Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant Foods Hum Nutr ; 78(2): 483-492, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086373

RESUMO

Cucurbitacin IIb (CuIIb) extracted from Hemsleya penxianensis has been demonstrated anticancer activity in many malignancies, however, its effect against bladder cancer cells and the molecular mechanism remains unclear. Accordingly, in the present study, we evaluated the effect and further the underlying mechanism of CuIIb on bladder cancer cells. Cell viability and clonogenicity were examined to evaluate growth suppressive effect of CuIIb, alongside mechanism exploration was conducted based on RNA sequencing (RNA-seq). The results showed that CuIIb exposure inhibited the growth of T24 and UM-UC-3 bladder cancer cells as indicated by its obvious suppression on cell viability and clonogenicity. Mechanistic studies by RNA-seq and quantifying analysis of RNA-seq data by TMNP indicated cell cycle modulated by cell cycle checkpoints and apoptosis mediated by PI3K/Akt pathway might account for the anticancer activity of CuIIb. Consistently, results of flow cytometry and AO/EB staining demonstrated that the growth-suppressive effect of CuIIb was mediated by cell cycle arrest in G2/M phase and robust induction of cell apoptosis, which was further confirmed by immunoblotting and mitochondrial membrane potential (ΔΨm) analysis. Collectively, the results presented herein indicated that CuIIb exhibited anticancer activity on bladder cancer which may be a potential candidate for improving bladder cancer outcomes.


Assuntos
Transdução de Sinais , Neoplasias da Bexiga Urinária , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Apoptose , Proliferação de Células
2.
Funct Integr Genomics ; 19(6): 953-972, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31177404

RESUMO

miRNAs (microRNAs) are ~ 21-nt non-coding small RNAs (sRNAs) that play crucial regulatory roles in plant biotic and abiotic stress responses. Phosphorus (Pi) deficiency constrains plant growth and reduces yields worldwide. To identify tree miRNAs and evaluate their functions in the response to low Pi, we identified 261 known and 31 candidate novel miRNA families from three sRNA libraries constructed from Populus tomentosa subjected to sufficient or Pi deficiency condition or to restoration of a sufficient Pi level after Pi deficiency. Pi deficiency resulted in significant changes in the abundance of TPM (transcript per million) of 65 known and 3 novel miRNAs. Interestingly, four miRNAs responsive to low N-miR167, miR394, miR171, and miR857-were found to be involved in the response to low Pi. Thirty-five known and one novel miRNAs responded dynamically to Pi fluctuations, suggesting their involvement in the response to Pi deficiency. miRNA clusters comprising 36 miRNAs were identified in 10 chromosomes. Intriguingly, nine pairs of sense and antisense miRNAs transcribed from the same loci were detected in P. tomentosa, which is the first such report in woody plants. Moreover, target genes of the known miRNAs and novel miRNA candidates with significantly changed abundance were predicted, and their functions were annotated. Degradome sequencing supported the identified targets of miRNAs in P. tomentosa. These findings will enhance our understanding of universal and specific molecular regulatory mechanisms of trees under nutrition stress and may facilitate improvement of the Pi utilization efficiency of woody plants.


Assuntos
MicroRNAs/genética , Fosfatos/deficiência , Populus/genética , Estresse Fisiológico , Transcriptoma , Regulação da Expressão Gênica de Plantas , Populus/metabolismo
4.
Water Sci Technol ; 79(7): 1287-1296, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31123228

RESUMO

Our findings proved that micron-scale zero-valent iron (mZVI) particles with pre-magnetization combined with peroxymonosulfate (PMS) can markedly enhance the removal of acid orange 7 (AO7). Investigation into the mechanism showed that PMS accelerated the corrosion of ZVI to release Fe2+ under acidic conditions, and the in-situ generated Fe2+ further activated PMS to produce SO4•- and •OH, resulting in AO7 removal. Further, the Lorentz force strengthened the convection in the solution and the field gradient force tended to move Fe2+ from a higher to a lower field gradient at the pre-magnetized ZVI (Pre-ZVI) particle surfaces, thus indicating that pre-magnetization promoted the corrosion of ZVI to release Fe2+, which resulted in the enhancement of PMS activation. Nano-scale ZVI (nZVI) was more effective than mZVI in activating PMS to degrade AO7, but the pre-magnetization effect on mZVI was better than on nZVI. AO7 removal increased with higher ZVI and PMS dosage, lower AO7 concentration, and acidic conditions (pH = 2, 3). This study helps to understand the reactive radicals-based oxidation process with application of pre-magnetized ZVI in activating PMS.


Assuntos
Compostos Azo/química , Benzenossulfonatos/química , Peróxidos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Compostos Azo/análise , Benzenossulfonatos/análise , Catálise , Corrosão , Ferro/química , Poluentes Químicos da Água/análise
5.
Molecules ; 23(7)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973492

RESUMO

Glycyrrhhizic acid (GA), including 18α-glycyrrhizic acid (18α-GA) and 18ß-glycyrrhizic acid (18ß-GA), is the main active ingredient of licorice. GA is generally considered an effective pharmacological strategy protecting against hepatic disease; however, the optimal compatibility proportion of 18α-GA and 18ß-GA against alcoholic liver disease (ALD) and the underlying mechanism are not well established. Hence, this study was designed to explore the optimal compatibility proportion of 18α-GA and 18ß-GA against ALD, followed by investigating the underlying mechanisms. SD rats were administered 40% ethanol once a day, accompanied by treatment with different proportions of 18α-GA and 18ß-GA for four weeks. Then all rats were anesthetized with chloral hydrate and blood samples were taken from the abdominal aorta for biochemical assay. Livers were also collected and the liver function, lipid profile, ROS production, and mRNA and protein levels of related genes involved in lipid metabolism were assessed. The results showed that 18α-GA and 18ß-GA, particularly at a proportion of 4:6, significantly reduced liver damage, lipid accumulation, and oxidative stress in ethanol-induced rats, as indicated by the decreased levels of alanine aminotransferase (ALT) and aminotransferase (AST) in serum, improvement of liver histopathological changes, regulation of total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), and modulation of superoxide dismutase (SOD), glutathione (GSH), and malonaldehyde (MDA). Moreover, the combination treatment with 18α-GA and 18ß-GA substantially reduced the mRNA and protein levels of sterol regulatory element-binding protein-1c (SREBP-1c) and acetyl-coal carboxylase (ACC); meanwhile, increased levels of peroxisome proliferators activated receptor-α (PPAR-α) and carnitine palmitoy transferase-1 (CTP-1) in the liver tissues of ethanol-induced rats. In conclusion, our results indicated that the optimal compatibility proportion of 18α-GA and 18ß-GA protecting against ALD was 4:6, and the mechanism was associated with the regulation of oxidative stress and lipid metabolism.


Assuntos
Ácido Glicirrízico/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatias Alcoólicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Alanina Transaminase/sangue , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glicirrízico/química , Ácido Glicirrízico/farmacologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Int J Mol Sci ; 18(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617329

RESUMO

Orychophragmus violaceus (O. violaceus) is a kind of edible wild herb in north China and its seeds have medical potential, however, the effect of O. violaceus seeds on liver injury and the mechanism of action remains poorly understood. Thus, the purpose of the present study is to investigate the effect of O. violaceus seeds on liver injury and further explore the molecular mechanism of the beneficial effects using aqueous extract from the seeds of O. violaceus (AEOV). Mice were orally administrated with saline, AEOV, and biphenyldicarboxylate for 4 days, and were then injected subcutaneously with 0.1% carbon tetrachloride (CCl4) dissolved in corn oil. Sixteen hours later, mice were sacrificed and blood samples were collected. Then, the serum was separated and used for biochemical assay. Livers were excised and were routinely processed for histological examinations. Enzyme activities and protein levels in liver homogenates were detected using commercial kits or by western blot analysis. Additionally, the hepatoprotective effect of AEOV in vitro was evaluated using epigoitrin, the major alkaloid compound isolated from AEOV. We found that AEOV attenuated liver injury induced by CCl4 as evidenced by decreased levels of alanine aminotransferase (ALT) and aminotransferase (AST) in serum, improvement of liver histopathological changes, and substantial attenuation of oxidative stress and inflammation via regulation of nuclear factor-erythroid 2-related factor-2 (Nrf2) and nuclear factor κB (NFκB) pathways. These effects of AEOV were comparable to that of biphenyldicarboxylate which was commonly used as a hepatoprotective reference. Moreover, pretreatment of HepG2 cells with epigoitrin improved cell viability, decreased lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, attenuated the NFκB pathway, and elevated the Nrf2 pathway after exposure to H2O2. These results suggest that AEOV could effectively prevent CCl4-induced liver injury in mice via regulating the Nrf2 and NFκB pathways, and reveal the cytoprotective effects of epigoitrin against H2O2-induced oxidative stress in HepG2 cells.


Assuntos
Brassicaceae/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Hep G2 , Humanos , Peróxido de Hidrogênio , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxazolidinonas/química , Oxazolidinonas/uso terapêutico , Fitoterapia , Extratos Vegetais/química , Substâncias Protetoras/química , Sementes/química
7.
Molecules ; 22(5)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481246

RESUMO

5-Fluorouracil (5-FU) is the chemotherapeutic agent of first choice for the treatment ofcolorectal cancer, however, treatment-related liver toxicity remains a major concern. Thereby, it is desirable to search for novel therapeutic approaches that can effectively enhance curative effects and reduce the toxic side effects of 5-FU. Carboxymethyl Pachyman (CMP) exhibits strong antitumor properties, but the antitumor and hepatoprotective effects of CMP and the molecular mechanisms behind these activities, are however poorly explored. Thereby, the purpose of the present study was to evaluate the hepatoprotective effect of CMP in 5-FU-treated CT26-bearing mice, and further explore the underlying mechanism(s) of action. Initially, a CT26 colon carcinoma xenograft mice model was established. The immune organ indexes, blood indicators, liver tissue injury, and indicators associated with inflammation, antioxidant and apoptosis were then measured. Our results showed that CMP administration increased the tumor inhibitory rates of 5-FU and, meanwhile, it reversed reduction of peripheral white blood cells (WBC) and bone marrow nucleated cells (BMNC), increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and decrease of superoxide dismutase (SOD), catalase (CAT), GSH-Px and glutathione(GSH) induced by 5-FU. Moreover, CMP in combination with 5-FU alleviated severe liver injury induced by 5-FU via reducing the levels of ROS, IL-1ß, and IL-6, decreasing expression of p-IκB-α, NF-κB, p-NF-κB, pp38 and Bax, and elevating levels of Nrf2, GCL, HO-1 and Bcl-2. Collectively, these outcomes suggested that CMP effectively enhanced the curative effects of 5-FU and simultaneously reduced the liver injuries induced by 5-FU in CT26-bearing mice, and the mechanism may be associated with regulation of NF-κB, Nrf2-ARE and MAPK/P38/JNK pathways.


Assuntos
Antineoplásicos/toxicidade , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/toxicidade , Glucanos/química , Glucanos/farmacologia , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Alanina Transaminase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Tetracloreto de Carbono , Catalase/metabolismo , Linhagem Celular , Glucanos/administração & dosagem , Glutationa/metabolismo , Humanos , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Superóxido Dismutase/metabolismo
8.
Int J Mol Sci ; 17(9)2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27563884

RESUMO

Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated carcinogenesis (CAC). Thus, it is well accepted that ameliorating inflammation creates a potential to achieve an inhibitory effect on CAC. Licorice flavonoids (LFs) possess strong anti-inflammatory activity, making it possible to investigate its pharmacologic role in suppressing CAC. The purpose of the present study was to evaluate the anti-tumor potential of LFs, and further explore the underlying mechanisms. Firstly, an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model was established and administered with or without LFs for 10 weeks, and then the severity of CAC was examined macroscopically and histologically. Subsequently, the effects of LFs on expression of proteins associated with apoptosis and proliferation, levels of inflammatory cytokine, expression of phosphorylated-Janus kinases 2 (p-Jak2) and phosphorylated-signal transducer and activator of transcription 3 (p-Stat3), and activation of nuclear factor-κB (NFκB) and P53 were assessed. We found that LFs could significantly reduce tumorigenesis induced by AOM/DSS. Further study revealed that LFs treatment substantially reduced activation of NFκB and P53, and subsequently suppressed production of inflammatory cytokines and phosphorylation of Jak2 and Stat3 in AOM/DSS-induced mice. Taken together, LFs treatment alleviated AOM/DSS induced CAC via P53 and NFκB/IL-6/Jak2/Stat3 pathways, highlighting the potential of LFs in preventing CAC.


Assuntos
Azoximetano/toxicidade , Colite/complicações , Sulfato de Dextrana/toxicidade , Flavonoides/química , Flavonoides/uso terapêutico , Glycyrrhiza/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Proliferação de Células/efeitos dos fármacos , Colite/metabolismo , Modelos Animais de Doenças , Feminino , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Biol Pharm Bull ; 38(9): 1328-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26062514

RESUMO

The plant Millettia pulchra was commonly used in folk medicine for the management of inflammation. However, there was no scientific rationale for these effects and the mechanism of action remained incompletely understood. The present study was designed to investigate the antiinflammatory and analgesic activities of an ethanol extract of the stem of M. pulchra (EMP) in vivo, and to explore the antiinflammatory activity of compounds isolated from EMP in vitro. We found that EMP reduced xylene-induced ear edema and relieved both acetic acid-induced pain and pain in the hot plate test. Additionally, a significant decrease in nitric oxide (NO) production was observed in cells treated with the isolated compounds. Lanceolatin B, which showed the greatest inhibition of NO synthesis among the compounds tested, also reduced levels of interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), and phosphorylation inhibitory kappa B alpha (p-IκBα) in a dose-dependent manner. These findings provide convincing evidence that EMP and the individual isolated compounds possess significant antiinflammatory and analgesic activities.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Millettia , Extratos Vegetais/uso terapêutico , Ácido Acético , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Etanol/química , Feminino , Temperatura Alta , Proteínas I-kappa B/metabolismo , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Dor/induzido quimicamente , Dor/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Caules de Planta , Solventes/química , Xilenos
10.
Environ Sci Pollut Res Int ; 31(19): 28241-28252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538997

RESUMO

In this study, boron-doped porous carbon materials (BCs) with high surface areas were synthesized employing coffee grounds as carbon source and sodium bicarbonate and boric acid as precursors; afterward, nanoscale zero-valent iron (nZVI) and BCs composites (denoted as nZVI@BCs) were further prepared through reduction of FeSO4 by NaBH4 along with stirring. The performance of the nZVI@BCs for activating persulfate (PS) was evaluated for the degradation of bisphenol A (BPA). In comparison with nZVI@Cs/PS, nZVI@BCs/PS could greatly promote the degradation and mineralization of BPA via both radical and non-radical pathways. On the one hand, electron spin resonance and radical quenching studies represented that •OH, SO4•-, and O2•- were mainly produced in the nZVI@BCs/PS system for BPA degradation. On the other hand, the open circuit voltages of nZVI@BCs and nZVI@Cs in different systems indicated that non-radical pathway still existed in our system. PS could grab the unstable unpaired electron on nZVI@BCs to form a carbon material surface-confined complex ([nZVI@BCs]*) with a high redox potential, then accelerate BPA removal efficiency via direct electron transfer. Furthermore, the performances and mechanisms for BPA degradation were examined by PS activation with nZVI@BC composites at various conditions including dosages of nZVI@BCs, BPA and PS, initially pH value, temperature, common anions, and humid acid. Therefore, this study provides a novel insight for development of high-performance carbon catalysts toward environmental remediation.


Assuntos
Compostos Benzidrílicos , Boro , Carbono , Ferro , Fenóis , Compostos Benzidrílicos/química , Ferro/química , Boro/química , Carbono/química , Fenóis/química , Catálise , Porosidade
11.
Chin Herb Med ; 15(2): 284-290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265760

RESUMO

Objective: In order to distinguish the traditional Chinese medicine Bupleurum falcatum and its adulterants effectively and develop a better understanding of the factors affecting synonymous codon usage, codon usage patterns of chloroplast genome, we determine the complete chloroplast (cp) genome of B. falcatum and clarify the main factors that influence codon usage patterns of 78 genes in B. falcatum chloroplast genome. Methods: The total genomic DNA of fresh leaves from a single individual of B. falcatum was extracted with EASYspin plus Total DNA Isolation Kit and 2 µg genome DNA was sequenced using Illumina Hiseq 2500 Sequencing Platform. The cp genome of B. falcatum was reconstructed with MITObim v1.8 and annotated in the program CPGAVAS2 with default parameters. Python script and Codon W were used to calculate the codon usage bias parameters. Results: The full length of B. falcatum cp genome was 155 851 bp, 132 different genes were annotated in this cp genome containing 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The codon usage models tended to use A/T-ending codons. The neutrality plot, ENC plot, PR2-Bias plot and correspondence analysis showed that both compositional constraint under selection and mutation could affect the codon usage models in B. falcatum cp genome. Furthermore, three optimal codons were identified and most of these three optimal codons ended with G/U. Conclusion: The cp genome of B. falcatum has been characterized and the codon usage bias in B. falcatum cp genome is influenced by natural selection, mutation pressure and nucleotide composition. The results will provide much more barcode information for species discrimination and lay a foundation for future research on codon optimization of exogenous genes, genetic engineering and molecular evolution in B. falcatum.

12.
J Hazard Mater ; 443(Pt B): 130386, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444072

RESUMO

The regeneration of Fe(II) is the rate-limiting step in the Fenton/Fenton-like chain reactions that seriously hinder their scientific progress towards practical application. In this study, we proposed iron boride (FeB) for the first time as a new material to sustainably decompose H2O2 to generate hydroxyl radicals, which can non-selectively degrade a wide array of refractory organic pollutants. Fe(II) can be steadily released by the stepwise oxidation of FeB to stimulate Fenton reaction, meanwhile, B-B bonds as electron donors on the surface of FeB effectively promote the regeneration of Fe(II) from Fe(III) species and significantly accelerate the production of hydroxyl radicals. The low generation of toxic by-products and the high utilization rate of iron species validly avoid the secondary organic/metal pollution in the FeB/H2O2 system. Therefore, FeB mediated Fenton oxidation provides a novel strategy to realize a green and long-lasting environmental remediation.

13.
Biomed Pharmacother ; 165: 115041, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37356374

RESUMO

Nanoscience has set off a wave in biomedicine to improve the performance of drugs in recent years, but additional materials are usually required for supramolecular nanoconstruction, undoubtedly increasing the health risks. Herein, we discovered a novel diterpene supramolecular self-assembly system without additional chemicals, Nepebracteatalic Acid nanoparticles (NA NPs), mediated through hydrogen bond, hydrophobic and electrostatic interaction. NA NPs performed sustained release behavior, lower expression levels for IL-6 and TNF-α than clinical anti-inflammatory drug Indometacin. Furthermore, the effect of NA NPs on the related protein p65 expression levels of nuclear factor-κB (NFκB) signaling pathway is quantified to confirm the enhanced anti-inflammatory property based on the self-assembly strategy. Meanwhile, the prepared nanoparticles have good biocompatibility which ensures outstanding inflammation inhibition, collagen deposition, angiogenesis during wound healing. This work opens up new prospects that carrier-free nanoparticles from NPMs have great potential to exert clinical application value, meanwhile providing reference for developing green nanoscience.


Assuntos
Diterpenos , Nanopartículas , NF-kappa B/metabolismo , Cicatrização , Nanopartículas/química , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia
14.
Food Chem X ; 20: 100925, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144717

RESUMO

Noni fruits have gained considerable popularity as dietary supplements. However, the major constituents, the laxative activity, and the toxicity of Noni fruit remains still unknown. The purpose of the present study was, therefore, to analyze the constituents of methanol extract of Noni fruit by UPLC-MS, and further evaluate laxative activity and safety aspects of this Noni fruit-derived products in mice. UPLC-MS analysis identified eleven major constituents from this Noni fruit extract. Administration of this extract obviously shortened the time of first fecal excrement, significantly increased the total number and the weight of stools, and remarkably restored the intestinal transit to normal level in the constipated mice, with low toxicity to liver and kidney, and meanwhile, the abundance, composition, and function of gut microbiota remained homeostasis. These results revealed the laxative activity of the methanol extract of Noni fruit with low toxicity and no influence on gut microbiota.

15.
RSC Adv ; 12(34): 21780-21792, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36043058

RESUMO

Boron-doped carbon materials (BCs), low-cost and environmentally friendly carbocatalysts, were prepared for the activation of persulfate (PS) for the removal of bisphenol A (BPA). Compared with B-free carbon materials (Cs), the adsorption and catalytic activity were significantly enhanced by the boron modification. Fast and efficient removal of BPA was achieved using the BCs/PS system. The BPA removal rate constant increased linearly with the adsorption capacity of BCs. Electron paramagnetic resonance (EPR) spectroscopy and radical quenching experiments indicated that the degradation mechanisms in the BCs/PS system were different from conventional radical-based oxidation pathways. On the contrary, nonradical pathways were demonstrated to dominate the oxidation processes in the removal of BPA using the BCs/PS system. Herein, a mechanism is proposed where PS is activated by the carbon material to form a reactive electron-deficient carbocatalyst ([BCs]*) complex with a high redox potential, driving a nonradical oxidation pathway to achieve BPA removal. Through experimental investigation and the use of electrochemical techniques (cyclic voltammetry, Tafel corrosion analysis and open circuit voltages), B-doped carbon materials for the activation of PS elevate the potential of the derived nonradical [BCs]* complexes, and then accelerate the BPA removal efficiency via an electron transfer process. Utilizing adsorption and nonradical oxidation processes, the BCs/PS system possesses great potential for the removal of BPA in practical applications such as wastewater treatment.

16.
Front Vet Sci ; 9: 930123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873677

RESUMO

Porcine parvoviruses (PPV) and porcine circoviruses type 2 (PCV2) are widespread in the pig population. Recently, it was suggested that PPV7 may stimulate PCV2 and PCV3 replication. The present study aimed to make detection and molecular characterization of PPV7 for the first time in eastern Inner Mongolia Autonomous Region, China. Twenty-seven of ninety-four samples (28.72%) and five in eight pig farms were PPV7 positive. Further detection showed that the co-infection rate of PPV7 and PCV2 was 20.21% (19/94), and 9.59% (9/94) for PPV7 and PCV3. In addition, the positive rate of PPV7 in PCV2 positive samples was higher than that in PCV2 negative samples, supporting that PCV2 could act as a co-factor for PPV7 infection. In total, four PPV7 strains were sequenced and designated as NM-14, NM-19, NM-4, and NM-40. The amplified genome sequence of NM-14 and NM-40 were 3,999nt in length, while NM-19 and NM-4 were 3,996nt with a three nucleotides deletion at 3,097-3,099, resulting in an amino acid deletion in the Cap protein. Phylogenetic analysis based on the capsid amino acid (aa) sequences showed that 52 PPV7 strains were divided into two clades, and the four PPV7 strains in this study were all clustered in clade 1. The genome and capsid amino acid sequence of the four PPV7 strains identified in this study shared 80.0-96.9% and 85.9-100% similarity with that of 48 PPV7 reference strains selected in NCBI. Simplot analysis revealed that NM-19 and NM-4 strains were probably produced by recombination of two PPV7 strains from China. The amino acid sequence alignment analysis of capsid revealed that the four PPV7 strains detected in Inner Mongolia had multiple amino acid mutations in the 6 B cell linear epitopes compared with the reference strains, suggesting that the four PPV7 strains may have different characteristics in receptor binding and immunogenicity. In summary, this paper reported the PPV7 infection and molecular characterization in the eastern of Inner Mongolia Autonomous Region for the first time, which is helpful to understand the molecular epidemic characteristics of PPV7.

17.
Cardiovasc Ther ; 2022: 4382999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136419

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) usually causes right ventricular dysfunction, which is closely related to cardiac fibrosis. But cardiac fibrosis mechanism remains unclear. Our purpose was to explore microRNA-325-3p (miR-325-3p)/human epididymis protein 4's (HE4) role in the occurrence and development of right ventricular fibrosis in PAH. METHODS: The right ventricular fibrosis model of rats with PAH was constructed, and miR-325-3p was overexpressed to explore miR-325-3p's effect on myocardial fibrosis in rats with PAH. Pearson correlation coefficient examined the correlation between HE4 and miR-325-3p. We separated and identified the primary rat myocardial fibroblasts from the heart tissue. Then, the Ang II-treated myocardial fibroblast fibrosis model was constructed. miR-325-3p mimics and si-HE4 and oe-HE4 cell lines were constructed to investigate miR-325-3p and HE4 effects on myocardial cell fibrosis. Then, we added PI3K inhibitor LY294002 to study the effects of HE4 in cell fibrosis by the PI3K/AKT pathway. Starbase was used to predict miR-325-3p and HE4 binding sites. Dual-luciferase reporter assay verified whether miR-325-3p and HE4 were targeted. RESULTS: Overexpression of miR-325-3p alleviated myocardial fibrosis in rats with PAH. Pearson correlation coefficient showed that HE4 was negatively correlated with miR-325-3p expression. Starbase predicted that miR-325-3p had binding sites with HE4. Dual-luciferase reporter assay demonstrated that miR-325-3p targeted HE4. Overexpression of miR-325-3p downregulated HE4 and inhibited myocardial fibroblast fibrosis. HE4 knockdown inhibited myocardial fibroblast fibrosis. HE4 promoted myocardial fibroblast fibrosis and activated the PI3K/AKT pathway. In addition, HE4 affected myocardial fibroblast fibrosis through the PI3K/AKT pathway. CONCLUSIONS: miR-325-3p could target HE4 to relieve right ventricular fibrosis in rats with PAH. This study could provide new targets and strategies for right ventricular fibrosis in PAH.


Assuntos
MicroRNAs , Hipertensão Arterial Pulmonar , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/genética , Animais , Fibrose , Humanos , MicroRNAs/genética , Miocárdio/patologia , Fosfatidilinositol 3-Quinases , Ratos
18.
J Hazard Mater ; 413: 125304, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33626474

RESUMO

In this study, Fenton-like chain reaction is constructed by coupling nanoscale tungsten powders (nW0) and peroxydisulfate (PDS). The nanoscale tungsten powders/peroxydisulfate (nW0/PDS) system exhibits a high oxidation efficiency toward diverse pollutants and expands the effective pH range up to 9.8. Results reveal •OH and sulfate radical (SO4•-) were confirmed to be responsible for 4,4'-ethylidenebisphenol (EBP) degradation, especially •OH. The corrosion process of nW0 results in the in-situ production of H2O2 and the transient-state tungsten species (W (x, x < VI)), initiating the reaction of H2O2 and tungsten species to generate •OH. PDS can accelerate nW0 corrosion to enhance the Fenton-like reaction, and can be activated by tungsten species (nW0 and W (x, x < VI)) to produce •OH and SO4•-. Integrated the analysis results of LC-QTOF-MS/MS, EBP degradation pathways were proposed. This study reveals the high oxidation efficiency over a wide pH range in the nW0/PDS system and provides new insight into the tungsten species induced Fenton-like reaction.

19.
Front Plant Sci ; 12: 769748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956269

RESUMO

Nitrogen (N) is one of the most crucial elements for plant growth and development. However, little is known about the metabolic regulation of trees under conditions of N deficiency. In this investigation, gas chromatography-mass spectrometry (GC-MS) was used to determine global changes in metabolites and regulatory pathways in Populus tomentosa. Thirty metabolites were found to be changed significantly under conditions of low-N stress. N deficiency resulted in increased levels of carbohydrates and decreases in amino acids and some alcohols, as well as some secondary metabolites. Furthermore, an RNA-sequencing (RNA-Seq) analysis was performed to characterize the transcriptomic profiles, and 1,662 differentially expressed genes were identified in P. tomentosa. Intriguingly, four pathways related to carbohydrate metabolism were enriched. Genes involved in the gibberellic acid and indole-3-acetic acid pathways were found to be responsive to low-N stress, and the contents of hormones were then validated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Coordinated metabolomics and transcriptomics analysis revealed a pattern of co-expression of five pairs of metabolites and unigenes. Overall, our investigation showed that metabolism directly related to N deficiency was depressed, while some components of energy metabolism were increased. These observations provided insights into the metabolic and molecular mechanisms underlying the interactions of N and carbon in poplar.

20.
Sci Total Environ ; 797: 149097, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34298366

RESUMO

Slow reduction of Fe(III) in iron-mediated Fenton-like systems strongly limits the decomposition of H2O2 to produce hydroxyl radicals (•OH). Here, we report that graphene oxide (GO) possesses excellent reactivity to enhance the Fe(III)/H2O2 Fenton and photo-Fenton oxidation for degrading chloramphenicol (CAP). EPR analysis and quenching tests reveal that •OH is the primary oxidant for CAP degradation. The characterization analysis and iron species transformation experiments demonstrate that Fe(III) can combine with the functional groups on the GO surface to form GO-Fe(III) complexes. The chronopotentiometry and cyclic voltammogram suggest that GO can donate electrons to Fe(III) via intramolecular electron transfer and promote H2O2 induced Fe(III) reduction by increasing the oxidation capability of Fe(III) due to the formation of GO-Fe(III) complexes, resulting in the strong promotion of the Fe(III)/Fe(II) cycle for producing OH. Moreover, the dark- and vis-GO/Fe(III)/H2O2 systems can effectively degrade CAP at initial pH ranging from 2.0 to 4.7. The reusability and stability of GO were evaluated by performing the cyclic degradation experiments of CAP. The OH induced degradation pathway of CAP was proposed involving three stages, based on intermediates analysis of UPLC-QTOF-MS/MS system. Therefore, the GO/Fe(III)/H2O2 system with or without visible light shows high potential for application in environmental remediation.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Cloranfenicol , Grafite , Oxirredução , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA