Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Psychiatry ; 25(11): 3106, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30705428

RESUMO

In the original version of this article, affiliation 3 was given as: "Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong, University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China". This has now been corrected to: "Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China".Additionally in the 'Data availability' section an incorrect accession code was given. The accession code has now been changed from 'PDB A9X (AnkG:GABARAPL)' to 'PDB 6A9X (AnkG:GABARAP)'.These errors have been corrected in both the PDF and HTML versions of the Article.

2.
Mol Psychiatry ; 25(11): 2800-2817, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30504823

RESUMO

GABAergic circuits are critical for the synchronization and higher order function of brain networks. Defects in this circuitry are linked to neuropsychiatric diseases, including bipolar disorder, schizophrenia, and autism. Work in cultured neurons has shown that ankyrin-G plays a key role in the regulation of GABAergic synapses on the axon initial segment and somatodendritic domain of pyramidal neurons, where it interacts directly with the GABAA receptor-associated protein (GABARAP) to stabilize cell surface GABAA receptors. Here, we generated a knock-in mouse model expressing a mutation that abolishes the ankyrin-G/GABARAP interaction (Ank3 W1989R) to understand how ankyrin-G and GABARAP regulate GABAergic circuitry in vivo. We found that Ank3 W1989R mice exhibit a striking reduction in forebrain GABAergic synapses resulting in pyramidal cell hyperexcitability and disruptions in network synchronization. In addition, we identified changes in pyramidal cell dendritic spines and axon initial segments consistent with compensation for hyperexcitability. Finally, we identified the ANK3 W1989R variant in a family with bipolar disorder, suggesting a potential role of this variant in disease. Our results highlight the importance of ankyrin-G in regulating forebrain circuitry and provide novel insights into how ANK3 loss-of-function variants may contribute to human disease.


Assuntos
Anquirinas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Vias Neurais , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Adulto , Idoso , Animais , Anquirinas/genética , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Células Cultivadas , Feminino , Neurônios GABAérgicos/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Sinapses/metabolismo , Adulto Jovem
3.
Curr Top Membr ; 78: 315-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27586289

RESUMO

Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming ß subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC ß subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC ß subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, ß subunit orthologs did not arise until after the emergence of vertebrates. ß subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, ß subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development.


Assuntos
Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Moléculas de Adesão Celular/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Epilepsia/metabolismo , Epilepsia/patologia , Evolução Molecular , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/classificação , Canais de Sódio Disparados por Voltagem/genética
4.
Science ; 256(5058): 839-42, 1992 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-1375395

RESUMO

Voltage-sensitive sodium channels are responsible for the initiation and propagation of the action potential and therefore are important for neuronal excitability. Complementary DNA clones encoding the beta 1 subunit of the rat brain sodium channel were isolated by a combination of polymerase chain reaction and library screening techniques. The deduced primary structure indicates that the beta 1 subunit is a 22,851-dalton protein that contains a single putative transmembrane domain and four potential extracellular N-linked glycosylation sites, consistent with biochemical data. Northern blot analysis reveals a 1,400-nucleotide messenger RNA in rat brain, heart, skeletal muscle, and spinal cord. Coexpression of beta 1 subunits with alpha subunits increases the size of the peak sodium current, accelerates its inactivation, and shifts the voltage dependence of inactivation to more negative membrane potentials. These results indicate that the beta 1 subunit is crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the rat brain sodium channel.


Assuntos
Encéfalo/fisiologia , Canais de Sódio/genética , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Animais , Northern Blotting , Clonagem Molecular , DNA/genética , DNA/isolamento & purificação , Feminino , Cinética , Substâncias Macromoleculares , Potenciais da Membrana , Dados de Sequência Molecular , Oócitos/fisiologia , Reação em Cadeia da Polimerase/métodos , Conformação Proteica , RNA/genética , RNA/isolamento & purificação , RNA Mensageiro/genética , Ratos , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem , Xenopus
5.
Neuron ; 30(1): 105-19, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11343648

RESUMO

Na(v)1.6 is the main sodium channel isoform at adult nodes of Ranvier. Here, we show that Na(v)1.2 and its beta2 subunit, but not Na(v)1.6 or beta1, are clustered in developing central nervous system nodes and that clustering of Na(v)1.2 and Na(v)1.6 is differentially controlled. Oligodendrocyte-conditioned medium is sufficient to induce clustering of Na(v)1.2 alpha and beta2 subunits along central nervous system axons in vitro. This clustering is regulated by electrical activity and requires an intact actin cytoskeleton and synthesis of a non-sodium channel protein. Neither soluble- or contact-mediated glial signals induce clustering of Na(v)1.6 or beta1 in a nonmyelinating culture system. These data reveal that the sequential clustering of Na(v)1.2 and Na(v)1.6 channels is differentially controlled and suggest that myelination induces Na(v)1.6 clustering.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Nervo Óptico/crescimento & desenvolvimento , Nós Neurofibrosos/metabolismo , Canais de Sódio/metabolismo , Animais , Bioensaio/métodos , Diferenciação Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Nervo Óptico/citologia , Nervo Óptico/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Nós Neurofibrosos/ultraestrutura , Ratos
6.
Cardiovasc Res ; 67(3): 448-58, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15919069

RESUMO

Mutations in cardiac ion channels and their auxiliary subunits can lead to life-threatening cardiac arrhythmias. In recent years it has become apparent that ion channels are part of large, multi-protein complexes, comprising not only the ion channels and their auxiliary subunits, but also components of the cytoskeleton, regulatory kinases and phosphatases, trafficking proteins, extracellular matrix proteins, and possibly even other ion channels. Disruption of any member of a particular ion channel complex has the potential to disrupt the function of the associated channels, resulting in paroxysmal disease. Understanding the molecular composition of individual ion channel signaling complexes in heart may yield important insights into the molecular basis of cardiac arrhythmias and may suggest novel therapeutic approaches to treatment of these life-threatening conditions.


Assuntos
Arritmias Cardíacas/genética , Substâncias Macromoleculares/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Animais , Anquirinas/metabolismo , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Humanos , Ativação do Canal Iônico , Síndrome do QT Longo/metabolismo , Proteínas Associadas aos Microtúbulos , Transporte Proteico , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
7.
J Neurosci ; 21(19): 7517-25, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11567041

RESUMO

Contactin (also known as F3, F11) is a surface glycoprotein that has significant homology with the beta2 subunit of voltage-gated Na(+) channels. Contactin and Na(+) channels can be reciprocally coimmunoprecipitated from brain homogenates, indicating association within a complex. Cells cotransfected with Na(+) channel Na(v)1.2alpha and beta1 subunits and contactin have threefold to fourfold higher peak Na(+) currents than cells with Na(v)1.2alpha alone, Na(v)1.2/beta1, Na(v)1.2/contactin, or Na(v)1.2/beta1/beta2. These cells also have a correspondingly higher saxitoxin binding, suggesting an increased Na(+) channel surface membrane density. Coimmunoprecipitation of different subunits from cell lines shows that contactin interacts specifically with the beta1 subunit. In the PNS, immunocytochemical studies show a transient colocalization of contactin and Na(+) channels at new nodes of Ranvier forming during remyelination. In the CNS, there is a particularly high level of colocalization of Na(+) channels and contactin at nodes both during development and in the adult. Contactin may thus significantly influence the functional expression and distribution of Na(+) channels in neurons.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Canais de Sódio/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Ligação Competitiva/efeitos dos fármacos , Química Encefálica , Células CHO , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Contactinas , Cricetinae , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Feminino , Expressão Gênica , Lisofosfatidilcolinas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.2 , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Testes de Precipitina , Subunidades Proteicas , Nós Neurofibrosos/metabolismo , Ratos , Saxitoxina/metabolismo , Saxitoxina/farmacocinética , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Sódio/metabolismo , Bloqueadores dos Canais de Sódio , Canais de Sódio/genética , Tetrodotoxina/farmacologia , Transfecção
8.
J Neurosci ; 24(44): 10022-34, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15525788

RESUMO

A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel alpha subunit. The mutation decreased modulation of the alpha subunit by beta1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of beta1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type alpha subunit with the beta1 or beta3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for beta subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the alpha and beta1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility.


Assuntos
Epilepsia Generalizada/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Canais de Sódio/genética , Canais de Sódio/fisiologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Animais , Cricetinae , Cricetulus , Citoplasma , Epilepsia Generalizada/complicações , Epilepsia Generalizada/fisiopatologia , Feminino , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Cinética , Masculino , Modelos Neurológicos , Dados de Sequência Molecular , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1 , Neurônios/fisiologia , Oócitos , Estrutura Terciária de Proteína , Proteínas Recombinantes , Saccharomyces cerevisiae , Convulsões Febris/complicações , Convulsões Febris/genética , Convulsões Febris/fisiopatologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem , Xenopus laevis
9.
Circulation ; 103(9): 1303-10, 2001 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-11238277

RESUMO

BACKGROUND: Sodium channels isolated from mammalian brain are composed of alpha-, beta(1)-, and beta(2)-subunits. The composition of sodium channels in cardiac muscle, however, has not been defined, and disagreement exists over which beta-subunits are expressed in the myocytes. Some investigators have demonstrated beta(1) expression in heart. Others have not detected any auxiliary subunits. On the basis of Northern blot analysis of total RNA, beta(2) expression has been thought to be exclusive to neurons and absent from cardiac muscle. METHODS AND RESULTS: The goal of this study was to define the subunit composition of cardiac sodium channels in myocytes. We show that cardiac sodium channels are composed of alpha-, beta(1)-, and beta(2)-subunits. Nav1.5 and Nav1.1 are expressed in myocytes and are associated with beta(1)- and beta(2)-subunits. Immunocytochemical localization of Nav1.1, beta(1), and beta(2) in adult heart sections showed that these subunits are expressed at the Z lines, as shown previously for Nav1.5. Coexpression of Nav1.5 with beta(2) in transfected cells resulted in no detectable changes in sodium current. CONCLUSIONS: Cardiac sodium channels are composed of alpha- (Nav1.1 or Nav1.5), beta(1)-, and beta(2)-subunits. Although beta(1)-subunits modulate cardiac sodium channel current, beta(2)-subunit function in heart may be limited to cell adhesion.


Assuntos
Miocárdio/metabolismo , Canais de Sódio/fisiologia , Animais , Animais Recém-Nascidos , Especificidade de Anticorpos , Encéfalo/metabolismo , Linhagem Celular , Eletrofisiologia , Imunofluorescência , Humanos , Camundongos , Miocárdio/citologia , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/genética , Canais de Sódio/imunologia
10.
Neuroscientist ; 7(1): 42-54, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11486343

RESUMO

Voltage-gated sodium channels are glycoprotein complexes responsible for initiation and propagation of action potentials in excitable cells such as central and peripheral neurons, cardiac and skeletal muscle myocytes, and neuroendocrine cells. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming alpha subunit and two auxiliary beta subunits. The alpha subunits form a gene family with at least 10 members. Mutations in alpha subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome, and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode sodium channel beta subunits with at least one alternative splice product. A mutation in the beta 1 subunit gene has been linked to generalized epilepsy with febrile seizures plus type 1 (GEFS + 1) in a human family with this disease. Sodium channel beta subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. More recently, they have been shown to function as cell adhesion molecules in terms of interaction with extracellular matrix, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. Structure-function studies have resulted in the preliminary assignment of functional domains in the beta 1 subunit. A sodium channel signaling complex is proposed that involves beta subunits as channel modulators as well as cell adhesion molecules, other cell adhesion molecules such as neurofascin and contactin, RPTP beta, and extracellular matrix molecules such as tenascin.


Assuntos
Canais de Sódio/química , Canais de Sódio/fisiologia , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Animais , Coração/fisiologia , Humanos , Dados de Sequência Molecular , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Sistemas Neurossecretores/fisiologia , Estrutura Secundária de Proteína , Subunidades Proteicas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Canais de Sódio/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 278(3): G349-53, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10712253

RESUMO

Voltage-gated sodium channel alpha-subunits have been shown to be key mediators of the pathophysiology of pain. The present review considers the role of sodium channel auxiliary beta-subunits in channel modulation, channel protein expression levels, and interactions with extracellular matrix and cytoskeletal signaling molecules. Although beta-subunits have not yet been directly implicated in pain mechanisms, their intimate association with and ability to regulate alpha-subunits predicts that they may be a viable target for therapeutic intervention in the future. It is proposed that multifunctional sodium channel beta-subunits provide a critical link between extracellular and intracellular signaling molecules and thus have the ability to fine tune channel activity and electrical excitability.


Assuntos
Dor/fisiopatologia , Canais de Sódio/metabolismo , Vísceras/fisiopatologia , Animais , Anquirinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Fenômenos Fisiológicos Celulares , Clonagem Molecular , Contactinas , Canais Epiteliais de Sódio , Proteínas da Matriz Extracelular/metabolismo , Neuralgia/metabolismo , Dor/genética , Manejo da Dor , RNA Mensageiro/metabolismo , Canais de Sódio/genética
13.
J Biol Chem ; 262(36): 17504-9, 1987 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-2826423

RESUMO

alpha 2-Adrenergic receptors, a population of receptors linked to inhibition of adenylate cyclase, accelerate Na+/H+ exchange in NG108-15 neuroblastoma x glioma cells (Isom, L. L., Cragoe, E. J., Jr., and Limbird, L. E. (1987) J. Biol. Chem. 262, 6750-6757). We now report that two other receptor populations linked to inhibition of adenylate cyclase, muscarinic cholinergic and delta-opiate receptors, also alkalinize the interior of NG108-15 cells, as measured with the pH-sensitive fluorescent probe, 2,7-biscarboxyethyl-5(6)-carboxy-fluorescein. Manipulations that block Na+/H+ exchange, i.e. removal of extracellular Na+, reduction of extracellular pH to equal that of intracellular pH, and addition of 5-amino-substituted analogs of amiloride, all block alpha 2-adrenergic, delta-opiate, or muscarinic cholinergic receptor-induced alkalinization in a parallel fashion. These data suggest that all three populations of receptors alkalinize NG108-15 cells by acceleration of Na+/H+ exchange and do so via a shared or similar mechanism. Although these three receptor populations are linked to inhibition of adenylate cyclase, decreased production of cAMP does not appear to be the mechanism responsible for receptor-accelerated Na+/H+ exchange. Thus, ADP-ribosylation of intact NG108-15 cells with Bordetella pertussis islet-activating protein prevents attenuation of prostaglandin E1-stimulated cAMP accumulation by alpha 2-adrenergic, muscarinic, and delta-opiate agonists but has no measurable effect on the ability of these agonists to accelerate Na+/H+ exchange. Similarly, manipulations that block receptor-accelerated Na+/H+ exchange influence but do not block receptor-mediated attenuation of cAMP accumulation. Thus, the present data suggest that these two receptor-mediated biochemical events, acceleration of Na+/H+ exchange and attenuation of cAMP accumulation, occur through divergent mechanisms in NG108-15 cells.


Assuntos
Inibidores de Adenilil Ciclases , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Hibridomas/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Opioides/metabolismo , Adenosina Difosfato Ribose/metabolismo , Toxina Adenilato Ciclase , Alprostadil/farmacologia , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Glioma , Concentração de Íons de Hidrogênio , Camundongos , Neuroblastoma , Toxina Pertussis , Receptores Opioides delta , Trocadores de Sódio-Hidrogênio , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/enzimologia , Fatores de Virulência de Bordetella/farmacologia
14.
J Biol Chem ; 262(14): 6750-7, 1987 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-2883187

RESUMO

The regulation of cytoplasmic pH (pHi) was examined in neuroblastoma X glioma hybrid cell-line cells (NG108-15 cells) using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein. The pHi of NG108-15 cells suspended in nominally HCO-3-free, Na+-containing buffer could be reduced by the external application of acetate. The recovery of pHi to its resting value was blocked by the removal of extracellular Na+, by the addition of extra-cellular H+, and by the addition of analogs of amiloride selective for inhibition of Na+/H+ exchange. The rate of recovery of pHi from acid load exhibited an ionic selectivity of Na+ greater than Li+ much greater than K+, and no recovery was observed in N-methyl-D-glucamine+. Tetrodotoxin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid had no effect on early pHi recovery. These data suggest that Na+/H+ exchange accounts primarily for the recovery of pHi in NG108-15 cells under our experimental conditions. Na+/H+ exchange in NG108-15 cells was accelerated by alpha 2-adrenergic receptors. Thus, (-)epinephrine, but not (+)epinephrine, elicited an intracellular alkalinization which was blocked by the alpha 2-adrenergic receptor selective antagonist yohimbine but not by the alpha 1-adrenergic receptor antagonist, prazosin, nor the beta-adrenergic antagonist, propranolol. Norepinephrine, clonidine, and the clonidine analog, UK-14304, also caused alkalinization of NG108-15 cells, whereas isoproterenol, a beta-adrenergic receptor agonist, and phenylephrine, a selective alpha 1-adrenergic receptor agonist, did not. Manipulations that blocked Na+/H+ exchange blocked the ability of alpha 2-adrenergic agonists to alkalinize the interior of NG108-15 cells without blocking the ability of these agonists to attenuate cAMP accumulation. These findings provide the first direct evidence of modulation of Na+/H+ exchange activity by a receptor linked to inhibition of adenylate cyclase and offer a possible mechanism whereby alpha 2-adrenergic receptors might influence cellular activity apart from changes in cyclic nucleotide metabolism.


Assuntos
Antagonistas Adrenérgicos alfa/farmacologia , Epinefrina/farmacologia , Células Híbridas/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Sódio/metabolismo , Alprostadil/farmacologia , Animais , Linhagem Celular , Glioma , Concentração de Íons de Hidrogênio , Cinética , Camundongos , Neuroblastoma , Ratos , Receptores Adrenérgicos alfa/efeitos dos fármacos
15.
J Biol Chem ; 269(26): 17649-55, 1994 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-8021275

RESUMO

The sodium channel from adult rat brain consists of a high molecular weight alpha subunit associated with low molecular weight subunits termed beta 1 and beta 2. Coexpression of beta 1 accelerates the macroscopic kinetics of inactivation of adult rat brain IIA, embryonic rat brain III, and rat skeletal muscle SkM1 sodium channel alpha subunits. In addition, beta 1 accelerates the kinetics of activation, as observed with a non-inactivating rat brain IIA mutant. Analysis of the effects of beta 1 on the slowly inactivating brain III alpha subunit shows that both of these effects may be the result of changes in the modal gating behavior of the sodium channels expressed in Xenopus oocytes. Although the adult rat brain beta 1 subunit modulates the functional properties of rat skeletal muscle and embryonic brain III sodium channel alpha subunits, mRNA hybridizing to a beta 1 subunit cDNA probe was only faintly detected in RNA from adult skeletal muscle and not at all in RNA from embryonic brains. These results indicate that the adult rat brain beta 1 subunit can modify the modal gating properties of sodium channel alpha subunits with which it is not normally associated, suggesting the presence of conserved domains for interactions between the different alpha and beta 1 subunits of the sodium channel.


Assuntos
Encéfalo/metabolismo , Ativação do Canal Iônico , Fragmentos de Peptídeos/metabolismo , Canais de Sódio/metabolismo , Animais , Feminino , Cinética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/genética , Xenopus laevis
16.
J Biol Chem ; 275(15): 11383-8, 2000 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-10753953

RESUMO

Sodium channels isolated from mammalian brain are composed of alpha, beta1, and beta2 subunits. The auxiliary beta subunits do not form the ion conducting pore, yet play important roles in channel modulation and plasma membrane expression. beta1 and beta2 are transmembrane proteins with one extracellular V-set immunoglobulin (Ig) protein domain. It has been shown recently that beta1 and beta2 interact with the extracellular matrix proteins tenascin-C and tenascin-R. In the present study we show that rat brain beta1 and beta2, but not alphaIIA, subunits interact in a trans-homophilic fashion, resulting in recruitment of the cytoskeletal protein ankyrin to sites of cell-cell contact in transfected Drosophila S2 cells. Whereas alphaIIA subunits expressed alone do not cause cellular aggregation, beta subunits co-expressed with alphaIIA retain the ability to adhere and recruit ankyrin. Truncated beta subunits lacking cytoplasmic domains interact homophilically to produce cell aggregation but do not recruit ankyrin. Thus, the cytoplasmic domains of beta1 and beta2 are required for cytoskeletal interactions. It is hypothesized that sodium channel beta subunits serve as a critical communication link between the extracellular and intracellular environments of the neuron and may play a role in sodium channel placement at nodes of Ranvier.


Assuntos
Anquirinas/metabolismo , Moléculas de Adesão Celular/fisiologia , Comunicação Celular , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Animais , Adesão Celular , Agregação Celular , Drosophila , Dados de Sequência Molecular , Ratos , Canais de Sódio/química , Relação Estrutura-Atividade
17.
J Neurochem ; 76(6): 1871-8, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11259505

RESUMO

Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes.


Assuntos
Canais de Sódio/química , Canais de Sódio/fisiologia , Animais , Sítios de Ligação , Encéfalo/metabolismo , Membrana Celular/fisiologia , Mamíferos , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Oócitos/fisiologia , Subunidades Proteicas , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saxitoxina/farmacocinética , Canais de Sódio/genética , Xenopus laevis
18.
J Biol Chem ; 270(7): 3306-12, 1995 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-7852416

RESUMO

Brain sodium channels are a complex of alpha (260 kDa), beta 1 (36 kDa), and beta 2 (33 kDa) subunits, alpha subunits are functional as voltage-gated sodium channels by themselves. When expressed in Xenopus oocytes, beta 1 subunits accelerate the time course of sodium channel activation and inactivation by shifting them to a fast gating mode, but alpha subunits expressed alone in mammalian cells activate and inactivate rapidly without co-expression of beta 1 subunits. In these experiments, we show that the Chinese hamster cell lines CHO and 1610 do not express endogenous beta 1 subunits as determined by Northern blotting, immunoblotting, and assay for beta 1 subunit function by expression of cellular mRNA in Xenopus oocytes. alpha subunits expressed alone in stable lines of these cells activate and inactivate rapidly. Co-expression of beta 1 subunits increases the level of sodium channels 2- to 4-fold as determined from saxitoxin binding, but does not affect the Kd for saxitoxin. Co-expression of beta 1 subunits also shifts the voltage dependence of sodium channel inactivation to more negative membrane potentials by 10 to 12 mV and shifts the voltage dependence of channel activation to more negative membrane potentials by 2 to 11 mV. These effects of beta 1 subunits on sodium channel function in mammalian cells may be physiologically important determinants of sodium channel function in vivo.


Assuntos
Expressão Gênica , Oócitos/fisiologia , Canais de Sódio/biossíntese , Animais , Northern Blotting , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Feminino , Cinética , Medições Luminescentes , Pulmão , Substâncias Macromoleculares , Potenciais da Membrana , Peso Molecular , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saxitoxina/metabolismo , Canais de Sódio/isolamento & purificação , Canais de Sódio/fisiologia , Transfecção , Xenopus
19.
J Biol Chem ; 273(7): 3954-62, 1998 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-9461582

RESUMO

The rat brain voltage-gated Na+ channel is composed of three glycoprotein subunits: the pore-forming alpha subunit and two auxiliary subunits, beta1 and beta2, which contain immunoglobulin (Ig)-like folds in their extracellular domains. When expressed in Xenopus oocytes, beta1 modulates the gating properties of the channel-forming type IIA alpha subunit, resulting in an acceleration of inactivation. We have used a combination of deletion, alanine-scanning, site-directed, and chimeric mutagenesis strategies to examine the importance of different structural features of the beta1 subunit in the modulation of alphaIIA function, with an emphasis on the extracellular domain. Deletion analysis revealed that the extracellular domain is required for function, but the intracellular domain is not. The mutation of four putative sites of N-linked glycosylation showed that they are not required for beta1 function. Mutations of hydrophobic residues in the core beta sheets of the Ig fold disrupted beta1 function, whereas substitution of amino acid residues in connecting segments had no effect. Mutations of acidic residues in the A/A' strand of the Ig fold reduced the effectiveness of the beta1 subunit in modulating the rate of inactivation but did not significantly affect the association of the mutant beta1 subunit with the alphaIIA subunit or its effect on recovery from inactivation. Our data suggest that the Ig fold of the beta1 extracellular domain serves as a scaffold that presents the charged residues of the A/A' strands for interaction with the pore-forming alpha subunit.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Eletrofisiologia , Expressão Gênica/genética , Glicosilação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese/genética , Oócitos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Ratos , Alinhamento de Sequência , Deleção de Sequência/genética , Canais de Sódio/química , Canais de Sódio/genética , Xenopus
20.
Cell ; 83(3): 433-42, 1995 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-8521473

RESUMO

Voltage-gated sodium channels in brain neurons are complexes of a pore-forming alpha subunit with smaller beta 1 and beta 2 subunits. cDNA cloning and sequencing showed that the beta 2 subunit is a 186 residue glycoprotein with an extracellular NH2-terminal domain containing an immunoglobulin-like fold with similarity to the neural cell adhesion molecule (CAM) contactin, a single transmembrane segment, and a small intracellular domain. Coexpression of beta 2 with alpha subunits in Xenopus oocytes increases functional expression, modulates gating, and causes up to a 4-fold increase in the capacitance of the oocyte, which results from an increase in the surface area of the plasma membrane microvilli. beta 2 subunits are unique among the auxiliary subunits of ion channels in combining channel modulation with a CAM motif and the ability to expand the cell membrane surface area. They may be important regulators of sodium channel expression and localization in neurons.


Assuntos
Química Encefálica/fisiologia , Moléculas de Adesão Celular Neuronais , Moléculas de Adesão Celular/fisiologia , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Membrana Celular/fisiologia , Clonagem Molecular , Contactinas , DNA Complementar/genética , Expressão Gênica/fisiologia , Imunoglobulinas/genética , Glicoproteínas de Membrana/fisiologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Oócitos/fisiologia , Ratos , Canais de Sódio/ultraestrutura , Medula Espinal/química , Medula Espinal/embriologia , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA