations, as well as X-ray crystallographic analysis. Cytotoxicity test in three cell lines indicated that compound 14 had relatively stronger cytotoxic effect against MKN-45, SKOV3, and Du145 cell lines with IC50 of 9.8, 17.4 and 7.3 µM, respectively; compounds 3 and 8 displayed moderate cytotoxic effect against MKN-45 and Du145 cell lines with IC50 ranged from 14.5 to 18.8 µM, comparable to those of the positive control. As determined by fluorescent microscopy and flow cytometry in Du145 cell line, compound 14 could promote cell apoptosis and cause cell cycle arrest at the G0/G1 phase, leading to the inhibition of cell proliferation. Further Western blot analysis revealed that this inhibitory effect was accompanied by upregulating pro-apoptosis proteins cleaved-PARP, cleaved-Caspase-9 and tumor suppressor protein p53 while downregulating anti-apoptotic protein Bcl-2 in 14-treated Du145 cells.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Sesquiterpenos/farmacologia , Thymelaeaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Raízes de Plantas/química , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-AtividadeRESUMO
Xiaokeyinshui extract combination (XEC), originating from a traditional Chinese formula Xiaokeyinshui (XKYS) recorded in ancient Bencao, has been reported to exert significant hypoglycemic effects. However, the chemical profiles, metabolic transformation and pharmacokinetic behavior of XEC in vivo were unclear. The research was to investigate the chemical constituents, metabolic profiles and pharmacokinetic behavior of XEC. A UPLC-QE-Orbitrap-HRMS qualification method was developed to identify the chemical constituents in XEC and xenobiotics of XEC in plasma, urine, feces and bile of rats after oral administration. A LC-MS quantification method was established and applied for the pharmacokinetic studies of major active compounds of XEC in normal and T2DM rats and Coptidis Rhizoma extracts (CRE) in T2DM rats. Fifty eight compounds in XEC and a total of 152 xenobiotics were identified in T2DM rats, including 28 prototypes and 124 metabolites. The metabolic pathways were demethylation, demethyleneization, reduction, hydroxylation, hydrolysis and subsequent binding reactions, including glucuronidation, sulfation and methylation. According to the results of chemical constituents and metabolites, 7 ingredients, including berberine, palmatine, coptisine, epiberberine, berberrubine, magnoflorine and aurantio-obtusin were suggested for markers to comparative pharmacokinetics study in normal rats and T2DM rats. Compared with normal rats, the Tmax of berberine, palmatine, coptisine, epiberberine, berberrubine and magnoflorine was significantly longer. The value of Cmax for palmatine, coptisine, epiberberine and berberrubine was significantly decreased in XEC T2DM group. The value of AUC for alkaloids was higher in diabetic rats. After oral CRE, alkaloids including berberine, palmatine, coptisine, epiberberine, berberrubine and magnoflorine could be detected in vivo. Compared with T2DM rats after oral administration of CRE, the value of Tmax and Cmax for berberine, palmatine, coptisine, epiberberine, berberrubine and magnoflorine exhibited significant differences in XEC T2DM group. This research provided an overview of the chemical profiles and metabolic profiling of XEC and elucidated the effect of diabetic state and compatibility on pharmacokinetic behaviors of active components in XEC. This research also can provide the material basis of XEC for subsequent quality control research.
Assuntos
Alcaloides , Berberina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Ratos , Animais , Xenobióticos , Alcaloides/química , Medicamentos de Ervas Chinesas/químicaRESUMO
Two novel diterpenoids, one with a rearranged trans,trans-fused tricyclo[10.3.0.04,6]pentadecane framework (1) and the other with an unprecedented 15S configuration (2), were isolated from Euphorbia helioscopia. Their structures were elucidated by extensive analysis of HR-ESI-MS, NMR, quantum-chemical calculation, and X-ray crystallographic data. Biosynthetically, 1 has a unique "cyclopropane-shift-like" biogenesis involving an oxa-di-π-methane (ODPM) rearrangement, which inspired us to accomplish the biomimetic conversion of 3 to 1. Moreover, compound 1 displayed a potent immunosuppressive effect by inhibiting Kv1.3 voltage-gated channels.